%‘ Ira A.Fulton Schools of
Engineering
ri \'

Arizona State Universit

CSE 420
Computer Architecture |

Briet Review
Computer Organization & Assembly Language

Prof. Michel A. Kinsy

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

%‘ IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

Software Mechanics for Bridging
* The Art of Abstraction

Application

Algorithm
Programming Language
Operating System/Virtual Machine

Instruction Set Architecture (ISA)

Microarchitecture
Register-Transfer Level
Circuits

Devices
Physics

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Another View of the Abstraction

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Applications & Algorithms

Programming Language
Compiler

Operating System
Firmware

Processor Memory organization /O system
Datapath & Control

Digital Design

‘ Circuit Design ‘

Layout

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

Computer Organization

= The modern computer system has three major functional hardware
units: CPU (Processing Engine), Main Memory (Storage) and
Input/Output (I/0O) Units

Processor Memory |/O Devices

.
it MemWrit . .
Device Device
sy | 100 " " -
Read Addr | o I e oo n .
werd o ALY i i
rpetts -1t Write Dat ta b g
Write Data i _—

A A A A A A
Control Bus

Address Bus

P40/ |BUJDIXT

Data Bus

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Computing Process

Computation ideas

A
& 85
o” “
¢ s
N 0
Y 25
boc’} 0

W ﬁentral Processing Unh Sss
Arithmetic/)
Logic Unit

{ i

Control Unit

11111101000000010000
00100010011

00000011000000010000
10000010011

11111101000000010000
00100010011
00000011000000010000

10000010011

Memory 1pe Computer

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Hardware Prospective

" 1111 1110 0000 0001 0000 0001 0001 0011} £e010113 //i 0000019¢ addi sp,sp, -32
' 0000 0000 0001 0001 0010 1110 0010 0011} 00112e23 //i 000001a0i sw ra,28 (sp)

' 0000 0000 1000 0001 0010 1100 0010 0011} 00812c23 //i 000001a4 sw 50,24 (sp)

| 0000 0010 0000 0001 0000 0100 0001 0011} 02010413 //} 000001a8 addi s0,sp, 32

| 0000 0000 1000 0000 0000 0111 1001 0011} 00800793 // 00000lad addi a5, zero,8
' 1111 1110 1111 0100 0010 0110 0010 0011} fef42623 //i 0000010 sw a5, -20 (s0)

| 1111 1110 1100 0100 0010 0111 1000 0011} fec42783 //i 000001b4 1w a5,-20 (s0)

' 0000 0000 0000 0111 1000 0101 0001 0011} 00078513 //i 000001b8} addi a0,a5,0

| 0000 0000 0000 0000 0000 0000 1001 0111; 00000097 //{ 000001bc auipc ra, 0x0

§ £64080e7 //i 000001cOl jalr ra,-156(ra)

Add resses

__

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Bridging/Compiling Process
» High-Level Language

Human C/C++/Java program

Readable VN

assembly code

A

assembler

object code library routines

executable
v

Machine

Code memory

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

Program memory management

Higher Bottom of
Addresses the stack

A

Top of the
stack

Lower
Addresses

>
Stack Segment Variable Size
[Stack frames consisting of parameters,
return addresses and local variables]
>
* Free space
Heap Segment
[Dynamic variables managed by Variable Size
malloc(), free(), etc.]
BSS Segment Fixed Size
[Initialized global and static variables]
Data Segment : -
[Initialized global and static variables] Fixed Size
Text Segment Fixed Size

[Program code]

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Application Side

» Higher-level languages

= Allow the programmer to think in @ more natural language and for
their intended use

= Improve programmer productivity Improve program maintainability
= Allow programs to be independent of the computer on which they are

developed

= Compilers and assemblers can translate high-level language programs to the
binary instructions of any machine

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A.Fulton Schools of
Engineering

Arizona State University

Application Side

» Higher-level languages

= Allow the programmer to think in @ more natural language and for
their intended use

= |Improve programmer productivity Improve program maintainability

= Allow programs to be independent of the computer on which they are
developed

= Emergence of optimizing compilers that produce very efficient
assembly code

= As a result, very little programming is done today at the assembler
level

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

System Software Side

= System software
= Operating system — supervising program that interfaces the user’s
program with the hardware (e.g., Linux, MacOS, Windows)
= Handles basic input and output operations
» Allocates storage and memory
= Provides for protected sharing among multiple applications

= Compiler — translate programs written in a high-level language (e.g.,
C, Java) into instructions that the hardware can execute

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Application Compiling Process
» C Language

Human C program
Readable VN

assembly code

A

\ 4
Machine

Code memory

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Application Compiling Process
» C Language

Human C program
Readable A

.
’
’
’
’
/
/
7
1
I
1

assembly code

A

assembler

______________ object code library routines

executable

v
Machine
Code memory

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Ira A.Fulton Schoo!sof
% Engmeermg

a State University

Why is assembly level view?

= To become familiar with the process of compiling a
program/application (e.g., C) onto a computer system

= To know what assemblers are and what compilers do

= To understand the computer hardware view of the
program/application

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Why is assembly level view?

* To become familiar with the process of compiling a
program/application (e.g., C) onto a computer system
= To, then, fully realize why computers are built the way they are
= |n turn, you will gain new insights into how to write better and more

efficient code
= And explore new opportunities in the field of embedded system

programming

%‘ IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Greatest Common Divisor Example

int gcd (int a, int b) { main:
int tmp; sd ra,24(sp)
ifla<b){ .
tmp =a; call printf
o =i = From C to addi a4,50,-28
= tmp;
/ o assemblyl the call scanf
//Find the gcd translation is Iw a5,-24(s0)

while(b I=0) {

straightforward

Iw a4,-28(s0)

while (a >= b) { mv al,a4
a=a-b; mv a0,a5
; call gcd(int, int)
tmp =a; mv a5,a0
a =b; sw a5,-20(s0)
b =tmp;
} call printf
return a;
} addi sp,sp,32
jrra

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Hardware Prospective

" 1111 1110 0000 0001 0000 0001 0001 0011} £e010113 //i 0000019¢ addi sp,sp, -32
' 0000 0000 0001 0001 0010 1110 0010 0011} 00112e23 //i 000001a0i sw ra,28 (sp)

' 0000 0000 1000 0001 0010 1100 0010 0011} 00812c23 //i 000001a4 sw 50,24 (sp)

| 0000 0010 0000 0001 0000 0100 0001 0011} 02010413 //} 000001a8 addi s0,sp, 32

| 0000 0000 1000 0000 0000 0111 1001 0011} 00800793 // 00000lad addi a5, zero,8
' 1111 1110 1111 0100 0010 0110 0010 0011} fef42623 //i 0000010 sw a5, -20 (s0)

| 1111 1110 1100 0100 0010 0111 1000 0011} fec42783 //i 000001b4 1w a5,-20 (s0)

' 0000 0000 0000 0111 1000 0101 0001 0011} 00078513 //i 000001b8} addi a0,a5,0

| 0000 0000 0000 0000 0000 0000 1001 0111; 00000097 //{ 000001bc auipc ra, 0x0

§ £64080e7 //i 000001cOl jalr ra,-156(ra)

Add resses

__

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Code

= Three types of statements in assembly language

= Typically, one statement per a line
1. Executable assembly instructions
= Operations to be performed by the processor

2. Pseudo-Instructions and Macros
» Translated by the assembler into real assembly instructions
= Simplity the programmer task

3. Assembler Directives

= Provide information to the assembler while translating a program

» Used to define segments, allocate memory variables, etc.

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

% Ira A.Fulton Schoo!sof
Engmeermg

a State University

Computer Organization Overview

= The modern digital computer has three major functional
hardware units: CPU, Main Memory and Input/Output (I/O) Units

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
= Arithmetic
» add, sub, mul, sll, srl, and, or, etc. start

= Load/store -
= |w,sw,lb,sb 7 —’
= Conditional — branches
" beq, bne, j, jra

yes

return a

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions

= Arithmetic
= add, sub, mul, sll, srl, and, or, etc.

» | oad/store b0

= |w,sw,lb,sb

Conditional - branches — ____'___ "
* beq, bne,j,ja l==---toa

sw ab, —36(80)
J .L5
L4

lw ab,-36(s0)

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions

= Arithmetic
= add, sub, mul, sll, srl, and, or, etc.

= | oad/store
= |w,sw,lb,sb
= Conditional — branches
* beq, bne, |, jra
= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]

L2

begz x1, done # if(x1 == 0) goto done

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions

= Arithmetic
= add, sub, mul, sll, srl, and, or, etc.

= | oad/store
= |w,sw,lb,sb
= Conditional — branches
" beq, bne, |, jra
= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]
main:

addi sp,sp,-32

sd ra, 24 (sp)

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]
= Label: (optional)
= Marks the address of a memory location
= Typically appear in data and text segments

int array [] = {2, 4, 5, 0, 1, 7};
int main(void) {

int x,vy,2z;

x = arrayl[0];

y = arrayl[l];

7z = arrayl2];

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]
= Label: (optional)
= Marks the address of a memory location
= Typically appear in data and text segments

int array [] = {2, 4, 5, 0, 1, 7}; array: main:
int main(void) { .word 2 addi sp, sp,—48
int x,v,2z; .word 4 sw ra, 44 (sp)
x = arrayl[0]; .word 5 sw s0,40 (sp)
y = array[1l]; .word O addi s0,sp, 48
z = arrayl[2]; word 1 lui ab, %hi(array)
.word 7 1w x5,%lo(array) (ab)
lw x6,4 (ab)
lw x7,8(ab)

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Assembly Code

= DATA directive
s TEXT directive
» GLOBL directive

= Declares a symbol as global

r-H——-— "=—-"====-=-=-==== 1
int array [] = {2, 4, 5, 0, 1, 7}; | .globl main !
char name [9]; : .type main, @function:
int main (void) { I main I

int x,y,z; T T T &daf sp,sp, 48 T T T 77

[0];
y = arrayl[l];
[2];

X = array sw ra, 44 (sp)

Z = array

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Assembly Code

= DATA directive
= TEXT directive

= GLOBL directive
= BSS directive

= The BSS contains variables that are initialized to zero or are explicitly
initialized in code

int array [] = {2, 4, 5, 0, 1, 7}; .globl name
char name [9]; rigéé ______ :
int main (void) { —.align 2 T T 7
int x,vy,2z; .type name, @object
x = arrayl[0]; .slize name, 9
y = arrayl[l]; name :
z = arrayl[2]; .zero 9
.Lext
.align 1

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Code

= DATA directive

= Defines the data segment of a program containing data
= The program's variables should be defined under this directive

» TEXT directive

= Defines the code segment of a program containing instructions

» GLOBL directive

= Declares a symbol as global

» BSS directive

= The BSS contains variables that are initialized to zero or are explicitly
initialized in code

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Assembly Code

.LCO:
.string "Enter positive
integers a and b: "
.align 2
.LC1:
.string "%d %d"
.align 2
.LC2:
.string "GCD = %d"
. text
.align 1
.globl main
.type main, (@function
main:
addi sp,sp,-48
sw ra,44 (sp)

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

2byte

Adbyte
.half
.word

.asciz
.string

.Macro

type

“string”
“string”

name arg1 [, argn]

symbol, @function

6-bit comma separated
words (unaligned)

32-bit comma separated
words (unaligned)

16-bit comma separated
words (naturally aligned)

32-bit comma separated
words (naturally aligned)

emit string (alias for .string)
emit string

begin macro definition
\argname to substitute

accepted for source
compatibility

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Assembly Languages

= Assemblers:

= Convert mnemonic operation codes to their machine language
equivalents

= Convert symbolic operands to their equivalent machine addresses

= Build the machine instructions in the proper format
= Convert the data constants to internal machine representations
Write the object program and the assembly listing

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

System Calls

= Programs do input/output through system calls
= To obtain services from the operating system
» Using the syscall system services

» |ssue the syscall instruction addi 20,25, %10 (.1C0)
call printf

call scanft
1w ab5,-36(s0)

= Retrieve return values, if any, from result registers

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Application Compiling Process
= High-level language program (in C)

void swap (int arrayl[], int 1) {

int temp; one-to-many

temp = arrayl[i];

array[i] = arrayl[i+l];

array[it+tl] = temp; C Compller

= Assembly language program (for RISC-V)

swap:

addi sp,sp,-48
mv ad5,al

1d s0,40 (sp)
addi sp, sp,48

Jjr ra

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

Application Compiling Process

= A compiler is a software program that translates a human-
oriented high-level programming language code into computer-
oriented machine language

Input
Source Target
Program > Compiler —> Program
(C, C++, etc.) (RISC-V, MIPS, x86,etc.)

l |

Error messages Output

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Application Compiling Process
= Assembly language program (for RISC-V)

swap:

addi sp,sp,-48

mv ab,al

. ohe-to-one
1d s0,40 (sp)
addi sp,sp,48 assembler

Jjr ra

= Machine (object, binary) code (for RISC-V)

111111010000 00010 000 00010 0010011
000000110000 00010 000 01000 0010011

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Application Compiling Process

= Detailed compilation process

Language-focused
transformations transformations

Scanner Parser Semantic
(lexical (syntax Analysis
analysis) .. analysis) (IC generator)

High-level
language

Code
Optimizer

Target
language

A 4

A 4

A 4

Symbols
&
Attributes
Table

= More on this later when you take a course on compilers

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Application Compiling Process

= Symbol Table

= |dentifiers are names of variables, constants, functions, data types,
etc.

» Store information associated with identifiers

= Information associated with different types of identifiers can be
different

= Information associated with variables are name, type, address, size
(for array), etc.

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

Program memory management

Higher Bottom of
Addresses the stack

A

Top of the
stack

Lower
Addresses

>
Stack Segment Variable Size
[Stack frames consisting of parameters,
return addresses and local variables]
>
* Free space
Heap Segment
[Dynamic variables managed by Variable Size
malloc(), free(), etc.]
BSS Segment Fixed Size
[Initialized global and static variables]
Data Segment : -
[Initialized global and static variables] Fixed Size
Text Segment Fixed Size

[Program code]

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

Stack Structure

*» Procedure frame or activation record

Other value Other value Other value
sp —

S

P— Return address

Arg. registers

Saved registers

sp Local variables

Bottom of stack S o e Bottom of stack

Before call During call After call

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Big Endian — Little Endian

» Processors can order bytes within a word in two ways
= |ittle Endian

= |east significant byte stored at lowest byte address
= Intel IA-32, Alpha, AMD

Memory
MSB LSB address o A+1 A+2 A+3
|Byte3|Byte2|Byte1|Byte0| “ ---|Byte0|Byte1|Byte2|Byte3|---
32-bit Register Memory

= Big Endian
» Most significant byte stored at lowest byte address
= SPARC, PA-RISC, IBM

Memory
MSB LSB addressA A+1 A+2 A+3
|Byte3|Byte2|Byte1|Byte0| “ ---|Byte3|Byte2|Byte1|Byte0|---

32-bit Register Memory

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Big Endian — Little Endian

int main (void) {
int var; // Integer values
char *ptr; // Pointer

// Assign 'var' and output it in byte order and as a value
var = 0x12345678;

ptr = (char *) &var;

printf ("ptr[0] = %02X \n", ptr[0]); // Prints 78
printf ("ptr[1l] = %02X \n", ptr[l]); // Prints 56
printf ("ptr[2] = %02X \n", ptr[2]); // Prints 34
printf ("ptr[3] = %02X \n", ptr[3]); // Prints 12

printf ("var = %$08X \n", wvar); // Prints 12345678

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Big Endian — Little Endian

int main (void) {
int wvar;
char *ptr;

// Integer values
// Pointer

// Assign 'var' and output it in byte order and as a value
var = 0x12345678;
ptr = (char *) &var;
printf ("ptr[0] = %02X \n", ptr[0]); // Prints 78
printf ("ptr[1l] = %02X \n", ptr[l]); // Prints 56
printf ("ptr[2] = %02X \n", ptr[2]); // Prints 34
printf ("ptr[3] = %02X \n", ptr[3]); // Prints 12
Big Endian Little Endian
printf ("var = %$08X \n", wvar); / g

Solaris on SPARC

Windows on Intel

ptr[0] = 12 ptr[O] = 78
ptr[1] = 34 ptr[1] = 56
ptr[2] = 56 ptr[2] = 34
ptr[3] =78 ptr[3] = 12

var = 12345678

var = 12345678

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

% Ira A.Fulton Schoo!sof
Engmeermg

a State University

Concluding Note

= |f you feel the need to learn or refresh some of these foundational
concepts, you might consider taking CSE 420 first.

