
Brief Review
Computer Organization & Assembly Language

Prof. Michel A. Kinsy

CSE 420
Computer Architecture I

Software Mechanics for Bridging
§ The Art of Abstraction

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)
Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Another View of the Abstraction

Operating System

Programming Language

Applications & Algorithms

Firmware

Datapath & Control

Digital Design

Circuit Design

Layout

I/O systemProcessor Memory organization
ISA

Compiler

Computer Organization
§ The modern computer system has three major functional hardware

units: CPU (Processing Engine), Main Memory (Storage) and
Input/Output (I/O) Units

Processor Memory

Control Bus

2
114
17

100

Read
Address

Instruction[31-0]

ADD

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register File

Read
 Data 1

Read
 Data 2

ALU

 Overflow

zero

RegWrite

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend

16 32

MemtoReg

ALUSrc

Shift
left 2

ADD

PCSrc

RegDst

ALU
Control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 -11]

Control
Unit

Instr[31-26]

Branch

Device
#1

Device
#n

I/O Devices

…

Address Bus

Data Bus

…

External W
orld

Computing Process

Central Processing Unit

Memory

Control Unit

Arithmetic/
Logic Unit

Inputs

O
utputs

111111010000000100000
00100010011
000000110000000100000
10000010011
...

111111010000000100000
00100010011
000000110000000100000
10000010011
...

Computation ideas
&

Solutions

Reducti
on Proce

ss
Presentation Process

The Computer

Hardware Prospective
1111 1110 0000 0001 0000 0001 0001 0011 fe010113 // 0000019c addi sp,sp,-32

0000 0000 0001 0001 0010 1110 0010 0011 00112e23 // 000001a0 sw ra,28(sp)
0000 0000 1000 0001 0010 1100 0010 0011 00812c23 // 000001a4 sw s0,24(sp)
0000 0010 0000 0001 0000 0100 0001 0011 02010413 // 000001a8 addi s0,sp,32

0000 0000 1000 0000 0000 0111 1001 0011 00800793 // 000001ac addi a5,zero,8
1111 1110 1111 0100 0010 0110 0010 0011 fef42623 // 000001b0 sw a5,-20(s0)
1111 1110 1100 0100 0010 0111 1000 0011 fec42783 // 000001b4 lw a5,-20(s0)

0000 0000 0000 0111 1000 0101 0001 0011 00078513 // 000001b8 addi a0,a5,0

0000 0000 0000 0000 0000 0000 1001 0111 00000097 // 000001bc auipc ra,0x0

1111 0110 0100 0000 1000 0000 1110 0111 f64080e7 // 000001c0 jalr ra,-156(ra)

Real Machine Code Addresses

Bridging/Compiling Process
§ High-Level Language

C/C++/Java program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

Human
Readable

Machine
Code

Program memory management
Higher

Addresses

Lower
Addresses

Text Segment
[Program code]

Fixed Size

Data Segment
[Initialized global and static variables]

Fixed Size

BSS Segment
[Initialized global and static variables]

Fixed Size

Heap Segment
[Dynamic variables managed by

malloc(), free(), etc.]
Variable Size

Stack Segment
[Stack frames consisting of parameters,

return addresses and local variables]

Variable Size

Free space
Top of the

stack

Bottom of
the stack

Application Side
§ Higher-level languages

§ Allow the programmer to think in a more natural language and for
their intended use

§ Improve programmer productivity Improve program maintainability
§ Allow programs to be independent of the computer on which they are

developed
§ Compilers and assemblers can translate high-level language programs to the

binary instructions of any machine

Application Side
§ Higher-level languages

§ Allow the programmer to think in a more natural language and for
their intended use

§ Improve programmer productivity Improve program maintainability
§ Allow programs to be independent of the computer on which they are

developed
§ Emergence of optimizing compilers that produce very efficient

assembly code
§ As a result, very little programming is done today at the assembler

level

System Software Side
§ System software

§ Operating system – supervising program that interfaces the user’s
program with the hardware (e.g., Linux, MacOS, Windows)
§ Handles basic input and output operations
§ Allocates storage and memory
§ Provides for protected sharing among multiple applications

§ Compiler – translate programs written in a high-level language (e.g.,
C, Java) into instructions that the hardware can execute

Application Compiling Process
§ C Language

C program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

Human
Readable

Machine
Code

Application Compiling Process
§ C Language

C program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

Human
Readable

Machine
Code

Why is assembly level view?
§ To become familiar with the process of compiling a

program/application (e.g., C) onto a computer system
§ To know what assemblers are and what compilers do
§ To understand the computer hardware view of the

program/application

Why is assembly level view?
§ To become familiar with the process of compiling a

program/application (e.g., C) onto a computer system
§ To, then, fully realize why computers are built the way they are

§ In turn, you will gain new insights into how to write better and more
efficient code

§ And explore new opportunities in the field of embedded system
programming

Greatest Common Divisor Example

§ From C to
assembly, the
translation is
straightforward

main:
 sd ra,24(sp)
..
call printf
addi a4,s0,-28
...
call scanf
lw a5,-24(s0)
lw a4,-28(s0)
mv a1,a4
mv a0,a5
call gcd(int, int)
mv a5,a0
sw a5,-20(s0)

 ...
call printf

 ...
addi sp,sp,32
jr ra

int gcd (int a, int b) {
int tmp;
if(a < b) {

tmp = a;
a = b;
b = tmp;

}
//Find the gcd
while(b != 0) {

while (a >= b) {
a = a - b;
}
tmp = a;
a = b;
b = tmp;

}
return a;

}

Hardware Prospective
1111 1110 0000 0001 0000 0001 0001 0011 fe010113 // 0000019c addi sp,sp,-32

0000 0000 0001 0001 0010 1110 0010 0011 00112e23 // 000001a0 sw ra,28(sp)
0000 0000 1000 0001 0010 1100 0010 0011 00812c23 // 000001a4 sw s0,24(sp)
0000 0010 0000 0001 0000 0100 0001 0011 02010413 // 000001a8 addi s0,sp,32

0000 0000 1000 0000 0000 0111 1001 0011 00800793 // 000001ac addi a5,zero,8
1111 1110 1111 0100 0010 0110 0010 0011 fef42623 // 000001b0 sw a5,-20(s0)
1111 1110 1100 0100 0010 0111 1000 0011 fec42783 // 000001b4 lw a5,-20(s0)

0000 0000 0000 0111 1000 0101 0001 0011 00078513 // 000001b8 addi a0,a5,0

0000 0000 0000 0000 0000 0000 1001 0111 00000097 // 000001bc auipc ra,0x0

1111 0110 0100 0000 1000 0000 1110 0111 f64080e7 // 000001c0 jalr ra,-156(ra)

Real Machine Code Addresses

Assembly Code
§ Three types of statements in assembly language

§ Typically, one statement per a line
1. Executable assembly instructions

§ Operations to be performed by the processor

2. Pseudo-Instructions and Macros
§ Translated by the assembler into real assembly instructions
§ Simplify the programmer task

3. Assembler Directives
§ Provide information to the assembler while translating a program
§ Used to define segments, allocate memory variables, etc.

Computer Organization Overview
§ The modern digital computer has three major functional

hardware units: CPU, Main Memory and Input/Output (I/O) Units

Assembly Code
§ There are 3 main types of assembly instructions

§ Arithmetic
§ add, sub, mul, sll, srl, and, or, etc.

§ Load/store
§ lw,sw,lb,sb

§ Conditional – branches
§ beq, bne, j, jra

!
Diagram!!

!

!
Top!module!

&&������
	��	���������
�����������(%���#
%���)%����
*�

��	�����%���$�
�&&��	����
����

������	�20�
�
���(�1�
)�
�*�
� �����0�	$�
� �	�0�
$�
� �
�0����$�
�+�
�&&�������
�����
�����
(
�"0�,)�
�*�
������������
�(�20�
)�

�����������������*�
������������������������	�0�	�'�
$�
�����������������+�

� �����0�	$�
� �	�0�
$�
� �
�0����$�
�+�
��
�����	$�

�+�

��	���

	�0�,�

�
�����	�

�0�,�

	�20�
�

��	�(#
)�

	�1�
�

��	�(#
)�

	�0�	�'�
�

���

��

��

��

���

���

��	���

	�0�,�

�
�����	�

�0�,�

	�20�
�

��	�(#
)�

	�1�
�

��	�(#
)�

	�0�	�'�
�

���

��

��

��

���

���

	�

	�
�

�	����

��������

��	���

	�0�,�

�
�����	�

�0�,�

	�20�
�

��	�(#
)�

	�1�
�

��	�(#
)�

	�0�	�'�
�

���

��

��

��

���

���

Assembly Code
§ There are 3 main types of assembly instructions

§ Arithmetic
§ add, sub, mul, sll, srl, and, or, etc.

§ Load/store
§ lw,sw,lb,sb

§ Conditional – branches
§ beq, bne, j, jra

.L5:

lw a4,-36(s0)

lw a5,-40(s0)

blt a4,a5,.L4

lw a4,-36(s0)
lw a5,-40(s0)

sub a5,a4,a5

sw a5,-36(s0)

j .L5

.L4:

lw a5,-36(s0)

Assembly Code
§ There are 3 main types of assembly instructions

§ Arithmetic
§ add, sub, mul, sll, srl, and, or, etc.

§ Load/store
§ lw,sw,lb,sb

§ Conditional – branches
§ beq, bne, j, jra

§ Assembly language instructions have the format:
§ [label:] mnemonic [operands] [#comment]

.L2

beqz x1, done # if(x1 == 0) goto done

Assembly Code
§ There are 3 main types of assembly instructions

§ Arithmetic
§ add, sub, mul, sll, srl, and, or, etc.

§ Load/store
§ lw,sw,lb,sb

§ Conditional – branches
§ beq, bne, j, jra

§ Assembly language instructions have the format:
§ [label:] mnemonic [operands] [#comment]

main:

addi sp,sp,-32

sd ra,24(sp)

Assembly Code
§ There are 3 main types of assembly instructions
§ Assembly language instructions have the format:

§ [label:] mnemonic [operands] [#comment]
§ Label: (optional)

§ Marks the address of a memory location
§ Typically appear in data and text segments

int array [] = {2, 4, 5, 0, 1, 7};

int main(void) {
int x,y,z;

x = array[0];

y = array[1];

z = array[2];

...

Assembly Code
§ There are 3 main types of assembly instructions
§ Assembly language instructions have the format:

§ [label:] mnemonic [operands] [#comment]
§ Label: (optional)

§ Marks the address of a memory location
§ Typically appear in data and text segments

int array [] = {2, 4, 5, 0, 1, 7};

int main(void) {
int x,y,z;

x = array[0];

y = array[1];

z = array[2];

...

array:

.word 2

.word 4

.word 5

.word 0

.word 1

.word 7

main:

addi sp,sp,-48

sw ra,44(sp)

sw s0,40(sp)

addi s0,sp,48

lui a5,%hi(array)
lw x5,%lo(array)(a5)

lw x6,4(a5)

lw x7,8(a5)

Assembly Code
§ .DATA directive
§ .TEXT directive
§ .GLOBL directive

§ Declares a symbol as global

int array [] = {2, 4, 5, 0, 1, 7};
char name [9];

int main(void) {

int x,y,z;

x = array[0];

y = array[1];

z = array[2];
...

.globl main

 .type main, @function

main:

 addi sp,sp,-48
 sw ra,44(sp)

 ...

Assembly Code
§ .DATA directive
§ .TEXT directive
§ .GLOBL directive
§ .BSS directive

§ The BSS contains variables that are initialized to zero or are explicitly
initialized in code

int array [] = {2, 4, 5, 0, 1, 7};
char name [9];

int main(void) {

int x,y,z;

x = array[0];

y = array[1];

z = array[2];
...

.globl name

 .bss

 .align 2
 .type name, @object

 .size name, 9

name:

 .zero 9

 .text

 .align 1

Assembly Code
§ .DATA directive

§ Defines the data segment of a program containing data
§ The program's variables should be defined under this directive

§ .TEXT directive
§ Defines the code segment of a program containing instructions

§ .GLOBL directive
§ Declares a symbol as global

§ .BSS directive
§ The BSS contains variables that are initialized to zero or are explicitly

initialized in code

Assembly Code
.LC0:
 .string "Enter positive

integers a and b: "
 .align 2
.LC1:
 .string "%d %d"
 .align 2
.LC2:
 .string "GCD = %d"
 .text
 .align 1
 .globl main
 .type main, @function
main:
 addi sp,sp,-48
 sw ra,44(sp)
 ...

Directive Arguments Description

.2byte 6-bit comma separated
words (unaligned)

.4byte 32-bit comma separated
words (unaligned)

.half 16-bit comma separated
words (naturally aligned)

.word 32-bit comma separated
words (naturally aligned)

.asciz “string” emit string (alias for .string)

.string “string” emit string

.macro name arg1 [, argn] begin macro definition
\argname to substitute

.type symbol, @function accepted for source
compatibility

… … …

Assembly Languages
§ Assemblers:

§ Convert mnemonic operation codes to their machine language
equivalents

§ Convert symbolic operands to their equivalent machine addresses
§ Build the machine instructions in the proper format
§ Convert the data constants to internal machine representations
§ Write the object program and the assembly listing

System Calls
§ Programs do input/output through system calls
§ To obtain services from the operating system
§ Using the syscall system services
§ Issue the syscall instruction

§ Retrieve return values, if any, from result registers

addi a0,a5,%lo(.LC0)

call printf

...

call scanf
lw a5,-36(s0)

...

Application Compiling Process
§ High-level language program (in C)

§ Assembly language program (for RISC-V)

C compiler

one-to-many
void swap (int array[], int i) {

int temp;

temp = array[i];

array[i] = array[i+1];

array[i+1] = temp;
}

swap:

addi sp,sp,-48

 ...

mv a5,a1

...
 ld s0,40(sp)

addi sp,sp,48

jr ra

Application Compiling Process
§ A compiler is a software program that translates a human-

oriented high-level programming language code into computer-
oriented machine language

Compiler

Error messages

Target
Program

(RISC-V, MIPS, x86,etc.)

Input

Output

Source
Program

(C, C++, etc.)

Application Compiling Process
§ Assembly language program (for RISC-V)

§ Machine (object, binary) code (for RISC-V)

assembler

one-to-one

swap:

addi sp,sp,-48

 ...

mv a5,a1

...
 ld s0,40(sp)

addi sp,sp,48

jr ra

111111010000 00010 000 00010 0010011

000000110000 00010 000 01000 0010011

...

Application Compiling Process
§ Detailed compilation process

§ More on this later when you take a course on compilers

Scanner
(lexical

 analysis)

Parser
(syntax

 analysis)

Code
Optimizer

Semantic
Analysis

(IC generator)

Code
Generator

Symbols
&

Attributes
Table

High-level
language

Target
language

Language-focused
transformations

Architecture-focused
transformations

Application Compiling Process
§ Symbol Table

§ Identifiers are names of variables, constants, functions, data types,
etc.

§ Store information associated with identifiers
§ Information associated with different types of identifiers can be

different
§ Information associated with variables are name, type, address, size

(for array), etc.

Program memory management
Higher

Addresses

Lower
Addresses

Text Segment
[Program code]

Fixed Size

Data Segment
[Initialized global and static variables]

Fixed Size

BSS Segment
[Initialized global and static variables]

Fixed Size

Heap Segment
[Dynamic variables managed by

malloc(), free(), etc.]
Variable Size

Stack Segment
[Stack frames consisting of parameters,

return addresses and local variables]

Variable Size

Free space
Top of the

stack

Bottom of
the stack

Stack Structure
§ Procedure frame or activation record

Bottom of stack

…

Other value

sp

Bottom of stack

…

Other value

sp

Before call

sp

Bottom of stack
…

Other value

Local variables
Saved registers
Arg. registers
Return address

During call After call

Big Endian – Little Endian
§ Processors can order bytes within a word in two ways

§ Little Endian
§ Least significant byte stored at lowest byte address

§ Intel IA-32, Alpha, AMD

§ Big Endian
§ Most significant byte stored at lowest byte address
§ SPARC, PA-RISC, IBM

Byte 3Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
.Byte 0 Byte 1 Byte 2

A A+3A+2A+1

Memory

Memory
address

Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
.Byte 0Byte 1Byte 2Byte 3

A A+3A+2A+1

Memory

Memory
address

Big Endian – Little Endian
int main(void) {

int var; // Integer values
char *ptr; // Pointer

 // Assign 'var' and output it in byte order and as a value
var = 0x12345678;
ptr = (char *) &var;

printf("ptr[0] = %02X \n", ptr[0]); // Prints 78
printf("ptr[1] = %02X \n", ptr[1]); // Prints 56
printf("ptr[2] = %02X \n", ptr[2]); // Prints 34
printf("ptr[3] = %02X \n", ptr[3]); // Prints 12

printf("var = %08X \n", var); // Prints 12345678
}

Big Endian – Little Endian
int main(void) {

int var; // Integer values
char *ptr; // Pointer

 // Assign 'var' and output it in byte order and as a value
var = 0x12345678;
ptr = (char *) &var;

printf("ptr[0] = %02X \n", ptr[0]); // Prints 78
printf("ptr[1] = %02X \n", ptr[1]); // Prints 56
printf("ptr[2] = %02X \n", ptr[2]); // Prints 34
printf("ptr[3] = %02X \n", ptr[3]); // Prints 12

printf("var = %08X \n", var); // Prints 12345678
}

Big Endian Little Endian

Solaris on SPARC Windows on Intel

ptr[0] = 12
ptr[1] = 34
ptr[2] = 56
ptr[3] = 78

ptr[0] = 78
ptr[1] = 56
ptr[2] = 34
ptr[3] = 12

var = 12345678 var = 12345678

Concluding Note
§ If you feel the need to learn or refresh some of these foundational

concepts, you might consider taking CSE 420 first.

