LABORATORY

Introduction to Cybersecurity
A Software/Hardware Approach

C Programming
& Computer Organization

Prof. Michel A. Kinsy

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




PAonxrony I
LABORATORY

The Computing Stack

Applications & Algorithms

Programming Language

Compiler
Operating System

Firmware

Processor Memory organization /O system
Datapath & Control

Digital Design

Circuit Design

Layout

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




PAonxrony I
LABORATORY

Bridging/Compiling Process
» High-Level Language

Human C/C++/Java program
Readable A

assembly code

A

assembler

object code library routines

\4

Machine
Code memory

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

The Overall Organization!

* The modern computer system has three major
functional hardware units: CPU (Processing Engine),
Main Memory (Storage) and Input/Output (I/O) Units

Processor Memory |/O Devices
1 m
ir”"i Device Device 3
(i 100 #1 || #n @
17 L R 2
|14 a
‘ 2
7'y A A 3 A
Control Bus {
Address Bus
Data Bus

EQEEESTNY Department of Electrical & Computer Engineering



PAonxrony I
LABORATORY

What does any language need to do?

Language Perspective

1. Declare and initialize variables
2. Access variables

3. Control flow of execution

4. Use data structures

5. Execute statements

Potential Attack Vectors

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PARorA tony

DA SCS|comrurne svsrems
Language Prospective

// Fibonacci
int fib(int n) {
if (n <= 1) {
return n;
}

else {

}

return fib(n-1)+fib(n-2);

}

int main (VOld) {
int number = 4;
int result = 0;

result = fib(number);

return result;

}

BOSTON Department ot Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Greatest Common Divisor Example

= Simple task

* Albert would like to compute the greatest common
divisor (GCD) of two numbers

= How can this be done?

« Albert, you should know how to do this from your
introductory to discrete mathematics course!

= The Euclidean iterative approach

* Ne2= G M+ I
» where ris strictly less than that of r_;

= Using the modulo operation
* 1 =n_,modr._;

1318\§E’£SOITNY Department of Electrical & Computer Engineering



PAonxrony I
LABORATORY

Greatest Common Divisor Example

BOSTON
UNIVERSITY

» The GCD translation //Euclidean algorithm
from the function gcd(a:int, b:int):int
. tmp:int
mathematical form AP
if(a< b)
" 1 =repmodr_, tmp =a
* In to the computer o =k
algorithmic form 9 SO
) //Find the gcd
¢ But ;’/]Vhat if we do while(b I=0)
not have a while (a >= b)
modulo/division a=a-b
operation in our e =
computer system? a =b
 The alternative b =tmp
return a

Department of Electrical & Computer Engineering



LABORATORY

BOSTON
UNIVERSITY

» The GCD

translation from
the mathematical
form

" rn.=rn_,modr_;
In to the
computer
algorithmic form
 The alternative

e |t could even be
made prettier

: SCS ADAPTIVE & SECURE
COMPUTING SYSTEMS

Greatest Common

Divisor Example

//Euclidean algorithm
function gcd(a:int, b:int):int
vartmp:int

//Find the gcd
while(b !=0)
while (a >= b)
a=a-b

return a

//Euclidean algorithm
function gcd(a:int, b:int):int
vartmp:int
ifla<b)
swap(a,b)
//Find the gcd
while(b !=0)
while (a >= b)
a=a-b
swap(a,b)
return a

Department of Electrical & Computer Engineering




PAonxrony I
LABORATORY

Greatest Common Divisor Example

start
//Euclidean algorithm {
function gcd(a:int, b:int):int
vartmp:int @%
iffa< b)
swap(a,b) swap(a,b)
//Find the gcd vee

while(b 1= 0)

- — = <
while (a >= b) b=0

a=a-b noﬁ
swap(a,b) Ves

a=a-b
return a
no
swap(a,b)
return a

EIQEEESOITNY Department of Electrical & Computer Engineering



PAonxrony I
LABORATORY

Greatest Common Divisor Example

Initiate
start

Check

Check~_ _, ﬁ,

Function call

swap(a,b)
yes
Jes heck
—— < p=0 <
no+< .
. | Actual operation

no

swap(a,b) )

Return answer ~ Function call

return a

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Greatest Common Divisor Example

Initiate
start

Check

Che 1=0 E’

= This simple example Function call
already reveal some ——
of the key "
underpinnings of " heck
computer "
organization ol
Forexample the | Adtual operation
mixture of logical Chege "y a=a-b
operations versus
arithmetic ones o
swap(a,b) )
Return answerv Function call

return a

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



DA SCS|comrurne svsrems
LABORATORY

Greatest Common

Divisor Example

int gcd (int a, int b) {
int tmp;
ifla <b){
tmp =a;
a =b;
b =tmp;
/
//Find the gcd
while(b !=0) {
while (a>= b) {
a=a-b;
/
tmp =a;
a =b;
b =tmp;
/

returna;

/

#include <stdio.h>
// GCD function goes here
int main(void) {

int a, b, answer;

scanf("%d %d",&a,&b);
answer = gcd(a, b);
printf("GCD = %d",answer);
return O;

/

printf("Enter positive integersa and b: ");

void swap (int a, int b) {
int tmp;
tmp =a;
a =b;
=tmp;

/

int gcd2 (int a, int b) {
ifla <b){
GaplaBf

/
//Find the gcd

while(b !=0) {
while (a>= b) {
a=a-b;

returna;

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




DA SCS|comrurne svsrems
LABORATORY

Greatest Common

Divisor Example

int gcd (int a, int b) {
int tmp;
ifla <b){
tmp =a;
a =b;
b =tmp;
/
//Find the gcd
while(b !=0) {
while (a>= b) {
a=a-b;
/
tmp =a;
a =b;
b =tmp;
/

returna;

/

#include <stdio.h>
// GCD function goes here
int main(void) {
int a, b, answer;
printf("Enter positive integersa and b: ");
scanf("%d %d",&a,&b);
answer = gcd(a, b);
printf("GCD = %d",answer);
return O;

/

void swap2(int *a, int *b){
int tmp;
tmp = *b;
*h =*g;

*a =tmp;

/

int gcd2 (int a, int b) {
ifla <b){
1swap(&a,& b7,-’|
//Find the gcd
while(b !=0) {
while (a>= b) {
a=a-b;

/

/

returna;

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




DA SCS|comrurne svsrems
LABORATORY

Greatest Common

Divisor Example

int gcd (int a, int b) {
int tmp;
ifla <b){
tmp =a;
a =b;
b =tmp;
/
//Find the gcd
while(b !=0) {
while (a>= b) {
a=a-b;
/
tmp =a;
a =b;
b =tmp;
/

returna;

/

#include <stdio.h>
// GCD function goes here
int main(void) {
int a, b, answer;
printf("Enter positive integersa and b: ");
scanf("%d %d",&a,&b);
answer = gcd(a, b);
printf("GCD = %d",answer);
return O;

/

void swap2(int *a, int *b){
int tmp;
tmp = *b;
*h =*g;

*a =tmp;

/

int gcd2 (int a, int b) {
ifla <b){
1swap(&a,& b7,-’|
//Find the gcd
while(b 1=0) {
while (a>= b) {
a=a-b;

/

/

returna;

/

EQEEESTNY Department of Electrical & Computer Engineering

= Laterin assembly
programming we will
observe the call
structure runtime
behavior




PAonxrony I
LABORATORY

Greatest Common Divisor Example

/

while(b 1=0) {

later

int gcd (int a, int b) { main:

int tmp; sd ra,24(sp)

ifla <b){ .
tmp =a; call printf
am’i b’,a = From C to assembly, oddi a4,50,-28
. the translation is

) straightforward call scanf

//Find the ged = We will see more Iw a5,-24(s0)

Iw a4,-28(s0)

while (a >= b) { mv al,a4
a=a-b; mv a0,a5
} call gcd(int, int)
tmp =a; mv a5,a0
a =b; sw a5,-20(s0)
b =tmp;
} call printf
returna;

addi sp,sp,32
jrra

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




PAonxrony I
LABORATORY

What does any language need to do?

Language Perspective Hardware Perspective
1. Declare and initialize variables 1. Allocate and initialize memory
2. Access variables 2. Access memory

3. Control flow of execution 3. Change program counter

4. Use data structures 4. Perform address computations
5. Execute statements 5. Transform data

Potential Attack Vectors

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Hardware Prospective

= o e e e e e e e e e e e e e e e e e Em e e e e e mm e e e e e e e e e e o mm mm = e -

| £fe010113 //10000019c! addi sp,sp,-32

E 00112e23 //¢ OOOOOlaOE sSwW ra,28(sp)

| 00812c23 //1000001a4} sw s0,24 (sp)

1 02010413 //1000001a8: addi s0,sp,32

, 00800793 //:100000lac: addi a5,zero,8

i fef42623 //i OOOOOIbOE sw a5,-20(s0)
1111 1110 1100 0100 0010 0111 1000 0011§ fec42783 //! 000001b4! lw a5,-20(s0)

00078513 //} 000001b8! addi a0,a5,0
00000097 //! 000001bc! auipc ra,0x0
£64080e7 //1000001c0: jalr ra,-156(ra)

BOSTON Department ot Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Memory Allocation

= There are two types of memory allocation

= Static memory allocation: Memory is allocated at the
start of the program, and freed when program exits
= Done by the compiler automatically (implicitly)
» Global variables or objects

= Alive throughout program execution
= Can be access anywhere in the program
= Local variables (inside a function)

= Memory is allocated when the function starts and freed when the
routine returns

= A local variable cannot be accessed from another function

ISI\CI?EEESOITNY Department of Electrical & Computer Engineering



PAonx oy I
LABORATORY

Memory Allocation
= There are two types of memory allocation

= Static: Memory is allocated at the start of the
program, and freed when program exits

#include <stdio.h>

int number1, number2, number3;
int array[4] = {3, 5, 6, 8};

/* declare and define */
Static int function (int x){

int number 4, number5s

}

void main (void){

BOSTON
UNIVERSITY

Department of Electrical & Computer Engineering



PAonxrony I
LABORATORY

Memory Allocation

= There are two types of memory allocation

= Dynamic memory allocation deals with objects
whose size can be adjusted depending on needs
= Dynamic — Done explicitly by programmer
* Programmer explicitly requests the system to allocate
memory and return starting address of memory

allocated

= This address can be used by the programmer to access
the allocated memory

= When done using memory, it must be explicitly freed

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Memory Allocation

= There are two types of memory allocation

= Dynamic memory allocation deals with objects
whose size can be adjusted depending on needs
= Dynamic memory allocation in C:
= calloc()
= malloc()

= realloc()
» Deallocated using the free() function

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Memory Allocation

= There are two types of memory allocation

= Dynamic memory allocation deals with objects whose
size can be adjusted depending on needs

#include <stdio.h>
void main (void){
inti=0; int nelements_wanted = 8;
int *_ptr;
i_ptr = (int*)malloc(sizeof(int)*nelements_wanted);
if (i_ptr I=NULL) {
i_ptr[i] =5;
}
else{
/* Couldn't get the memory - recover */

}

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




PAonxrony I
LABORATORY

Memory Allocation

= There are two types of memory allocation

= Dynamic memory allocation deals with objects whose
size can be adjusted depending on needs

= Remember in C if you allocation some piece memory,
you are responsible as the programmer to free it

= x = malloc(n * sizeof(int));

= /* manipulate x */
» free(x);

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Program memory management

Higher  Bottom of >
Addresses  the stack . .
Stack Segment Variable Size
A e
[Stack frames consisting of parameters,
Top of the return addresses and local variables]
>
stack * Free space
Heap Segment
[Dynamic variables managed by Variable Size
malloc(), free(), etc.]
BSS Segment Fixed Size
[Initialized global and static variables] y,
Data Segment : -
[Initialized global and static variables] Fixed Size
Lower Text Segment Fixed Size
Addresses [Program code]

BOSTON

Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Program memory management

= BSS: Block Started by Symbol
= Developedin the mid-1950s for the IBM 704

= BSS keyword was later incorporated into FAP
(FORTRAN Assembly Program)

= Used for a part of the data segment containing
statically-allocated variables Zero-valued bits when

execution begins

ES?EESOITNY Department ot Electrical & Computer Engineering



PAonxrony I
LABORATORY

Stack Structure

= Stack and heap are two memory sections in the
user mode space

» The stack handleslocal variables for functions,
whose size can be determined at call time

»= Some of information saved at function call and
restored at function return:
= Values of callee arguments

= Registervalues:
» Return address (value of PC)
= Frame pointer (value of FP)

131\?\§E11;SOITNY Department of Electrical & Computer Engineering



PAonxrony I
LABORATORY

Stack Structure

= Stack will be allocated automatically for function
call

» |t grows downward to the lower address

» |t is Last-in First-out (LIFO) mechanism (tally with
the assembly language’s push and pop
instructions)

= Even if the stack grows from higher to lower
addresses, the local variables on the stack grow
from lower to higher addresses

131\?\§E11;SOITNY Department of Electrical & Computer Engineering



PAonxrony I
LABORATORY

Stack Structure

Lower
addresses Variable Z
4 Variable Y
Variable X
Return address
Parameter p1
Parameter p2
| Parameter p3|] _

Other value Associated C function code

=— Stack frame of the function

int function (int p1, p2, p2)

{

Value intX Y, Z:
Value

Higher Bottom of stack
addresses }

Eg&EESOITNY Department of Electrical & Computer Engineering




PAonxrony I
LABORATORY

Stack Structure

» Procedure frame or activation record

Othervalue Ofhervalue Othervalue

sp —> sp —

Return address
ATg. Tegisters
Saved registers
Local variables

Bottom ot stack Bottom of stack Bottom ot stack
Before call During call After call

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY




PAonxrony I
LABORATORY

Heap Structure

= The heap is allocated by demand or request
using C memory managementfunctions such as
malloc(), memset(), realloc() etc.

= |t allows data (especially arrays) to take on
variable sizes

= |t allows locally created variables to live past
end of routine

= This is what permits many structures used in
Data Structures and Algorithms

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Heap Structure

= |t is dynamic allocation, grows upward to the
nigher memory address

= |tis possible to allocate memory and “lose” the
pointer to that region without freeing it

* This is called a memory leak
= A memory leak can cause the heap to become full

* In a multi-threaded environment each thread
will have its own completely independent stack
but they will share the heap as needed

BOSTON Department of Electrical & Computer Engineering
UNIVERSITY



PAonxrony I
LABORATORY

Next Class

= Application Level Attacks

BOSTON Department ot Electrical & Computer Engineering
UNIVERSITY



