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Abstract

Practical attacks that exploit speculative execution can leak
confidential information via microarchitectural side chan-
nels. The recently-demonstrated Spectre attacks leverage
speculative loads which circumvent access checks to read
memory-resident secrets, transmitting them to an attacker
using cache timing or other covert communication channels.
We introduce Spectre1.1, a new Spectre-v1 variant that

leverages speculative stores to create speculative buffer over-
flows. Much like classic buffer overflows, speculative out-of-
bounds stores can modify data and code pointers. Data-value
attacks can bypass some Spectre-v1 mitigations, either di-
rectly or by redirecting control flow. Control-flow attacks
enable arbitrary speculative code execution, which can by-
pass fence instructions and all other software mitigations
for previous speculative-execution attacks. It is easy to con-
struct return-oriented-programming (ROP) gadgets that can
be used to build alternative attack payloads.

We also present Spectre1.2: on CPUs that do not enforce
read/write protections, speculative stores can overwrite read-
only data and code pointers to breach sandboxes.
We highlight new risks posed by these vulnerabilities,

discuss possible software mitigations, and sketch microarchi-
tectural mechanisms that could serve as hardware defenses.
We have not yet evaluated the performance impact of our
proposed software and hardware mitigations. We describe
the salient vulnerability features and additional hypothet-
ical attack scenarios only to the detail necessary to guide
hardware and software vendors in threat analysis and mitiga-
tions. We advise users to refer to more user-friendly vendor
recommendations for mitigations against speculative buffer
overflows or available patches.

1 Introduction

We dub the primary new attack mechanism described in this
paper Spectre1.1 (CVE-2018-3693, bounds check bypass on
stores), to distinguish it from the original speculative execu-
tion attack variant 1 (CVE-2017-5753), which we refer to as
Spectre1.0. We consider Spectre1.1 a minor variant in the
variant 1 family, since it uses the same opening in the specu-
lative execution window — conditional branch speculation.

1.0 Spectre1.0: Bounds Check Bypass on Loads

Allowing execution past conditional branches is the most
important performance optimization employed by specu-
lative out-of-order processors — essentially every modern

high-performance CPU. Recently, multiple independent re-
searchers have disclosed ways for attackers to leak sensitive
data across trust boundaries by exploiting speculative execu-
tion [22, 35, 39]. Using speculative execution, an attacker is
able to influence code in the victim’s domain to access and
transmit a chosen secret [22, 35].

The transmission channel in current proof-of-concept at-
tacks uses microarchitectural cache state — a channel avail-
able to speculatively-executed instructions. Cache tag state
was a previously-known channel for transmitting informa-
tion in more limited scenarios — side channels (during execu-
tion of cryptographic software operating on a secret [7]), and
covert channels (where a cooperating transmitter is used).
The previous Spectre1.0 attack, as well as currently de-

ployed mitigations, target sequences like Listing 1. Since a
speculative out-of-order processor may ignore the bounds
check on line 1, an attacker-controlled value x is not con-
strained by lenb, the length of array b. A secret value ad-
dressable as b[x] can therefore be used to influence the
index of a dependent load from array a into the cache.

In the simplest attack scenario, the attacker also has access
to array a, and flushes it from the cache before executing the
victim code [59]. The speculative attack leaves a footprint in
the cache, and the attacker measures each cache line of a to
determine which one has the lowest access time — inferring
the secret value from the address of the fastest line. Generic
mitigations against Spectre1.0 and its variants, such as re-
stricting shared memory or reducing timer precision, have
been limited to this particular ex-filtration method.

1 if (x < lenb)
2 return a[b[x] * 512];

Listing 1. Spectre1.0: Bounds Check Bypass (on Loads).
Speculative secret access via attacker-controlled x, and
indirect-load transmission gadget using attacker-controlled
cache state for array a.

3 if (y < lenc)
4 c[y] = z;

Listing 2. Spectre1.1: Bounds Check Bypass (on Stores).
Arbitrary speculative write with attacker-controlled y, and
attacker-controlled or known value z.
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1.1 Spectre1.1: Bounds Check Bypass on Stores

Code vulnerable to Spectre1.1 is shown in Listing 2. During
speculative execution, the processor may ignore the bounds
check on line 3. This provides an attacker with the full power
of an arbitrary write. While this is only a speculative write,
which leaves no architecturally-visible effects, it can still lead
to information disclosure via side channels.

As a simple proof-of-concept attack, suppose c[y] points
to the return address on the stack, and z contains the address
of line 2 in Listing 1. During speculative execution of a func-
tion return, execution will be resteered to the transmission
gadget, as previously described. Note that even if a fence
instruction (e.g., lfence or csdb [47]) is added between
lines 1 and 2 to mitigate against Spectre1.0, an attacker can
simply adjust z to “jump over the fence”. Return-oriented-
programming (ROP) techniques can also be used to build
alternative attack payloads, as described in Section 5.

In a speculative data attack, an attacker can (temporarily)
overwrite data used by a subsequent Spectre1.0 gadget. Per-
formant gadget mitigations use data-dependent truncation
(e.g., x &= (lenb-1)) rather than fences. An attacker re-
gains arbitrary read access by overwriting either the base of
array b (line 2), or its length, lenb (line 1).

1.2 Spectre1.2: Read-only Protection Bypass

Spectre3.0, aka Meltdown [39], relies on lazy enforcement
of User/Supervisor protection flags for page-table entries
(PTEs). The same mechanism can also be used to bypass the
Read/Write PTE flags.We introduce Spectre1.2, a minor vari-
ant of Spectre-v1 which depends on lazy PTE enforcement,
similar to Spectre-v3. In a Spectre1.2 attack, speculative
stores are allowed to overwrite read-only data, code point-
ers, and code metadata, including vtables, GOT/IAT, and
control-flow mitigation metadata. As a result, sandboxing
that depends on hardware enforcement of read-only memory
is rendered ineffective.

1.3 Current Software Defenses

Currently, no effective static analysis or compiler instru-
mentation is available to generically detect or mitigate Spec-
tre1.1. Manual mitigations for Spectre1.0 target only very
specific cases in trusted code (e.g., in the Linux kernel), where
a load is used for further indirect memory accesses.
While generic mitigations for Spectre1.0 have been pro-

ductized, such as compiler analysis for C [46], they identify
only a subset of vulnerable indirect-load code instances. A
comprehensive compiler-based mitigation approach using
speculative load hardening [9] has been proposed, but incurs
a high performance cost. Generic mitigations for Spectre1.0
deployed for JavaScript, as in V8 [18] and Chakra [43], pro-
tect only bounds checks for loads.

If we must rely on software mitigations that require devel-
opers to manually reason about the necessity of mitigations,

we may face decades of speculative-execution attacks. The
limited success at educating software developers for the past
thirty years since the 1988 public demonstration of classic
buffer overflows is a cautionary guide. The silver lining is
that the same coding patterns are vulnerable to speculative
buffer overflows. A good first step toward preventing them
would be to strengthen existing checks against stack over-
flows, heap overflows, integer overflows, etc.

1.4 Contributions and Organization

We make several key contributions:
• We introduce speculative buffer overflows — attacks
based on speculative stores that break type and mem-
ory safety during speculative execution.

• We analyze salient hardware features to guide possible
software and hardware mitigations.

• We present new risks posed by impossible paths, ghosts,
and halos, and discuss possible defenses.

• We propose the SLoth family of microarchitectural
mechanisms to defend against speculative buffer over-
flow attacks by reducing speculative store-to-load for-
warding opportunities for attackers.

• We present a preliminary threat analysis that indicates
attackers may be able to mount both local and remote
confidentiality, integrity, and availability attacks.

In the next section, we provide relevant hardware and soft-
ware background related to speculative execution. Section 3
presents a detailed analysis of speculative buffer overflows,
including both vulnerability mechanisms and possible soft-
waremitigations.We introduce our SLoth family of hardware
mitigations in Section 4. Section 5 focuses on threat analysis
of payloads leading to remote confidentiality attacks and lo-
cal integrity attacks. Finally, we summarize our conclusions
and highlight opportunities for future work in Section 6.

2 Hardware and Software Background

We first review relevant speculative-execution performance
optimizations of modern out-of-order superscalar CPUs in
Section 2.1. We then describe the hardware features salient
to our minor variants in Section 2.2 for Spectre1.1, and Sec-
tion 2.3 for Spectre1.2. Section 2.4 discusses further hard-
ware and software features that impact exploitation success.

2.1 Speculative Out-Of-Order Execution

Speculative-execution hardware vulnerabilities are the re-
sult of classic computer architecture optimizations from pre-
Internet-era design decisions. There are three main optimiza-
tions that depend on speculative execution: branch specu-
lation, exception speculation, and address speculation. The
currently-disclosed Spectre variants 1 (bounds check bypass)
and 2 (branch target injection) use branch speculation, vari-
ant 3 (rogue load) uses exception speculation, and variant 4
(speculative store bypass) is one case of address speculation.
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Branch speculation takes advantage of temporal and spa-
tial locality in program control flow, and for most programs
achieves low branch misprediction rates; high-performance
microarchitectures speculate through multiple branches. Ex-
ception speculation assumes that most operations, e.g., loads,
do not need to trap. Address speculation is used for mem-
ory disambiguation, when loads are assumed not to conflict
with earlier stores to unknown addresses. Loads are also
speculated to hit L1 caches, and immediately-dependent in-
structions may observe value speculation with the value 0
(before mini-replay [22, 60]). The first two speculation types
are control speculations, and all subsequent instructions are
killed; for the third type, only loads and their dependent
instructions need to be replayed.
Attempts to expose all three major speculation mecha-

nisms to software — respectively, via predication, specu-
lative loads, and advanced loads [49] — have been largely
unsuccessful. Modern instruction set architectures (ISAs),
such as RISC-V [55] and ARMv8 [4], are designed to assume
high-performance CPUs will use speculation techniques im-
plemented in out-of-order hardware. As a result, they avoid
introducing features such as branch hints and predicated
execution, and specify a relaxed memory-ordering model.

2.2 Speculative Store-to-Load Forwarding

The distinctive feature of Spectre1.1 is its dependence on a
performance optimization that is usually called store-to-load
forwarding. A store buffer is a microarchitectural structure
that tracks stores from instruction issue until they are writ-
ten back to data caches. On modern cores, such as Intel’s
Skylake [25], which tracks up to 56 in-flight stores, it serves
a quadruple duty.
First, as for in-order cores, the store buffer serves as a

write buffer to the L1 cache. Second, on out-of-order cores,
speculatively-executed stores are never written back until
they retire, i.e., become “senior stores”. Third, the store ad-
dress and the store data are executed out-of-order as separate
micro-ops, which is useful when addresses are known much
earlier than data. Fourth, a store buffer is used to ensure
memory consistency and coherence, i.e., processors observe
their own stores and stores from other SMP CPUs. Memory
ordering models for most current ISAs specify that a load fol-
lowing a store with a matching address observes the stored
value, requiring non-speculative store-to-load forwarding.

Speculative store-to-load forwarding is therefore an opti-
mization that allows a load to execute speculatively using
prior store data as soon as both the store address and data
are available. The requirements are that the load size is no
larger than the store size [25], and the store is the youngest
at that address. The load and store physical addresses must
be fully matched; address speculation techniques which use
virtual addresses [5] or partial physical tags would be subject
to (hypothetical) aliasing attacks.

2.3 Data TLB Speculation

Deferring the handling of data TLB page faults until a load
commits is an exception-speculation mechanism used to
deliver precise exceptions. Spectre3.0 (Meltdown) affects
CPUs that do not nullify values on exceptions, e.g., Intel,
ARM, and IBM, but not AMD. In our taxonomy, we use Spec-
tre3.1 to refer to Spectre variant 3a, which is a low-priority
vulnerability, adding to the long list of known bypasses to
Kernel ASLR, which we revisit in Section 3.4.
Fortunately, an effective workaround for Spectre3.0 is

to use separate user and supervisor page tables, e.g., kernel
page table isolation [13]. Future Intel processors also plan to
feature Rogue Data Cache Load (RDCL_NO) protection [29].
However, these approaches do not address Spectre1.2.

Spectre1.2: Speculative StoreRead-onlyOverwrite We
have validated this attack on both ARM and Intel x86 pro-
cessors. We hope that a Rogue Data Cache Store protection
feature can be included in future Intel processors to defend
against our Spectre1.2 variant. Ideally, speculative store data
should not be forwarded to dependent loads until the TLB
entries have been checked to confirm write privileges. Al-
ternatively, only the value 0 should be forwarded on a fault,
which is safe as long as partial store-to-load forwarding is
not allowed, as noted in Section 2.2.

2.4 Speculative Execution Window

There are two main limits for speculative attack execution —
the maximum number of speculative instructions in flight,
and the maximum delay of branch resolution (in both cycles
and instructions). Current processors support large specu-
lative windows. For example, the re-order buffer (ROB) on
Intel’s Skylake has space for 224 micro-ops, or about 200 in-
structions for typical code. Each SMT thread is allotted half,
so an attack must complete within roughly 100 instructions.

A DRAM reference on a modern server can take 80–200 ns
(60–100 ns on desktops). At a typical clock frequency of
2.5GHz, with the average instructions per cycle for systems
code (IPC 1), and typical micro-ops per instruction (UPI 1.1),
waiting on one DRAM reference can fill the entire window.

In addition to opening the speculative execution window,
an attack is possible only until the window closes — when a
branch is resolved and wrong-path instructions are flushed,
or when an explicit fence is reached. Even if attackers do not
have any influence over branch history, an attack opportu-
nity is presented by sensitive branch mispredictions — when
a branch is taken when it should not have been, or when a
branch is not taken when it should have been.

Superscalar Execution A modern superscalar core can
execute up to 8 speculative micro-ops in a given cycle (and
up to 4 instructions can commit non-speculative results).
For example, in the same cycle Intel’s Skylake can execute
up to four arithmetic instructions or up to two branches,
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as well as two loads and one store. For Spectre1.0, even if
a bounds-checking conditional branch is resolved quickly,
the few instructions needed for an attack gadget may still
execute on a superscalar machine.

Non-blocking Caches Helping cores scale the “memory
wall” is the most compelling reason for speculative execu-
tion, and modern out-of-order CPUs attempt to uncover
independent memory requests. A non-blocking cache allows
memory requests past predicted branches to be processed
while waiting on older instructions.

The state of cache lines with outstanding cache misses is
handled in a small number of Miss Status Holding Registers
(MSHRs) [36]. For example, Intel’s Haswell microarchitecture
maintains 10 L1 MSHRs (Line Fill Buffers) for handling out-
standing L1 misses [25]. Similarly, on the high-performance
ARM A72 processor, 6 L1 MSHRs support up to six unique
cache lines targeted by outstanding cache misses [4].

Since speculative memory requests that have missed in the
L1 cache are not canceled, initiating a request and placing it
in an MSHR within the speculative execution window is suf-
ficient for a load to be cached. An attacker may simply repeat
multiple re-executions in order to use values cached after
previous attempts. For example, consider a[b[i]*512]
— a typical ex-filtration gadget that uses an indirect load
to form a cache side-channel transmitter. The first attempt
ensures the secret value secret=b[i] is cached, and sub-
sequent attempts will refer to that value to compute the
indirect address and reference a[secret*512].

3 Speculative Buffer Overflows

Speculative buffer overflows allow attackers to execute ar-
bitrary untrusted code within the victim domain. To help
explain the hardware mechanisms involved, we dissect our
demonstration from C to assembly to RISC micro-ops (in
Section 3.1), and discuss longer speculative window require-
ments (in Section 3.2).
We elaborate on manual mitigations in Section 3.3. Sec-

tion 3.4 considers classic buffer overflowmitigations, and dis-
cusses our proposals for repurposing them to protect against
speculative buffer overflows.

3.1 Spectre1.1 Assembly and Micro-ops

We have validated this attack on both ARM and Intel x86
processors1, but we limit our exposition to x86-64 assembly.

Line 2 of the C code for Listing 3 compiles into the x86-
64 assembly code on lines 5 and 6 in Listing 4. When the
comparison on line 5 depends on a non-cached data value,
the branch on line 6 (in Listing 4 showing the correct path)
1Hypothesized on January 19, 2018; tested on February 11, 2018; reported
on February 12, 2018. In addition to Intel and ARM, we also provided proof-
of-concept code for both Spectre1.1 and Spectre1.2 to AMD, Google, IBM,
and Microsoft.

1 void f(u64 x, u64 y, u64 z) {
2 if (y < lenc)
3 c[y] = z;
4 }

Listing 3. Spectre1.1Vulnerable Function. On 64-bit proces-
sors, a 64-bit write must be used to overwrite code-pointers.

5 cmp %rsi, lenc
6 jbe 1f ; taken
7 1: retq
8 ... caller

Listing 4. Spectre1.1: Retired Instructions (x86-64). Correct
path after attack.

1 cmp %rsi, lenc
2 jbe 1f ; predicted not taken
3 mov c, %rax
4 mov %rdx,(%rax,%rsi,8)
5 1: retq
6 ... caller

Listing 5. Spectre1.1: Speculated Instructions (x86-64).
Speculated path before attack; RSB predicts return target
correctly.

1 cmp %rsi, lenc ; cache miss
2 jbe 1f ; unresolved
3 mov c, %rax ; cache hit
4 mov %rdx,(%rax,%rsi,8)
5 ; overwrites (%rsp) in store buffer
6 1: retq ; store-to-load forwarding
7 ... ROP gadget

Listing 6. Spectre1.1: Speculated Instructions (x86-64).
Speculated path during attack; execution resteered.

is slow to resolve, which opens a large speculative-execution
window. Listings 5 and 6 show the active speculative paths
before and during an attack.

Listing 7 breaks down the last two instructions from List-
ing 6 into RISC micro-ops. The return instruction retq is
internally broken into an LDA micro-op (line 10, Listing 7)
that loads the return address, and an indirect branch to the
loaded value (line 11). On some CPUs, LDAmay additionally
execute before the store address is known (line 9). When
executed using the data from the speculative store (line 8)
after store-to-load forwarding, the retq will consider the
Return Stack Buffer (RSB) prediction to be incorrect, even
though it is normally nearly perfect. Resteered away from
the correct caller, the CPU front-end fetches the ROP gadget.
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8 STD %rdx ; store data: ROP
9 STA (%rax,%rsi,8); store address: %rsp
10 LDA nip, (%rsp) ; store-to-load match
11 JR nip ; resteered to ROP

Listing 7. Spectre1.1 in plausible RISC 𝜇ops for x86-64.

3.2 Spectre1.1 Attack Preconditions

The most vulnerable branches depend on the value of previ-
ous long-latency operations, such as one or more dependent
non-cached memory references, as in array->length.

For a Spectre1.1 code-pointer attack, the speculative win-
dow must fit not only the payload gadget(s), but also all
instructions between the vulnerable conditional branch and
the attacked indirect branch, typically a ret instruction.
Since the ret would normally be predicted correctly, the
attack must speculatively execute this indirect branch using
corrupt data, while a prior conditional branch remains unre-
solved. Increasingly, indirect control transfers on x86 use a
ret, whether as usual for function return, or for a retpolined
indirect call/jump, since retpolines are the recommended
approach for Spectre2 protection [53].

For a Spectre1.1 data attack, the speculative windowmust
stay open until after a target Spectre1.0 sequence is reached
normally. Mitigations against Spectre1.0 that use a spec-
ulation barrier (e.g., lfence) would be effective against
a Spectre1.1 data attack. However, most deployed mitiga-
tions employ a more efficient data-dependent sequence, as
discussed in Section 3.3.3. In such cases, a data attack can
simply overwrite either the array base or length.

3.3 Spectre1.1 Manual Defenses

The software mitigations for preventing an out-of-bounds
store for Spectre1.1 are similar tomitigations for Spectre1.0.
Manual placement of these mitigations, however, requires
analyzing many more potentially-vulnerable locations in
order to achieve security with good performance.

3.3.1 Speculation Fences

A fence incurs a high performance penalty from stopping
speculative execution, but can be added even in cases where
bounds are not known. To ensure that Spectre1.0 loads are
ordered after prior branches, CPU vendors have updated doc-
umentation for existing fence instructions (e.g., lfence on
x86), and added new instructions (e.g., csdb on ARM). Such
fences can be used to implement load-speculation barriers:
1 if (x < lenb) {
2 load_barrier_nospec();
3 return a[b[x]*512];
4 }

Although the x86 lfence instruction was originally de-
fined architecturally as a load fence, Intel and AMD have
clarified that it serves as a general serializing instruction

fence. Thus, an lfence ensures that no later instruction
will execute, even speculatively, until all prior instructions
have completed [2, 27]. Other processor vendors should con-
firm that stores in particular, or simply all instructions, are
ordered by existing or new fences, to ensure prior branches
are resolved before a store:
1 if (y < lenc) {
2 store_barrier_nospec();
3 c[y] = z;
4 }

While such fences can be added before potentially-vulnerable
stores, there is a high performance cost to unaffected paths:
1 memcpy(void* d, void* s, size_t n) {
2 store_barrier_nospec();
3 unsafe_memcpy(d, s, n);
4 }

3.3.2 Coarse Masking (Unsafe)

An index value can be bounded coarsely by masking it with
the next power of two, as implemented in asm.js/wasm
by the V8 JavaScript engine [18]. This may be acceptable to
prevent reaching secrets with out-of-bounds loads:
1 if (x < b.size) {
2 x &= b.mask; // next power of 2
3 value = b.start[x];
4 }

However, depending on the layout of data in memory, this
approach may fall short of protecting against out-of-bounds
stores. Without accompanying changes to pad memory re-
gions to exact powers of two (at the attendant overhead of
internal memory fragmentation), vulnerable locations that
break type safety may be reachable.

3.3.3 Data-dependent Exact Masking

Whenever the branch and the potentially-vulnerable store
are in the same function, the most performant solution is
to ensure that indices or pointers are truncated via data-
dependent operations. For example, conditional masking for
JavaScript loads in V8 emits code equivalent to:
1 if (x < b.size) {
2 // unsafe, use assembly!
3 x &= (x < b.size) ? ~0UL : 0;
4 value = b.start[x];
5 }

Similar sequences must be used to protect stores as well.
The illustrative C code is, however, unsafe. Safe index trun-
cation requires equivalent asm volatile assembly se-
quences. Most ISAs support conditional move instructions
that compilers can emit for the ternary select operator. The
mask selection (line 3) needs to use a conditional move, but
the compiler may convert it to an unsafe branch instead.

5



However, this depends on the compiler and optimization
level, as well as any profiled-guided optimizations.

Compilersmay also optimize out “unnecessary” code based
on assumptions about correct paths, such as those involving
congruent branches or identical code. Unfortunately, specu-
lative execution invalidates such optimizations.

The Linux kernel defines an array_index_nospec()
macro used to safelymask an index and block speculation [38].
On x86 it succinctly uses the subtract-with-borrow sbb as-
sembly instruction (while sbb is a vestigial low-throughput
instruction, CPU vendors should offer superscalar versions
for future silicon). On ARM it also includes the necessary
csdb fence. We recommend that compiler writers provide a
built-in function that safely performs the operation of trun-
cating an index to zero on overflow.

3.3.4 Congruent Branch TOCTOU (Hypothetical)

When a mitigation check and its uses appear in separate
basic blocks, placing checks safely becomes more difficult
than simply strengthening existing ones. Programmers and
compilers typically assume that branches testing the same
conditions, as in if or for statements, behave similarly.

Impossible paths Congruent branch pairs are thosewhere,
under correct execution, either both are taken or neither are
taken. Usually these are predicted using global branch his-
tory to take advantage of correlations. However, this is not
guaranteed, and speculative execution may execute not just
wrong paths, but also impossible paths. Invariants about buffer
bases or sizes, index bounds, and loop counts will often be
invalidated, e.g., due to incorrectly initialized variables in
if/else branches. To avoid such time-of-check to time-of-
use vulnerabilities, all uses must have adjacent guards with
one of the two recommended mitigations above.

Ghosts Short loop trip counts (e.g., under 30 [22, 25]) are
predicted perfectly by modern path-dependent branch pre-
dictors. However, attackers may prime these predictors, as
well as the architectural state of stacks or heaps, via prior
calls. An impossible path can influence uninitialized vari-
ables (if statements), and uninitialized or unconstrained
values past input vector lengths (for loops). We refer to
such pseudo-inputs as ghosts and halos, respectively.
As illustrated in Listing 8, ghosts allow arbitrary spec-

ulative reads, writes, and code execution. Ghosts can be
avoided by adding a fence (line 6), or when possible, by
modifying program logic. Explicit manual initialization with
compiler warning assistance or automatic zero-initialization
[41] would need to use flow-insensitive analyses to avoid
optimizing out initialization.

Halos As shown in Listing 9, halos are positions beyond the
expected values in array bwhich should have been validated
by a gateway function. In this example, the size of array a

1 A* pa; // uninitialized
2 if (cond)
3 pa = new A(); // skipped
4 ...
5 if (cond)
6 *pa = b;

Listing 8. A ghost write (in C++). Attacker controls pa (via
unchecked stack contents), allowing arbitrary write.

1 for (i=0; i < n; i++) {
2 int pos = b[i]; // n <= i < lenb
3 a[pos] = c[i];
4 }

Listing 9. A halo read. Attacker controls pos (by indexing
beyond the active entries of b), allowing arbitrary write.

may not be available to the worker function, and a fence
may be too expensive to add.

Halos can be handled more efficiently by clamping iterator
variables. For example, on line 2 we can ensure i is less than
n, but n may not be the capacity of array b, which may
contain unsanitized values; n depends on a slow dereference.
Clamping pos to 0, similar to array_index_nospec(),
should be safe, as long as this does not break any other
invariants, e.g., capacity(a[b[i]]) > len(c[i]).

Due to impossible paths and the risk of ghosts and halos,
all functions should be analyzed for vulnerable patterns, not
only gateway functions known to process untrusted inputs.

3.4 Fortified Classic Buffer Overflow Mitigations

Several generic mitigations have been proposed to protect
against classicmemory-safety bugs.Mitigations against code-
pointer attacks can be strengthened to protect against spec-
ulative execution attacks as well. However, data attacks re-
main an important concern for speculative buffer overflows.

Generic Code-Pointer Protections Robust mitigations for
code-pointer attacks have been developed, based on program
shepherding [32] and follow-on work [1, 33, 37, 52]. Such
mitigations, including the subset productized in Microsoft’s
Control Flow Guard (CFG) [56], can be strengthened to per-
form all target validation checks without using conditional
branches. Similar speculation-safe checks can augment mem-
ory integrity checkers [3] to use poisoned write pointers.
Guards implemented by conditional branches can be re-

placed with guards using arithmetic sequences. Such se-
quences can conditionally create non-canonical 64-bit virtual
addresses that poison indirect transfer or write addresses. For
example, by conditionally XORing either 0 or the MSB bit, an
unlikely security violation will result in a general protection
fault. Removing never-taken conditional branches from the
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instruction stream avoids pollution of global branch history
and should improve the prediction accuracy of remaining
branches. Although more predictable branch-predictor be-
havior might benefit attackers, this change may be an overall
win for both security and performance.

Metadata in CFG is currently protected by read-only PTEs,
which are insufficient due to Spectre1.2, andmust be strength-
ened. The CFG reference monitor is indirectly reached via a
read-only code pointer, which is an easy attack target. If indi-
rection is desirable, compiled direct calls to a thunk routine
that can be patched should be used instead. While specula-
tive stores will succeed at overwriting read-only code, we do
not expect their results to be forwarded to instruction fetch.
Such store-to-ifetch optimization is unlikely, yet x862 CPU
vendors should document this explicitly.

Hardware mitigations, like Intel’s future CET [24, 31],
should offer generic protection, provided that security checks
are not evadable micro-ops that depend on control specu-
lation, and PTE-based protections for shadow stacks are
enforced during speculative execution. Yet, CET is incompat-
ible with retpolines [8, 53], since they employ stack smash-
ing as a stronger mitigation for Spectre2. Indirect Branch
Restricted Speculation (IBRS) leaves open possibilities for
internal interference of indirect branch targets [35].

Return Protections Simple variations of classic stack ca-
nary checks [15, 32] can be added to protect speculative
return instructions: XORing into the return address the dif-
ference between a stack canary value and its expected value
(secret). This mechanism has the advantage of backwards
compatibility with current compiler mitigations, preserv-
ing the same stack layout and return address for backtraces.
Unfortunately, canaries may be elided by compiler optimiza-
tions when writes on all architectural paths are “proven
safe” [42]; such analysis is invalidated on speculative paths.
Return Stack Buffer (RSB) hardware protections [31] can

be repurposed against non-sequential speculative return ad-
dress overwrites. For example, hardware protections may
disallow RSB mispredictions from being resolved specula-
tively (mini-exceptions), or may prevent speculative store
forwarding to ret (i.e., forward only from senior stores).

ASLR Address Space Layout Randomization, which has
been deployed for user processes, OS kernels, and hypervi-
sors, is the weakest classic buffer overflow mitigation. Nev-
ertheless, it is the only generic mitigation currently available
against speculative buffer overflows, and it mitigates both
code and data attacks. However, ASLR is rendered ineffective
by both classic information leaks, e.g., as used in Eternal-
Blue (CVE-2017-0144) [57], as well as side-channels against
branch history [14] or MMU page-table walkers [19].
A small change to the vulnerable statement on line 3 in

Listing 3, to c[y] += z, allows a relative overwrite of a

2Unlike most ISAs, on x86 self-modifying code does not require a barrier.

code-pointer and sidesteps ASLR with Spectre1.1. Addi-
tionally, Spectre3.0 and Spectre3.1 (plus additional Spec-
tre3.1.x variants) can be used to bypass Kernel ASLR (KASLR).

Memory Protection Keys In some ISAs, applications may
attempt to keep sensitive data accessible only under a protec-
tion key, such as the Memory Protection Key (MPK) technol-
ogy recently added to Intel systems [28]. On current hard-
ware, MPK may not be enforcable due to Spectre3, but fu-
ture processors with hardware mitigations should be able to
prevent Spectre1.0 gadgets from accessing secrets.

A Spectre1.1 speculative code-execution gadget, however,
can first disable these protections before reading a secret.
Significantly more sophisticated solutions are needed to pre-
vent classic buffer overflows [54] from accessing the MPK
wrpkru instruction, which modifies protection keys. For
speculative buffer overflows, however, modifying the archi-
tectural behaviour of wrpkru to internally include lfence
should prevent misuse under speculative attacks.

4 Hardware Mitigations

In this section, we sketch plausible hardware mitigations
specific to Spectre1.1. We are also designing more general
microarchitectural support to protect against both known
and unknown variants of Spectre, but this ongoing work is
beyond the scope of this paper.

To defend against Spectre1.1, we propose the SLoth family
of microarchitectural mitigations that constrain store-to-
load forwarding. Successive design points have increasing
expected performance, but also increasing hardware and
software complexity: store-to-load blocking (“SLoth Bear”),
lazy store-to-load forwarding (“SLoth”), and frozen store-to-
load forwarding (“Arctic SLoth”).

4.1 Store-to-Load Blocking

The “SLoth Bear” mitigation anticipates plausible microcode
updates for existing silicon to prevent store-to-load forward-
ing either from speculative stores, or to speculative loads.
The viability of implementing this mitigation in microcode
is unknown. It affects hardware paths similar to Spectre4,
for which existing microcode updates to Intel’s production
silicon offer a backup plan mitigation (at up to 8% cost on
SPECint [26]). If store-to-load blocking is possible with min-
imum complexity, it would provide maximum security with
a minimum trusted computing base (TCB).
This approach is likely to incur high performance over-

heads, as it may impact operations such as register spills
and C++ member variable accesses. Nevertheless, this design
point would enable a quick response for unpatched software,
while software developers are educated about how to look
for vulnerable code. Overall, this mitigation offers a good
safety net for users who find its performance acceptable.
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4.2 Lazy Store-to-Load Forwarding

The “SLoth” mitigation uses compiler-marked instructions
that are candidates for forwarding. For example, compilers
may allow retpolines to smash the stack, and may mark
register spills and restores explicitly.
The low complexity and small TCB of this approach are

attractive, with changes localized to the load-store unit. Per-
formance is likely to be acceptable even without software
changes; with compiler co-design, it can achieve optimal
performance.

4.3 Frozen Store-to-Load Forwarding

If error-prone software mitigations are the only practical
alternative solution to this class of speculative execution
attacks, a higher-performance hardware design may be jus-
tifiable, despite its complexity.

The “Arctic SLoth” mitigation employs dynamic detection
of pairs of stores and loads that are candidates for forward-
ing. A simpler variant can track the load instructions that
have previously required store-to-load forwarding on correct
paths, while accepting data from any store.
This requires a stronger hardware address speculation

mechanism, similar to high-performance Alpha processors
[11], which may increase the complexity, power, and area of
current CPUs. Full physical address tags for load and store
instructions would be required to securely track white-listed
pairs of previously-committed instructions.

5 Speculative Attack Payloads

Speculative buffer overflows allow arbitrary speculative code
execution within the victim domain. Yet, these are short code
fragments, limited to roughly a hundred instructions, and
have short-lived ephemeral effects. In this section, we discuss
hypothetical payloads that attackers can deploy to escape
the weak sandbox of out-of-order execution.

The speculative attacks in this section are based on our hy-
pothetical threat model analysis for SLoth. Our preliminary
threat analysis indicates that attackers may be able to mount
both local and remote confidentiality, integrity, and availabil-
ity attacks. We advise software developers to broaden the
scope of vulnerable software analysis, and system builders
to design generic defense-in-depth mitigations.

5.1 Threat Model

We assume most systems that process untrusted inputs are
at risk from both local and remote attackers. High-value
systems that use or maintain secret information (user cre-
dentials, private keys, etc.) are the primary concern.
At highest risk are systems that execute untrusted code,

including virtual machines, containers, and sandboxed web
browser environments. Prior threat analysis of microarchi-
tectural in-filtration and side-channel ex-filtration limited
the threat surface to local information disclosure. Remote

confidentiality attack targets may also include login, data-
base, and web servers, SSL-terminating firewalls, etc.

We focus our discussion on Spectre1.x, where speculative
window in-filtration is possible based solely on untrusted
inputs. We assume victims process attacker requests and
may respond to them. (Spectre2 also allowed in-filtration
into instances that do not communicate with the attacker, a
threat only if the attacker and victim share a core.)

5.2 Speculative Attack Ingredients

A speculative attack combines several ingredients:
• vulnerable code – reachable by unprivileged attackers.
• vulnerable data – untrusted input, used to trigger an
out-of-bound access.

• sensitive data – known and addressable chosen secrets.
• speculative payload data – passed addresses (sensitive
data and/or channel parameters).

• speculative payload code – present executable gadgets.
An attacker must be able to reach code susceptible to a

hardware speculation vulnerability that will not be resolved
quickly. The speculative payload parameters and code must
also be under attacker control.

Exposed Hardware Vulnerability The vulnerable code
may be affected by its use of a speculative read or write. In
addition, reads or writes may use addresses that differ from
the intended addresses (shadows or aliases):

• write – Spectre1.1 (the focus of this paper).
• read – an out-of-bound function pointer read [22].
• shadow – same virtual address used in different address
spaces.

• alias – partial physical-address matching, within or
across address spaces.

An out-of-bounds or uninitialized read is an instance of
Spectre1.0, while an out-of-bounds or uninitialized write is
an instance of Spectre1.1. Shadow and alias address specu-
lation vulnerabilities are instances of Spectre4.
We generally assume a Spectre1.1 vulnerability lever-

ages existing code, and may further use ROP gadgets, stack
pivoting, etc. For completeness, a plausible Spectre1.0 out-
of-bounds function pointer read [22] also allows arbitrary
code execution, in addition to being treated simply as a form
of out-of-bounds load [35]. Vtables for ghost objects (Sec-
tion 3.3.4) can be exploited in a similar manner; i.e., a Spec-
tre1.0.1 sub-minor variant in the current taxonomy. SLoth
does not protect against Spectre1.0.

5.3 Payload Code – Confidentiality Attacks

There are generally two types of side channels where an
unintended shared medium is used for covert or unintended
communication. In a stateful channel, receivers use footprint
timing (Section 5.5); in a stateless channel, receivers rely on
throughput timing (Section 5.6).
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Secret Access The attacker selects a secret bit or byte to
transmit using an attacker-controlled parameter, such as x
in Listing 1. The secret may be accessed via a simple ab-
solute address, such as b[x]. Similar attacks may involve
executing more flexible code sequences to locate a secret by
traversing live application pointers. An attacker may first
need to disable any memory protection keys (Section 3.4).

Secret Transmission Depending on the ex-filtration chan-
nel, transmission includes any necessary bit or byte extrac-
tion and shifting, e.g., (b[x] & 0x1) << 9. Data flow
from the extracted secret is then directed to an instruction
with a generalized data dependence: an address-dependent
memory access, a control-dependent instruction selection,
or a data-dependent variable-latency operation.
A generalized attack schema can be composed of one or

more stages [34], whose output impacts only microarchi-
tectural state. Attacks may also be composed by combining
multiple invocations of payload stages, where later stages
use microarchitectural state as input, instead of secrets.

5.4 Receiver (Non-Speculative Code)

Receiving a secret is generally within the attacker domain,
and not speculative. Timing an access in a sandboxed or vir-
tualized environment, however, may be subject to coarsened
timer precision, slowing down a local attack.

Amplifying Timer Precision A software mitigation de-
ployed in web browsers is to reduce timer precision [44]. For
example, Chrome coarsened performance.now() to use
100 𝜇s granularity, in order to prevent accurate measurement
of events at time scales that are orders of magnitude smaller,
such as a ∼100 ns cache miss to DRAM.

However, this only slows down attacks, without prevent-
ing them. Listing 10 illustrates a simple amplification of a
timing attack, by requesting multiple cache lines that corre-
spond to each measured secret bit. This approach consumes
a larger cache footprint as the amplification factor grows,
which may induce evictions. Nevertheless, the huge tim-
ing difference between accessing numerous mostly-resident
vs. non-resident lines still provides a strong signal.

As a small pessimization designed to reduce memory-level
parallelism, we also carry a dependence through all accesses
— the value of zero is always 0, since the contents of array
a are zero-filled prior to ex-filtration.

1 zero = 0;
2 t0 = performance.now();
3 for (i = 0; i < 1024; i++)
4 zero += a[i][1+zero];
5 t1 = performance.now();

Listing 10. Cache Timing Amplification (Hypothetical)

5.5 Footprint Timing Side Channels

A stateful channel allows time-sharing between transmission
and reception, e.g., the attacker can observe the footprint
after the victim code executes. Although the most commonly
demonstrated attack mechanism uses timing of cache-line
presence state, various microarchitectural resources can be
exploited[17], including:

• Cache memory state – cache lines, cache sets, replace-
ment metadata [34], fill buffers, write-back buffers,
prefetchers.

• Branch predictor state – branch target buffer, branch
history table, branch history register, RSB.

• Address translation state – TLB, PTE cache.
The easiest and most well-studied side channel uses the

particular cache state of individual cache lines. For example,
in flush+reload [59] the victim and attacker share a cache line.
In prime+probe [40], the attacker no longer needs memory
shared with the victim, and instead can use any congru-
ent cache lines to check if any of them has been evicted
from a shared LLC cache set. Additional variants include
evict+reload [40] and flush+flush [21]. Cache timing attacks
have even been demonstrated in JavaScript [45], including
the ability to bypass ASLR [19].
All footprint attacks can be prevented by carefully parti-

tioning microarchitectural state. For example, DAWG [34]
proposes hardware mitigations that securely partition all mi-
croarchitectural memory structures (set-associative caches,
TLBs, PTE caches, etc.) to protect against both non-speculative
and speculative footprint attacks. A remote cache-timing re-
flection attack is also outlined in [34].

5.6 Throughput Timing Side Channels

Throughput or contention timing requires transmission and
reception to be concurrent. Traditional side-channel attacks
use contention on shared resources as an indicator. In specu-
lative execution, the victim may additionally interfere with
its own instructions that are executed non-speculatively. Ex-
amples from classic side-channel attacks measure contention
between the victim and attacker for diverse shared resources:

• Cache resources – slice, bank.
• OoO execution resources – execution ports, variable-
latency ALUs, banked register file, load buffer, store
buffer, reorder buffer, branch order buffer, reservation
station, physical register files, free lists, etc.

• System resources – DRAM, QPI.

5.6.1 Reflected Throughput

We generalize this class of channels as measuring victim sys-
tem throughput after any temporary microarchitectural state
is influenced by secret data. An attacker simplymeasures per-
formance, such as the number of executed macro-operations.
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In a traditional SMT attack, the measured thread may be
under attacker control. This method requires SMT sharing,
and is viable for privilege escalation within a single OS. It
is not feasible for cross-VM attacks in most cloud settings,
which typically avoid scheduling separate VMs onto hard-
ware threads associated with the same core. However, some
cloud providers do offer low-cost burstable “micro” instances
that may allow such SMT sharing.
It is also possible to measure the influence of specula-

tive execution on an SMT peer within the attacker domain.
This approach is plausible against public cloud instances
which share SMT cores only within a trusted domain, and
requires detection of how connections are mapped to pro-
cessing threads.

Finally, the self-interference of the victim thread can sim-
ply be measured. This method is the most general, and would
be effective for both sandbox escapes or remote attacks, as it
requires only connection persistence.

5.6.2 Local and Remote Channel Modulation

Any busy resource can be used as an indicator of speculative
execution behavior. Effects that persist even after specula-
tive instruction cancellation are the easiest to measure. We
consider several diverse microarchitectural behaviors that
hypothetically may be influenced by a speculative attacker
payload on some systems.

MSHR Modulation Since speculative memory requests
are not canceled, and each core has a limited number of
MSHRs (Section 2.4), modulating the memory level paral-
lelism available to non-speculative execution could be mea-
sured by its impact on throughput.

Variable-LatencyALUModulation Some data-dependent
instructions, such as square-root and division operations
that are not fully pipelined, may exhibit variable latency
that can affect peer threads. Moreover, the throughput of
non-speculative execution will also be impacted when these
instructions are non-cancellable, or if the instruction window
does not prioritize the oldest instruction [60].

AVX2 DVFS Modulation Speculative instruction selec-
tion over Intel’s AVX2 instructions could be used to modulate
the reliability and power-saving features of the power con-
trol unit. For example, if AVX2 instructions are used they
may result in a lower maximum TurboBoost frequency [23].

RDRANDContentionModulation An attacker couldmod-
ulate the throughput of Intel’s high-quality rdrand random
number generator, which is used non-speculatively by some
SSL implementations for handshakes [16]. This could be
prevented by having rdrand perform an internal lfence.
This random sample from across the instruction manual

illustrates that modulation opportunities are pervasive. As
seen with defenses against classic buffer overflows, detecting

all bad behaviors will be harder than having SLoth prevent
attackers from taking over speculative execution.

5.7 Integrity Attacks

In addition to confidentiality attacks, cache eviction can be
used for integrity attacks, both indirectly and directly. Prac-
tical integrity breaches may simply follow a confidentiality
breach in which an attacker steals access credentials.

Hypothetically [10, 50], speculative execution can also be
used to mount a RowHammer [30, 48] integrity attack, such
as by leveraging indirect load gadgets as a tool for cache
evictions [20], or by generalizing network attacks [51]. Since
the attacker is operating within the victim domain, non-
speculative mitigations [6] are not effective. SLoth prevents
execution of such attacks via Spectre1.1.

6 Conclusions

We have explored new speculative-execution attacks and
defenses, focusing primarily on the use of speculative stores
to create speculative buffer overflows, which we refer to
as Spectre1.1. The ability to perform arbitrary speculative
writes presents significant new risks, including arbitrary
speculative execution. Unfortunately, this enables both local
and remote attacks, even when Spectre1.0 gadgets are not
present. It also allows attackers to bypass recommended soft-
ware mitigations for previous speculative-execution attacks.

Speculative execution of wrong or impossible paths creates
speculative bug class doppelgängers to the known classes of
pernicious bugs breaking memory and type safety [12, 58].
Given the heightened public awareness due to Spectre and
related attacks, there is higher consumer and business accep-
tance of previously unthinkable performance overheads for
security protections. We hope this opportunity will be used
to raise the bar for strong generic mitigations against both
speculative and classic buffer overflows, as we have outlined
for both software and hardware (in Section 3.4).
We also believe Spectre1.1 speculative buffer overflows

are completely addressable by hardware (in Section 4). Rather
than adding to the classic buffer overflow patch burden, fu-
ture systems should be able to close this attack vector com-
pletely, with good performance.

We are confident that future secure hardware and software
will be able to retain the performance benefits of speculative-
execution processors. We hope to make additional progress
in this direction, as we continue to explore more general
microarchitectural support and software co-design to protect
against both existing and future Spectre variants. In the short
term, there may be a few rough patches (to be applied).
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