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ABSTRACT

Random number generator (RNG) is a core component in many ap-

plications such as scientific research, testing and diagnosis, gaming,

and cryptosystems (e.g., obfuscation, encryption, and authentica-

tion). Although, there are various RNG designs targeting specific

application goals such as low-power, high-throughput, stronger

security guarantees, a universal programmable RNG design has

remained elusive. Indeed, it is a challenge to have only one RNG

unit in a system with multiple compute modules with different ran-

domness requirements. In this work, we aim to provide a practical

solution to this design challenge by proposing a multi-purpose true

random number generator (TRNG), which can be configured in real

time to generate random sequences with different requirements.

Such a programmable TRNG is able to supply random bits to mul-

tiple modules with different demands. The proposed TRNG is a

highly convenient multi-purpose hardware primitive that can be

deployed in many designs as it provides a tunable physical entropy

source and a dynamic cost-performance trade-off.
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1 INTRODUCTION

Modern cryptographic approaches like the Advanced Encryption

Standard (AES) achieve stronger security guarantees by making

its algorithm open/public. This approach runs counter to earlier

cryptographic algorithms which relied on closed designs or algo-

rithmic obscurity for their security, e.g., Data Encryption Standard

(DES). For open cryptographic techniques, the security of the cryp-

tosystem resides not only in specific secret vectors such as keys,

obfuscation masks, or one-time pads, but also the strength of those

vectors. A secret key or vector is considered secure, if it is hard to

guess/predict by a malicious party. In other words, it needs to be

random, and preferably with high degree of physical entropy.

Different applications usually require different level of random-

ness [15, 21]. For example, in computational tasks like sampling

or re-ordering, true random numbers of moderate quality are ac-

ceptable. On the other hand, random masking to protect a system

against a cold boot attack requires a large amount of random bits in

a short period of time. Similarly, cryptographic applications whose

strength depends on a strong secret key, e.g., data encryption, ben-

efit from high entropy and high-quality random bits to generate a

reliable key. Moreover, there are cases where within a single system,

multiple compute modules need random numbers of different char-

acteristics/requirements, e.g., high throughput for randommasking,

low power for frequent nonces, or high quality random bits for

secret keys. Therefore, in order to tackle this issue, we propose

a programmable multi-purpose TRNG design that can be used to

generate different qualities of random numbers at run-time. The

key contributions of this work are:

• A design to provide real-time programmable framework for

TRNG. Users can tune a number of parameters in order

to generate a random sequence fitting a specific demand:

entropy, throughput, power, and quality;

• A TRNG cost-performance trade-off analysis. The capabil-

ity to tune the TRNG’s parameters enables users to gauge

optimal level of performance for specific applications where

less energy is consumed with low quality or throughput de-

mand, and high energy is consumed with high quality or

throughput demand;

• A TRNG design that provides better performance than other

existing works in terms of the randomness quality, through-

put, and energy cost per bit, when configured to work in the

corresponding mode.
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The proposed programmable multi-purpose TRNG uses chaotic

maps to amplify the randomness of the seeds extracted from the

physical source of entropy. Chaotic maps have the property that

once a proper set of system parameters are selected, the output of

the function will be highly sensitive to their initial state. Various

types of pseudo or true random number generators using chaotic

maps (e.g., logistic, Bernoulli shift, and dissipative quantum maps,

etc.) have been proposed [5], [4], [2] where many of these RNG

works passed the National Institute of Standards and Technology

(NIST) random bit test [17]. We use these designs to perform the

comparative study of the proposed Lorenz chaotic maps design. In

addition, we also compare the proposed design against a number of

representative TRNGs of various types, in terms of output quality,

throughput, and energy cost, etc.

2 MOTIVATION AND PRELIMINARIES

2.1 Possible Applications of the Proposed

Design

The proposed design is a programmable TRNG element that can

provide random bits of varying qualities to different applications,

i.e., a multi-purpose module that can be used in most designs and

has the trade-off properties depicted in Fig. 1.
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Figure 1: Differentmodules in a systemmay require different secu-

rity levels and random bits usages. The random sequences for each

module therefore have different characteristics.

The illustration in figure 1 consists of multiple modules

{M0 · · · ,Mi , · · · ,Mn } with different properties. For example, M0

carries out less sensitive tasks, but is called frequently and thus

consumes lots of random bits. In this case, a TRNG with a small

energy/bit cost having moderate randomness quality may suffice.

Meanwhile,Mn processes highly sensitive tasks and is activated less

frequently. Therefore, a high quality TRNG which is cryptographi-

cally secure may be a better option. Under this usage scenario, it is

reasonable to spend a slightly larger energy/bit cost.

The system designer can either equip each module with its own

TRNG or use one universal TRNG which can be customized to

satisfy the randomness requirements of all the modules through real

time configuration. In this work, we introduce such a programmable

multi-purpose TRNG design. In addition to the examples listed

above, other concrete application scenarios are:

2.1.1 Information Storage Systems. In these systems, there are

many security and privacy concerns in managing how informa-

tion is treated from creation to deletion. Based on the application

needs (e.g., configuration frequency, analysis processes, provenance

tracing, migratory behaviors, etc.), the associated information may

have different levels of data sensitivity and validity periods. For

example, in a secure multilevel memory system, the strength of

encryption and the associated randomness between the processor

and the first level cache is different from the encryption and the

quality of the random number generator used between the main

memory and off-chip storage. In this type of system, data can exist

with either short validity periods where the data get processed and

dumped frequently (e.g., data in first level cache) or with longer

validity periods that needs to be protected with high security (e.g.,

data in off-chip storage). Additionally, there are cases where data

can be both short-lived and long-lived depending on the context.

All of these systems can benefit from a programmable TRNG to

generate different levels of random masks or keys.

2.1.2 Distributed Systems. In a distributed system, an edge node

may communicate frequently with other nodes in the same local

group, similar to theM0 case in Fig. 1. Its interactions with nodes

in neighboring groups or with intermediate base stations may be

less frequent (i.e.,Mi ), and its communication with a cloud server

may be highly sporadic but require the highest security as in the

Mn case. Such a distributed system also fits well in our use-case

scenario [19].

2.1.3 Randomness Functions in operating system (OS). Many Linux

users use /dev/urandom to generate random bits for most general

purpose programs and /dev/random for highly confidential pro-
grams that demandmore entropy and security.While /dev/urandom
has high throughput and does blocks output (M0 case), /dev/random
(Mn case) blocks whenever the entropy pool is empty, i.e., collected

random bits from the system’s physical noise are depleted. Al-

though regular computers can feed the entropy pool with system

artifacts like keyboard strokes or noises, it is not feasible for com-

puting systems without those peripherals like web servers. This

creates potential vulnerabilities for these systems. For example, web

server secure sockets layer (SSL) that heavily rely on secret keys.

While software-based solutions have been proposed, e.g., HAVEGE
[23], a programmable multi-purpose TRNG could provide a robust

lightweight hardware-level solution.

2.2 Preliminaries of the Lorenz Chaotic

Systems

Chaotic maps are a type of nonlinear and unpredictable systems

which are highly sensitive to the initial condition. In such a system,

any slight difference in the initial state will produce rapid escalating

and compounding variations in the system’s future behavior. These

phenomena capture the infinite complexity of the nature, which is

often described by fractal mathematics and thus serve as a potential

candidate for randomness generation.

There are many types of chaotic systems, such as one-dimension

(1D) logistic map, two-dimension (2D) Van der Pol system, and

three-dimension (3D) Chua circuit. In this work we focus on the

three dimensional Lorenz system. The Lorenz system was origi-

nally invented to describe and model the consequent bidirectional

convection of thermally induced fluid, which is uniformly heated

from below and cooled from above. However, because of its chaotic

properties, it has also been used for a number of cryptographic
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purposes. The most common application is obfuscation such as

block cipher and image encryption. Another popular usage is in

key agreement protocols. Furthermore, researchers have shown

that the divergence and convergence properties of Lorenz systems

can be used to design lightweight authentication techniques [18].

For the representation of the Lorenz system and the TRNGdesign,

we introduce the following notations:

• α, β,γ : represent the parameters of Lorenz system’s func-
tion;

• pn = (x,y, z): denotes the output point of a three-dimension
(3D) Lorenz function. n stands for the number of iterations
a Lorenz function ran before generating an output, and

(x,y, z) are the coordinates;

• LFi (p0-i ,n): the i
th Lorenz function characterized by

{αi , βi ,γi }, with p0-i being the initial condition,
LFi (p0-i ,n) = pn-i , and where pn-i = (xi ,yi , zi ) stands for

the output of the ith Lorenz function.

The discrete form of the Lorenz functions is given below:




xn+1 = xn + α(xn − yn )�t

yn+1 = yn + (γxn − xnzn − yn )�t,

zn+1 = zn + (xnyn − βzn )�t

(1)

where �t determines the resolution of the map.
Fig. 2 shows the shape of [Eq. 1] with system parameters α =

10, β = 2.6667,γ = 28, which are the original values chosen only
for fluid convection modeling, although, other values can be used

to construct different Lorenz maps.
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Figure 2: The 3d trajectory of a Lorenz system projected onto x −

y, x − z and y − z planes, usually in a butterfly or “8" pattern.

The major properties of Lorenz functions are:

1. Stationary points: In [Eq. 1], when γ > 1, there are two

distinct stationary points, which are:

C1,C2 = (±
√
β(γ − 1),±

√
β(γ − 1),γ − 1) (2)

AlthoughC1 andC2 are not physically on the trajectory, they
serve as the attractors to balance out the initial transients,

and drive the system towards its typical behavior.

2. Convergence: The attractors bring in the convergence prop-

erty of a chaotic system. In other words, even if the initial

state p0 is not a point on the trajectory, it will converge to
the orbit within limited iterations. In addition, although the

placement of an exact point on the trajectory is highly un-

predictable, over time the points do conform to the butterfly

pattern statistically.

The convergence attribution can be described by Hausdorff

dimension dimHK bounded by [22]:

dimHK ≤ 3 −
2(α + β + 1)

α + 1 +
√
(α − 1)2 + 4γα

(3)

3. Divergence: A key property leveraged for the construction

of the proposed TRNG. Intuitively, the divergence comes

from the high randomness of the location and timing that a

point pn = (x,y, z) appears on a 3D Lorenz map. With a tiny

variation of the initial conditionp0, aftern iterations the final
output pn will largely deviate. Theoretically, the Lyapunov

exponent can be used to measure the rate of divergence of a

chaotic system: |δ (p)| ≈ |δ (0)|eλp , (4)

where for a trajectory T (p)’s nearby orbit T (p) + δ (p), δ (p)
is a vector with infinitesimal initial length. The maximal λ
is known to be approximately 0.9056.

3 A PROGRAMMABLE TRUE RANDOM

NUMBER GENERATOR BASED ON LORENZ

SYSTEMS

Here, we introduce the architecture of the proposed programmable

multi-purpose true random number generator (TRNG). First, a

digital physical entropy source named Asynchronous STopwatch-

controlled Ring Oscillator (ASTRO) provides true random seeds

for the TRNG. Then a group of Lorenz functions work as random-

ness amplifiers of the seeds. For randomness amplification, any

number of functions can be used, e.g., ciphers or hash functions.

In the proposed design, we choose chaotic functions due to their

implementation simplicity and high throughput properties. The

design passes the NIST SP 800-90A test which is a standard for

cryptographically secure random number generators.

The outputs of the Lorenz functions are quantified and combined

to further improve their quality before being sent out as the TRNG

output. The architecture of the TRNG is shown in Fig. 3. The main

components of the TRNG design are: (1) a Strict Avalanche Cri-

terion (SAC) network - used to shuffle user’s input and configure

the parameters {α, β,γ } of the Lorenz functions, (2) the ASTRO -

serves as the physical true randomness source, which dynamically

configures the initial condition of the Lorenz functions, (3) Lorenz

Function group - a group of Lorenz functions whose {α, β,γ } and
p0 are to be dynamically configured by the user input and ASTRO
respectively, (4) a Quantification (QNTF) module - each Lorenz

function’s output is truncated by the QNTF module, in order to

enhance its randomness, and (5) a Blending (BLD) module - used

to permute and combine the truncated Lorenz function outputs

into the final random bit string.

TRNG

Loren
Function

QNTF

Loren
Function

QNTF

Loren
Function

QNTF

Loren
Function

QNTF

... ...

BLD

Init
p0

Init
p0

Init
p0
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p0

...

α
β
γ

α
β
γ

α
β
γ

α
β
γ

Shuffled
Input
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Hardware
Uniqueness

Real-time
Unstableness

User Input

Output

Figure 3: The inputs ({α , β , γ } and p0) of the Lorenz Functions

group are run through the SAC network and the ASTRO. Outputs

from those units are then passed through the QNTF and BLD mod-

ules. The architecture features six tunable parameters for the tun-

ing of the cost-performance trade-off.
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In the implemented instance of the proposed design, all the vec-

tors ({α, β,γ } and {x,y, z}) are 64-bit, where the 8 most significant
bits (MSBs) are the integer part, and the 56 least significant bits

(LSBs) represent the decimal part.

There are six user inputs that can be used to tune the TRNG to

a desired working mode (e.g., high physical entropy, high quality,

high throughput, energy saving etc.) as shown in Fig. 4. These

parameters are introduced briefly in subsections 3.1 to 3.5, and

further explored in detail with experimental data in Section 5.

α 
β 
γ 

Init 
p0 

Loren
Function

QNTF BLD

Randomizing¬
the low 32 bits

{ 16-, 32-, 48-,
64-, 80-, 96-,
112-, 128-bit } 

INIT = { 0, 16,  
32, 48 } 

N = { 1, 2, 3, 4,  
5, 6, 7, 8 } 

LSB = { 1, 2, 4,
8, 16, 24, 32,  
40, 48, 56 } 

BLD = { a, b, c,  
d, e, f } 

Figure 4: The six user inputs of the TRNG to tune and achieve the

desired setting for different applications.

3.1 The SAC Network and Its {α, β,γ }
Configurations

The introduced TRNG design supports the option of having user

configure {α, β,γ } of the Lorenz function. Although user input is
not mandatory since all {α, β,γ } can be preset, this feature adds
more flexibility and runtime customization capabilities to the sys-

tem. According to [Eq. 2], the change of {α, β,γ } will result in the
relocation of the two attractors, which ultimately leads to a new

chaotic map. Fig. 5 shows how the two attractors drift away when

{α, β,γ } are changed.
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Figure 5: When β (left) or γ (middle) or both of them (right) fluctu-

ate, the attractors will drift away according to the fluctuation mag-

nitude. α on the other hand is related to the size of the trajectory.

Every point with distance � 0 stands for a new chaotic map due to

the change made to {α , β , γ }.

Given a user input (a binary vector), a binary Strict Avalanche

Criterion (SAC) network/matrix [20] will shuffle it before it is used

for the {α, β,γ } configuration. In a SAC network, whenever a single

input bit is changed, each output bit should have a flipping proba-

bility of 0.5. Thus, any two user inputs with a small difference will

result in largely different configurations. For example, the S-Box in

AES is a function satisfying SAC.

However, while the shuffled user input can be any arbitrary value,

the Lorenz parameters {α, β,γ } cannot be arbitrarily configured.
Otherwise the resultant trajectory may lose its chaotic property.

Fig. 6 shows the results of changing the whole number part (first

8 bits), the decimal part (56 bits), and only the last 32 bits of the

decimal part of a Lorenz map with the original parameters {α =
10, β = 0.6,γ = 28}. It is worth noting that the user input is an

external additive from programmability, it does not provide security

and unpredictability to the TRNG. That task is accomplished by

ASTRO.
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Figure 6: When the integer bits or all the 56 decimal bits are arbi-

trarily changed (up-right), the results trajectory could be no longer

chaotic. Only the 48 LSBs or less (bottom-right for 32 bits) can be

arbitrarily configured while maintaining the chaotic property.

3.2 Asynchronous STopwatch-controlled Ring

Oscillator (ASTRO)

The Asynchronous STopwatch-controlled Ring Oscillator (ASTRO)

module serves as the physical entropy source to provide seeds of

true randomness to the TRNG. ASTRO is a variant of ring oscillator-

based physical entropy generator, as proposed in [24]. Besides pro-

viding high physical entropy as conventional RO does, ASTRO is

able to achieve a larger throughput by its design. ASTRO provides

16- to 128-bit true random seeds (per user’s customization) for

the initial condition p0, which has three coordinates {x,y, z}. This
feature fits perfectly into Lorenz function’s divergence property,

that a small variation in p0 will lead to drastic deviation in pn . The
ASTRO module has a configurable parameter, INIT ∈ {48, 32, 16, 0},

to determine the number of bits to modify in the coordinate values.

The design and implementation details of ASTRO are presented in

Section 4.

3.3 Lorenz Function Group

All Lorenz functions in the group have 32 MSBs of their {αi , βi ,γi }
fixed with different values. Their 32 LSBs of {αi , βi ,γi } and {p0-i }
are arranged by the SAC and ASTRO. By [Eq. 1], a Lorenz function

can be implemented on an FPGA using fixed-point adders and

multipliers. This module manages a configurable parameter N ∈

{1, 2, 3, 4, 5, 6, 7, 8}, namely the number of Lorenz function.

3.4 QNTF Module

The quantification (QNTF)module does the truncation of the Lorenz

functions’ outputs. It has been proved in [5] that using the entire

output vector as the random bit string may not pass the NIST test.

This is because the MSBs of the output (especially the first 8) change

very slowly as the number of iterations increases. Therefore, the

LSBs should be used to maintain both good randomness and high

throughput. The QNTF module has a configurable parameter, LSB

∈ {1, 2, 4, 8, 16, 24, 32, 40, 48, 56}, to determine the number of LSBs

to use for the random string.
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3.5 BLD Module

The blender (BLD) module blends all the {pn-i } from the Lorenz

function group into the final TRNG output. The BLD module has

a configurable parameter, BLD ∈ {a, b, c, d, e, f}, to select which

one of the following six formulas to use on the QNTF-truncated

{pn-i } to form the final random bit string. The six formulas below

are designed to shuffle and combine the outputs of the N Lorenz

functions by XORing, permuting, reversing, and interleaving in

multiple ways. More formulas can be explored and added to this

module.

a. (x0 ⊕ y0 ⊕ z0)| | · · · | |(xN−1 ⊕ yN−1 ⊕ zN−1);

b. (x0 ⊕ · · · ⊕ xN−1)| |(y0 ⊕ · · · ⊕ yN−1)| |(z0 ⊕ · · · ⊕ zN−1);

c.
⊕N−1

i=0 ((i is even)?xi : zi ) | |
⊕N−1

i=0 ((i is even)?yi : xi )

| |
⊕N−1

i=0 ((i is even)?zi : yi );

d.
⊕N−1

i=0 ((i is even)?xi :
←−xi ) | |

⊕N−1
i=0 ((i is even)?yi :

←−yi )

| |
⊕N−1

i=0 ((i is even)?zi :
←−zi );

e.
⊕N−1

i=0 ((i is even)?xi :
←−zi ) | |

⊕N−1
i=0 ((i is even)?yi :

←−xi )

| |
⊕N−1

i=0 ((i is even)?zi :
←−yi );

f.
⊕N−1

i=0 (xi ⊕ yi ⊕ zi ),

where ⊕ stands for bitwise XOR, | | concatenation, and ←− the bit

order reverse operator.

4 THE PHYSICAL ENTROPY SOURCE:
ASYNCHRONOUS STOPWATCH-CONTROLLED

RING OSCILLATOR (ASTRO)

In this section, we describe the physical entropy source of the

TRNG named Asynchronous STopwatch-controlled Ring Oscillator

(ASTRO). Unlike many chaotic map-based TRNGs that use analog

circuits as the physical entropy source, ASTRO can be conveniently

programmed and instantiated as a digital circuit by Hardware De-

scription Language (HDL) and implementation constraints on FP-

GAs.

4.1 The ASTRO Architecture

The micro-architecture of ASTRO is shown in Fig. 7. It consists

of two five-stage ring oscillators (RO) and each clock is a counter

with one serving the other as a stopwatch. The ASTRO’s true ran-

domness comes from the RO’s unpredictable frequency fluctuation.

Due to the manufacturing variation of each gate, the two ROs will

have different frequencies. In addition, according to the measure-

ments, the RO frequency is highly sensitive to the surrounding

environment and varies from time to time. Thus, the timing of the

faster RO’s counter reaching overflow and triggering the “Stop”

signal varies at each run, and the incrementing speed of the slower

RO’s counter also changes every time. These two interactive un-

certainties together make it possible for true randomness. The RO

frequency is usually around 350 MHz and is much higher than the

100 MHz FPGA clock. To clearly reflect the frequency difference

(usually < 3MHz) between the two ROs, the counter size has to be

no smaller than 28 bits. Through statistical analysis, the 12 MSBs

of the slower RO’s counter are relatively stable. However, the 16

LSBs always demonstrate adequate unpredictability, and can thus

serve as a physical entropy source.
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Figure 7: Whichever RO reaches to the counter overflow first, will

send an asynchronous “Stop” signal to pause the other RO’s counter.
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The proposed TRNG is equipped with eight ASTROs. Therefore,

it is able to output up to 8× 16 = 128 bits of true random seeds. The

entropy of each bit is calculated in Fig. 8 based on over 50,000 sets

of ASTRO output data. The total and average entropies produced

by eight different sizes of ASTRO outputs (ranging from 16 to 128

bits) are shown in Fig. 9. It is notable that in order to provide strong

cryptographic keys, information security standards [16] require at

least 112-bit of security strength from physical entropy (equivalent

to seven ASTROs turned on). Since every individual ASTRO costs

negligible power (0.005W), we suggest all eight ASTROs to be

turned on for any security-oriented applications.

5 PROGRAMMABILITY AND EXPERIMENTS

In this section, we present a summary of the behavioral study of the

proposed TRNG design. We evaluate the TRNG’s output entropy

and the key sensitivity. We perform a comparative study between

the proposed TRNG and the existing chaotic map-based RNGs. We

show that the introduced design is able to achieve higher output

quality than most existing works using comparative resources.
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Figure 10: The blue dotted trend shows that the quality of the ran-

dom sequences rises with the energy (nJ ) consumed per bit.
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Figure 11: The entropy of the TRNG final outputs, which on av-

erage is 0.998 bit per output bit. To be comparable with Fig. 8, the

TRNG is made to work under 128 bits/cycle throughput.

In Fig. 12, a comparison on output quality (evaluated by NIST

random test) is made between the proposed TRNG and 7 other

works(referred to by their citation indexes [1–7]).
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Figure 12: If a competitor has more than one design of RNG, the

one with the best p-value is adopted in the figure.

Fig. 12 and Fig. 13 show the NIST random test scores by the p-
values of each sub-test. The other RNGs (dual-metastability-based,

RO-based, hash-based, and open-loop-based etc.) are referred to by

their citation indexes [8–14].
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Figure 13: If a competitor has more than one design of RNG, the

one with the best p-value is adopted in the figure.

6 CONCLUSION

In this work, we propose the design of a programmable multi-

purpose true random number generator (TRNG) based on Lorenz

chaotic systems. The proposed TRNG is able to generate any desired

complexity of randomness. It lends itself well to computing systems

with multiple modules and different demands of randomness, e.g.,

budget-limited, high throughput, high quality and security.

REFERENCES
[1] A Akhshani, A Akhavan, A Mobaraki, S-C Lim, and Z Hassan. Pseudo random

number generator based on quantum chaotic map. Communications in Nonlinear
Science and Numerical Simulation 19, 1 (2014).

[2] Luis Gerardo de la Fraga, Esteban Torres-Pérez, Esteban Tlelo-Cuautle, and
Cuauhtemoc Mancillas-López. Hardware implementation of pseudo-random
number generators based on chaotic maps. Nonlinear Dynamics 90, 3 (2017).

[3] Michael François, Thomas Grosges, Dominique Barchiesi, and Robert Erra.
Pseudo-random number generator based on mixing of three chaotic maps. Com-
munications in Nonlinear Science and Numerical Simulation 19, 4 (2014).

[4] Minseo Kim, Unsoo Ha, Kyuho Jason Lee, Yongsu Lee, and Hoi-Jun Yoo. A 82-nw
chaotic map true random number generator based on a sub-ranging sar adc. IEEE
Journal of Solid-State Circuits 52, 7 (2017), 1953–1965.

[5] Volodymyr Lynnyk, Noboru Sakamoto, and Sergej Čelikovskỳ. Pseudo ran-
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