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ABSTRACT
Computer architecture lies at the intersection of electrical engi-
neering, digital design, compiler design, programming language
theory and high-performance computing. It is considered a foun-
dational segment of an electrical and computer engineering edu-
cation. RISC-V is a new and open ISA that is gaining significant
traction in academia. Despite it being used extensively in research,
more RISC-V-based tools need to be developed in order for RISC-V
to gain greater adoption in computer organization and computer
architecture classes. To that end, we present the BRISC-V Plat-
form, a design space exploration tool which offers: (1) a web-based
RISC-V simulator, which compiles C and executes assembly within
the browser, and (2) a web-based generator of fully-synthesizable,
highly-modular and parametrizable hardware systems with support
for different types of cores, caches, and network-on-chip topolo-
gies. We illustrate how we use these tools in teaching computer
organization and computer architecture classes, and describe the
structure of these classes.

CCS CONCEPTS
• Applied computing → Computer-assisted instruction; • Com-
puter systems organization → Multicore architectures; Intercon-
nection architectures;
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1 INTRODUCTION
Courses such as Computer Organization and Computer Architec-
ture are fundamental for a computer engineering student. Knowl-
edge in these subjects can help students gain a deeper understand-
ing of the concepts in other courses including operating systems,
algorithms, programming and many more. But the steep learning
curve and large time investment associated with hardware design
and development limits the scope and depth of hands-on laboratory
exercises of these courses. We believe that the best way to maximize
student engagement and educational value of Computer Organi-
zation and Computer Architecture classes is via a practical and
hands-on approach. The BRISC-V Platform delivers this practical
teaching approach for computer architecture by providing an open-
source single and multi-core design space exploration platform
that eliminates much of the overhead associated with developing a
complete processing system.

The BRISC-V Design Space Exploration Platform [1] provides
many opportunities for a hands on computer architecture education.
The platform consists of (1) a RISC-V simulator to test software
independently of any hardware system, (2) a RISC-V toolchain to
compile a user’s code for bare-metal execution, (3) amodular, param-
eterized, synthesizable multi-core RISC-V hardware system written
in Verilog, and (4) a hardware system configuration Graphical User
Interface (GUI) to visualize and generate single or multi-core hard-
ware systems.

In this paper, we describe how the BRISC-V Design Space Ex-
ploration Platform can be used to teach an undergraduate level
Computer Organization class, a graduate level Computer Architec-
ture class, and a research focused graduate level Hardware Systems
Security class. Programming and Assembly labs are supported with
a browser based tool named the BRISC-V Simulator for writing,
compiling, assembling and executing RISC-V code. Students can
use the platform-independent simulator to get started with RISC-
V software quickly and easily. The BRISC-V Simulator provides
a valuable resource when teaching students about low level con-
cepts, including calling conventions, memory allocation, and the
compilation flow.

The resources provided by the BRISC-V Platform streamline RTL
based laboratory exercises by providing functional and tested start-
ing points for hardware systems. The modular and parameterized
RISC-V hardware system included with the BRISC-V Platform pro-
vides a useful template for students building their first processor.
The modular nature of the hardware system allows assignments

https://doi.org/10.1145/3338698.3338891
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Figure 1: Overview of the Computer Organization and Com-
puter Architecture courses.
to be crafted for each stage of the processor: fetch, decode, ex-
ecute, memory and write-back. More experienced students in a
Computer Architecture class can use the hardware system configu-
ration GUI named BRISC-V Explorer to configure baseline systems.
Then, students can add micro-architectural features to their highly
modular configured hardware system. For example, students can
configure a single cycle, single core processor to add pipeline reg-
isters to it. Students looking to experiment with more advanced
micro-architectural features can configure a complex, multi-core
processor. The cache architecture is a more complex feature and
we have designed a few assignments around it. Selecting a single
or multi-level cache in The BRISC-V Explorer enables students to
experiment with different cache size, associativity, replacement
policy or custom cache architectures.

The complete BRISC-V Design Space Exploration Platform (in-
cluding Verilog source code) is open-source and can be downloaded
at https://ascslab.org/research/briscv/index.html.

2 COURSE OVERVIEW
In this section, we illustrate the organization of the (1) Computer
Organization and (2) Computer Architecture courses.

The Computer Organization class aims to familiarize students
with low-level coding in C and assembly, and provide a high-level
view of a processor. The students have no prerequisite programming
skills, and are expected to learn the basics of the C programming lan-
guage and RISC-V assembly. Students will build on their experience
with Verilog from the prerequisite Digital Design course.

They are expected to complete several exercises in C, writing
simple programs using functions, recursions, floating point and
bitwise operations. These exercises also explore how each datatype
they use is actually stored in memory. Next, they analyze how these
C programs are compiled to assembly, and learn how to write their
own functions and recursions. Finally, as a class project, students
are tasked with writing a single-cycle CPU supporting the RV32I
instruction set. For both the C and assembly labs, the students
make heavy use of the BRISC-V Simulator, presented in Section 3.
The simulator allows them to compile C to RISC-V assembly, hand-
write assembly, test it, debug it, and view the state of the registers
and memory at every instruction of the program. For the single-
cycle CPU design project, the teaching assistants use the BRISC-V
Explorer (presented in Section 4) to quickly generate a bare-bone
single-cycle CPU, and remove all functionality from it while leaving
the modules as a project skeleton.

By the end of the course, the students will have a demystified
view of hardware, as they have both programmed a bare-metal

CPU and created a simple but fully-synthesizable processor. Even
if this is the last hardware course the student may take, they will
have a solid footing when exploring topics such as writing high-
performance code, using optimizing compilers, or diving deeper
into computer architecture.

The second course we describe is Computer Architecture, with
Computer Organization as a prerequisite. In this course, students
will gain an understanding of a “modern” processor, as concepts
such as pipelining, caching, inter-core communication, multiple-
issue and out-of-order processors are introduced. The students are
expected to be familiar with bare-metal C code, assembly, and Ver-
ilog. In order to save time, the students are given a fully-functional
and tested single-cycle processor, alongwith testbenches and assem-
bly programs. The labs are structured in such a way that students
can run code on their processors in the very first lab, and the labs
only explore modifications to this processor. They are expected to
complete several labs focused on the hardware implementation of
(1) a 7-stage pipelined processor based on the single-cycle proces-
sor, (2) a simple L1 cache and an optimized cache hierarchy, (3) a
multi-core processor and (4) an advanced micro-architectural fea-
ture covered in the class lectures. In the fourth laboratory exercise,
students explore the effectiveness of hardware modifications such
as multiple-issue processors by analyzing software binaries using a
binary analysis tool such as Intel PIN [4].

In this course, the students use the BRISC-V Simulator to write
bare-metal code which can run on students’ processors. In the lab
exploring caches, students are asked to use the BRISC-V Explorer
to find a cache configuration that provides the highest performance
on a given task. By the end of the course, students should have
a good grasp of major concepts in computer architecture. While
this is an architecture class, the students should also walk away
with actionable knowledge in writing software, and be able to
answer questions such as “why can two algorithms with the same
computational complexity have an order-of-magnitude difference
in performance”, or “how might the on-chip network topology
affect the performance of multi-threaded algorithms”.

3 THE BRISC-V SIMULATOR
The BRISC-V Simulator is a RISC-V simulator targeting the RV32I
feature set. It is a single-page web application written in JavaScript,
that allows the user to (1) compile C to RISC-V assembly, (2) run or
step through assembly, and (3) analyze the state of the processor at
every instruction. A web-based implementation provides users with
flexibility in terms of running the simulator. There are three ways
users may run this application: the user may run the application
locally, which requires no installation, but does not come with a
compiler, (2) a student or teaching assistant may host the website,
which requires installing several python libraries, and (3) the user
may access the public version of the simulator from our website
which is located at https://ascslab.org/research/briscv/simulator/
simulator.html. The simulator executes the code on the client ma-
chine. The only computation that happens on the server hosting
the simulator is (1) distributing the static website, and (2) the op-
tional compiler support, which allows users to compile their C code
from the browser. In large classes, this is advantageous because
student machines often may not have privileges to install and run
the compiler.

https://ascslab.org/research/briscv/index.html
https://ascslab.org/research/briscv/simulator/simulator.html
https://ascslab.org/research/briscv/simulator/simulator.html
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Figure 2: A screenshot of the BRISC-V simulator.

3.1 Using The BRISC-V Simulator
Figure 2 shows a screen-shot of the simulator GUI. The page is
split into three main columns: the compiler pane 1 on the left, the
assembly pane 2 in the center, and the register and memory pane
3 on the right.
Compilation: in the compiler pane, the user is free to write C
code. The user can load C code from the filesystem and compile it
using the compiler pane buttons 4 . The compiled assembly will be
written to the central assembly pane 2 , and any standard output
from the compiler will be written to the console 5 .
Executing assembly: to add the RISC-V assembly to the assembly
pane, the user has three options: compile C code, load assembly
code from the file system, or load example code. Above the assem-
bly pane are four buttons 6 : load assembly, run, single instruction
step, and reset simulator. The load button allows the user to either
load their own assembly, or select one of the three example files
provided. After loading the assembly program, the simulator wraps
the assembly with our kernel code, which consists of both a pro-
gram prologue and epilogue. The program prologue is tasked with
initializing the registers, as well the stack pointer, and the program
epilogue traps the simulator in an infinite loop upon program ter-
mination. The kernel code has a grey background in the assembly
pane to distinguish it from the user code. If the user chooses to load
their own assembly, any errors and the result of the parser will be
shown in the console 5 . A successful message is presented to the
user if no errors are found in the assembly program. However, if at
least one error is found, the console window will enumerate each
error and its corresponding line number; the last line of the error
output will display the total number of errors found. Simulation
is also disabled and the simulation buttons will be greyed out as
a visual cue. The run button will run the code until the code (1)
hits an exit syscall, (2) hits the kernel while loop, (3) hits a break-
point, or (4) gets trapped in an infinite loop for more than 100000
instructions. The single instruction step button runs only a single
instruction, and ignores any breakpoints. The reset button moves

the instruction pointer back to the start of the program, and resets
the state of the registers and memory.
Observing the state: after every single instruction, the user can
monitor the state of the registers and memory in the register and
memory panes 3 . If an instruction updates the value of a register,
that register will be highlighted in red, as shown in Figure 2. To
the right of the register pane is the memory pane. It is represented
as a descending list with five foldable regions: the stack segment,
free segment, heap segment, data segment, and the text segment.
Each line of the memory pane represents one word (32 bits). The
address is shown on the left in hexadecimal format (light blue), and
the value is shown on the right in either hexadecimal, decimal, or
binary. The format buttons 7 allow the user to show the memory
in their preferred format. Additionally, the breakdown pane 8 lets
the user to view the breakdown of the instruction at the current IP.
Additional Features: the user may right-click on an instruction,
which will open a context menu 9 . If the user selects the “Add
breakpoint” option, a pink line will cover that instruction 10 . If
the user moves the mouse above any labels, they will see an option
to “fold” that region of code. Also, all of the panes are resizable and
movable - the user can hide e.g., the memory or the compilation
pane, or may stack the console and the instruction breakdown.
3.2 System Call Support
The BRISC-V Simulator implements support for seven system calls,
as shown in Table 1. To call a system call (syscall), the program

Syscall Type t0 Description
Print Integer 1 Prints integer stored in a0

Print Character 2 Prints ASCII character stored in a0

Print String 3 Prints string stored at address in a0 with
length stored in a1

Read Integer 4 Reads integer and stores it in a0

Read Character 5 Reads an ASCII character and stores it in a0

Read String 6 Reads a null-terminated string and stores it
at address in a0 with length in a1

Stop Execution 7 Stops the program
Table 1: System calls supported by the BRISC-V Simulator.
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needs to set the appropriate syscall ID value in the t0 register. Next,
any parameters to the syscall should be placed in registers a0 and a1.
Finally, the program runs the SCALL or ECALL pseudo-instruction.
If the system call returns any value, it will be stored in registers a0
and a1. One of the example assembly files (syscalls.s) provided
by the simulator illustrates how the system calls are used.
3.3 BRISC-V Simulator Extensibility
Through the BRISC-V Simulator, we aim to provide students with
a simple ‘hackable’ tool that they can use in computer organiza-
tion classes to gain familiarity in assembly and to confirm that
their compiled code behaves as expected. In computer architecture
classes, the simulator can be used to explore existing ISA extensions
(i.e. floating point or vector instructions). Likewise, in a hardware
security class, new security specific ISA extensions can be quickly
added and tested.

As an example, to implement the multiplication operations MUL,
MULH, MULHU, MULHSU defined in the RISC-V specification [5], one
needs to:

(1) Edit the parser.js file of the BRISC-V Simulator so that
these instructions are parsed with the two source registers
and a destination register. This requires minimal coding as
the registers are already extracted by the parser.

(2) Add a new case condition in the emulator.js file so that
MUL* instructions (1) update the IP by 4, and (2) store the
correct multiplication result in the correct register. The emu-
lator already has the registers as local variables, so the user
just needs to refer to the appropriate ones.

4 THE BRISC-V EXPLORER
The BRISC-V Design Space Exploration Platform provides a suite
of tools to quickly develop single and multi-core RISC-V processors.
The BRISC-V Explorer GUI is used to configure the hardware compo-
nents of a user’s system. Users can select core, cache, main memory
and NoC configuration parameters. Figures 3 and 8 show two views
of the BRISC-V Explorer. The Explorer contains several panes with
different configuration settings and other information. Figure 3
shows the core configuration settings pane 1 with the downloads
pane 2 , console pane 3 and block diagram of the entire config-
ured hardware system 4 . In the core configuration settings pane,
users can select between single-cycle, five stage pipelined and seven
stage pipelined cores. Pipelined cores can be configured with or
without data forwarding logic. The number of cores in the system
is can also be selected by the user, and ranges from 1 to 8. The
console pane outputs information about invalid configurations and
the status of exporting a project. The block diagram pane shows the
hardware system that will be exported by clicking download in the
download pane. Figure 8 shows the core configuration settings pane,
memory hierarchy configuration settings pane and block diagram
of the memory hierarchy. Users can select various cache config-
uration settings in the memory hierarchy pane. Tunable settings
include cache associativity, line size, number of lines and depth
of the cache hierarchy. Panes in the BRISC-V Explorer GUI can
be moved and resized to easily configure settings relevant to the
current user.

After a configuration has been chosen, clicking the "Download
Project" button in the downloads pane will output a highly modular

Verilog implementation of the system. These advanced multi-core
configuration features provide a rich design space for advanced
computer architecture classes to explore. Students in these classes
can configure a single or multi-core system and add features such
as branch prediction, out-of-order execution or more experimental
features tied to graduate student research. For students in their first
computer organization class, the BRISC-V Explorer can generate
a single cycle RV32I core without caches, utilizing a simple dual
ported main memory. This simple processor serves as a template for
exercises in which students are asked to build their first processor.

5 COMPUTER ORGANIZATION CLASS
In this section we give an overview of the Computer Organization
class, how the BRISC-V Simulator (Section 3) tool we developed is
used in it, and how the BRISC-V Explorer (Section 4) is used for
generating a template for a single-cycle processor.

As seen in Figure 1, the Computer Organization class covers con-
cepts both ‘above’ and ‘below’ the instruction set architecture (ISA).
Each class has seven laboratory exercises with an eighth exercise
serving as the final project. Two of the exercises are dedicated to
C, two to assembly, and the rest are dedicated to implementing
a single-cycle processor in Verilog. This class project is further
explained in Section 5.3.
5.1 C/C++ Exercises
The goal of the C/C++ exercises is to provide a smooth transi-
tion into writing RISC-V assembly for students who have no prior
experience with assembly language programming. Additionally,
students can often be confused by concepts such as pointers or in-
terfacing with the operating system. By providing a machine-level
view of these concepts, the C/C++ exercises should clear up any
misconceptions they may have.
Exercise 1: In the first exercise, the students should become famil-
iar with common formats such as signed and unsigned integers,
conversion between binary, decimal, and hexadecimal formats, us-
ing arrays and pointers, and writing recursive functions. For extra
points, students are asked to convert a floating point value to its
binary representation (without simply using C’s union data type),
and the reverse. To complete this exercise, the students can either
write code in an editor, and compile and run it from the command
line, or they can use the built-in compiler in the BRISC-V Simulator.
Exercise 2: Since the system the students will create can only run
bare-metal code, and has no kernel running on top of it, dynamically
allocating memory is not possible out-of-the-box. The goal of this
exercise is to demystify the workings of heap memory and modern
malloc implementations. In this exercise, the students are asked to
write a simple library for dynamic memory allocation. The library
statically allocates some amount of memory at the start of the
program, and provides functions malloc, which takes a size in
bytes and returns a pointer to the first contiguous piece of free
memory, as well as free, which takes a pointer to the previously
allocated block of memory and frees it in the library’s internal data
structures.
5.2 Assembly exercises
In the assembly exercises, the students gain an in-depth under-
standing of the RISC-V ISA and the inner workings of a processor.
At the time of the creation of these exercises, no suitable tool was



The BRISC-V Platform: A Practical Teaching Approach for Computer Architecture WCAE’19, June 22, 2019, Phoenix, AZ, USA

1

2

4

3

Figure 3: The BRISC-V Explorer GUI with the single cycle core configuration used as a baseline in the pipelining exercise.

available that would allow students to execute RISC-V assembly
instruction-by-instruction and monitor the state of the registers
and memory. Thus, we have created the BRISC-V Simulator (Sec-
tion 3). For exercises 3 and 4, the students are supposed to load their
assembly programs into the simulator and execute them to confirm
their correctness or to find bugs. The simulator provides them with
the needed tools: the registers and memory are visible right next
to the assembly instructions, and as instructions are executed, the
updated values are highlighted. Additionally, the simulator allows
setting breakpoints, simplifying debugging.
Exercise 3: In this exercise, the students should explore how C
code is compiled to assembly, how functions and the stack work,
and become familiar with the RISC-V calling convention. To become
familiar without having to write assembly right away, we first task
students with analyzing how C code is converted to assembly. Here
the students are provided with a C program, and are required to (1)
compile it in the BRISC-V Simulator’s compiler, and match each line
of the C with a sequence of instructions in the assembler. For the
second task, we explain the limitations of the RV32I ISA, namely
the lack of a multiply instruction. The students are tasked with
writing a multiply label in assembly and using it to perform simple
calculations. Finally, we expose the students to the RISC-V calling
convention, and task them with writing a non-recursive factorial
function. This exposes students to basic stack concepts, and how
parameters are passed and returned to and from functions.
Exercise 4: By this exercise, the students should be familiar with
the majority of RISC-V instructions and concepts, and are ready to
write more complex programs. First, the students are tasked with
writing both non-recursive and recursive versions of a Fibonacci
function. Next, they are asked to write a matrix multiplication
function, so that they will have to write nested loops. Finally, we
expose them to a set of simple system calls built into the BRISC-V
Simulator. These system calls allow the students to read and write
integers, characters and strings to and from the console, as well as
end the program. A list of all system calls can be found in Table 1.
This exercise concludes the assembly exercises of the class, and the
students can then dig down into the processor microarchitecture.

5.3 Class Project: Building Your First Processor
The hands on experience of building a processor is an indispensable
part of any computer organization class. After students have been
introduced to the RISC-V ISA, assembly programming, and other

fundamental computer organization concepts they can begin to
implement their own CPU. A simple single cycle core generated
with the BRISC-V Explorer serves as a template for the computer
organization class exercises. The modular nature of the single cy-
cle core allows it to be broken up into discrete exercises, guiding
students through the process of building a CPU.

The single-cycle core contains separate modules for the fetch,
decode, execute, memory and write-back stages. In each exercise,
students will build a new stage of the processor. Students are given
an interface specification for each module and an empty module
template with a port list. Breaking each assignment into discrete
modules helps reinforce modular design practices necessary for
the complex RTL designs. Providing the template and port list also
ensures the modules can be graded with a single test bench. Figure 4
shows how the single cycle core is broken up into modules and
how individual exercises are created.
Exercise 5: In this exercise, the students implement an arithemetic
logic unit (ALU) for the RISC-V RV32I instruction set. The ISA does
not explicitly give an encoding for the ALU control signals, so these
are given to students in the exercise description. To keep the first
few exercises manageable, students are asked to implement only a
subset of the RV32I instructions. Students start by implementing
the simple arithmetic and bit-wise logic instructions. Incorporating
the remaining instructions is left for future exercises when students
have a better understanding of their processor design.
Exercise 6: This exercise covers the decode stage of the core. Stu-
dents build the decode and control logic, as well as the register file.
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writeback stages integrated with the decode logic and ALU.

The students are only required to implement decode logic for the
same subset of instructions used in the first exercise.

After the decode, register file and ALU modules are complete,
students must demonstrate (in simulation) the execution of a simple
instruction stream, feeding instructions into the decode module.
The decoded instructions are sent to the ALU which computes a
result. The ALU output is directly written back to the register file.
Figure 5 shows the block diagram used in this exercise.
Exercise 7: In this exercise, students create the main memory
module and the main memory stage of the core. Students must add
load and store instructions to their decode module. To support the
new load and store instructions, students must add the writeback
stage to the processor as well. The writeback stage consists of a
single multiplexer to select between the data memory output and
the ALU output. The selected value is sent to the register file.

The new main memory, memory stage and writeback stage mod-
ules must be added to the previous demonstration, so students can
demonstrate the execution of a more complex instruction stream.
Figure 6 shows a block diagram with the additional modules used
for this exercise.
Exercise 8: The fetch stage of the single cycle core is relatively
simple and does not warrant an entire exercise on its own. Instead,
the fetch stage development is combined with the final integration
stage of the processor design in the eighth exercise. In addition to
completing the fetch module, students add the remaining RV32I
instructions not implemented in the previous assignments and
verify that their processor can correctly execute a program. This
exercise includes the addition of branch and jump instructions to
the processor. This integration stage is given as a final project for
the computer organization class instead of as a shorter laboratory
exercise.

Students are expected to read and understand the relevant sec-
tions of the RISC-V Instruction Set Manual [5] to correctly imple-
ment instructions including AUIPC (add upper immediate to PC),
BEQ (branch if equal) and JALR (jump and link register). These
instructions take inputs from or output to the fetch stage, making
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it easier to incorporate them after students have a semi-complete
processor.

Students are encouraged to build the fetch and write-back stages
first and integrate the modules for their subset of instructions. Then
they can expand their existing modules to include the remaining
instructions, testing their additions along the way. Although stu-
dents performed some integration tests in the previous exercises,
inevitably more issues will be discovered as instructions are added
and more complete testing is performed. Students are given simple
test programs to demonstrate on their processor and must develop
additional test programs to provide fuller test coverage. This fi-
nal integration exercise forces students to devote attention to the
correctness of the processor as a whole. Any issues found during
integration highlight the challenges of integrating modules in a
large project and the need for thorough tests for any RTL design.

Students demonstrate the correct execution of their custom test
programs and the provided ones in a simulation. After completing
the final exercise, students have completed a functional RISC-V
processor compatible with the RISC-V toolchain included with the
BRISC-VDesign Space Exploration Platform. Optionally, more ambi-
tious students may want to synthesize their design. As the BRISC-V
template has strongly encouraged the use of structural Verilog and
has provided the students with asynchronous BRAM used for stor-
ing instructions and data, we have witnessed few challenges to
running the final designs on an FPGA.

6 COMPUTER ARCHITECTURE CLASS
The Computer Architecture class builds on the Computer Organiza-
tion class to introduce more advanced micro-architecture features,
including pipelining, branch prediction, and out-of-order execu-
tion. This class is designed for undergraduate seniors and graduate
students and consists of four in-depth exercises. In the exercises,
students will (1) pipeline a processor, (2) build a cache and optimize
a cache hierarchy, (3) develop a multi-core processor and (4) imple-
ment an advanced micro-architectural feature covered in the class
lectures.

6.1 Pipelining a Processor
The first micro-architecture feature covered in this Computer Ar-
chitecture course is pipelining. To gain first hand experience with
processor pipeline logic, students implement a seven stage pipelined
RISC-V processor. Students use the BRISC-V Explorer to configure
a baseline single cycle processor with a simple synchronous mem-
ory. Figure 3 shows the single cycle processor configuration in the
BRISC-V Explorer.
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The synchronous memory used in the processor registers its read
port and can be implemented with FPGA BRAM, making larger
on-chip main memories practical for synthesized designs. Five of
the processor’s seven pipeline stages are placed between each of
the fetch, decode, execute, memory, and write-back modules. The
last two pipeline registers placed in between the operation issue
and receive sides of the fetch and memory stages. Adding a register
between the issue side of the memory or instruction fetch interface
and the receive side of the interface prevents the need to insert
a pipeline bubble while the synchronous memory spends a cycle
completing a memory read. A diagram of the pipelined processor
is shown in Figure 7. In addition to inserting pipeline registers,
students must add the necessary control signals to detect hazards
and insert bubbles as needed. Control signals are derived based on
in-class examples of hazard resolution logic.

6.2 Memory Organization
Caches play a vital role in most modern processors. Cache hier-
archies with multiple levels are used to overcome the “memory
wall". Students in a Computer Architecture class can benefit from
designing a processor with caches in the BRISC-V Explorer and
analyzing the impact of cache configuration on the performance of
a processor.
Part 1: Students are required to build a simple direct mapped cache.
While cache size is specified, student are allowed to pick a line
size and set count of their choice. Students are encouraged to vary
these values and observe the changes in resource usage with a
synthesis tool of their choice. The implemented cache should follow
the memory interface of the seven stage pipelined RISC-V core
implemented using the BRISC-V explorer.
Part 2: Students use the BRISC-V explorer to implement a com-
plete cache hierarchy. The students are provided with binaries for
two benchmark programs. They are required to optimize the cache
structure to provide the best performance for the benchmark pro-
grams. THE First phase of the lab is implementing two different
cache hierarchies that will be optimal for each of the programs.

The BRISC-V platform includes blocking caches that implement
the write back with write allocate policy. The primary caches have
one-cycle pipelined access. Secondary caches are based on a config-
urable cache module that can be used at level 2 or 3 of the hierarchy.
The modular design allows most of these properties to be easily
modified. The BRISC-V explorer allows the students to vary a mul-
titude of cache hierarchy parameters in their optimization efforts.
Some of these parameters are: (i) number of levels in the cache hi-
erarchy, (ii) size of each cache, (iii) associativity, set count, and line
width for each cache, and (iv) replacement policy for each cache.
Students are allowed to configure any of the tunable parameters
as long as the total resource usage for the cache hierarchy remains
below a specified threshold.

Next, the students are required to implement a cache hierarchy
that is optimized for both the benchmark programs. This lab is
graded based on the level of performance achieved by the individual
implementations.

6.3 Multi-core Architecture
The next step in advanced features labs is implementing a multi-
core processor.

Part 1: Students use the BRISC-V explorer to implement a dual-core
processor. A shared bus based cache hierarchy is used for the dual-
core implementation. Students are then required to write a simple
programwith two threads to be executed on the two cores. Students
are allowed to pick a program from a list of programs that include
integer search, FFT, counting prime numbers in a given range, and
matrix multiplication. Implementing a multi-core program in bare-
metal code will give the students an opportunity to appreciate the
complexities of implementing parallel programming libraries such
as OpenMP and Open MPI.
Part 2: Students implement quad and octa-core processors using
the BRISC-V explorer. For this step, a Network-on-Chip (NoC) based
architecture is used 10. The NoC router is also fully parameterized.
In other words, the number of ports and the number of virtual chan-
nels (VCs) per port can be modified, different arbitration schemes,
VC allocations, and routing algorithms can be implemented. This
gives the students an opportunity to familiarize themselves with
different parameters and implementation details of an on-chip net-
work, which is an essential part of current multi-core processors.
Next, the students are required to modify the program from the
previous step to utilize four or eight cores according to the proces-
sor configuration. The students are also required to observe and
compare the performance variations with the number of cores.
6.4 Other Advanced Features
For the final project of the Computer Architecture class, students
implement an advanced micro-architecture feature covered in class
lectures. Students implement the advanced features using the single-
core seven stage pipelined processor as a baseline system. Students
are free to choose if they want to use a cache hierarchy or not. The
advanced micro-architecture feature is selected from a list including
branch prediction, vector instructions, very long instruction word

Figure 8: The BRISC-V Explorer GUI with a sample cache
configuration.
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Figure 9: An example multi-core architecture.
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Figure 10: NoC router architecture.
(VLIW), hardware multi-threading, floating-point unit, out-of-order
execution, and speculative execution, among others.
Part 1: Students must instrument an example program with Intel
PIN [4] to predict performance improvements and justify their
design choices. Instrumented code is executed on lab machines
before RTL development of an architectural feature. To support
design decisions, students develop software models of their feature
and estimate the performance of the RISC-V architecture with and
without their new feature.
Part 2: Students develop the RTL implementation of their micro-
architectural feature and incorporate it into the baseline seven
stage processor. Students analyze the impact their implemented
feature has on the performance of an executed program of their
choice. Program runtime is measured with the cycle count control
status register included in the RV32I ISA. Students compare their
predicted improvements with their actual improvements.

7 DISCUSSION
Computer Organization: Feedback from students in our com-
puter organization class has been positive. Many students have
expressed their excitement about completing their first processor
design. After completing the computer organization class, several
students have continued to work with the BRISC-V Design Space
Exploration Platform, contributing to the base hardware system
and adding features to the Explorer GUI. Although the single cy-
cle processor students build in the computer organization class is
simple, it is compatible with the RISC-V toolchian included in the
BRISC-V Platform. With a complete software tool-chain, students
can write custom C code for their processor and incorporate it in
future projects as a soft core in a more complex design.
Computer Architecture: By the time students have completed
both our Computer Organization andComputer Architecture classes,
they have an in-depth knowledge of the BRISC-V hardware system.
This detailed knowledge of the existing code-base makes further
study focused on experimental architecture features easier. A firm
grasp of the inner workings of the hardware system allows students
to quickly add custom features.

Using the BRISC-V Explorer to implement the baseline system
allows the students to focus on the advanced architecture features.
The BRISC-V platform also includes the RTL implementations of
several advanced architecture features such as Network-on-Chip
and caches. Students have the opportunity to look at concrete im-
plementations of these advanced features as opposed to learning
about a feature from lecture notes or a textbook. This provides the

students with deeper insight regarding certain tradeoffs involved
in a real implementation.
BRISC-V platform in other courses: The use of the BRISC-V
platform goes beyond the canonical computer architecture courses.
It can be used or adopted for any course where the students require
an RTL code base of a processor to be used as the starting point of
laboratory exercises of class projects. Our graduate level Hardware
and Systems Security class is one such course. It focuses on in-
depth analysis of hardware security’s role in cybersecurity, and
the computer hardware related attacks and defenses in computing
systems. Students have been able to use the BRISC-V Platform to
further their research while working on the class project, which
requires the students to implement a security feature on a baseline
hardware system configured with the BRISC-V Explorer. The BRISC-
V platform allows the students to quickly implement a working
processor and focus on implementing their security extension.

One successful project implemented hardware multi-threading
(HMT) on the seven stage core available in the BRISC-V Explorer.
A cache hierarchy was connected to the HMT core and a cache
side channel was demonstrated. This side-channel demonstration
served as the baseline for future research in adaptive cache architec-
tures to mitigate such side-channels. Another project implemented
a multi-core processor with a hardware-isolated core, which pro-
vides secure execution capability. Other successful projects have
developed micro-architectural support for control flow obfusca-
tion [2] and hardware based Return-Oriented-Programming miti-
gation techniques [3]. These projects were presented at the 2019
Boston Area Architecture Workshop.

8 CONCLUSION
In this work, we introduce the RISC-V-based BRISC-V Simulator
and BRISC-V Explorer. The web-based BRISC-V Simulator enables
students and teachers to quickly write software for RISC-V systems.
The BRISC-V Emulator allows users to rapidly design a single- or
multi-core RISC-V RTL processor to go with their software.

Together, these tools and the rest of the BRISC-V platform pro-
vide a wealth of RISC-V based resources for computer architecture
education, streamlining software and hardware based laboratory
exercises. Our experience with the BRISC-V Platform has been pos-
itive and our students have appreciated the support provided by a
complete platform with the hardware system, compiler toolchain,
software simulator and hardware configuration GUI.
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