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ABSTRACT
Approximate computing systems improve energy efficiency and
computation speed at the cost of reduced accuracy on system out-
puts. Existing efforts mainly explore the feasible approximation
mechanisms and their implementation methods. There is limited
work that investigates the security threats brought by approximate
computing. To fill this gap, we first analyze the approximate mecha-
nisms used in approximate system, software, storage, and arithmetic
circuits, and then propose potential attacks that will challenge the
integrity and security of approximate systems. Some illustrative
examples are provided accordingly to showcase the consequences
of the proposed new attacks.

CCS CONCEPTS
• Security and privacy → Security in hardware; • Hardware
→ Semiconductor memory; System-level fault tolerance.
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1 INTRODUCTION
Traditionally, computation correctness has been at the forefront
of computer systems design concerns - both at the software and
hardware levels. However, there are many applications where the
final output of the computation does not need to have high accu-
racy or full precision. For example, the encoding of audio files from
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an uncompressed pulse code modulation to a lossy format, such
as MP3, can tolerate a non-exact translation. The analog signal
actuated through the speaker membrane under the two formats
sounds nearly identical to most listeners. Similarly, many neural
networks already produce probability estimates when performing
classification. In the aforementioned applications, minor errors in
output probabilities can often be considered negligible. Moreover,
many applications can exhibit full functional correctness even when
computed in an approximated fashion. Some of these applications
are image processing, computer vision, video streaming, machine
learning, big data analysis, sensor data processing, and computa-
tion on aged devices [16, 19]. Approximate computing has emerged
as a promising approach to improve energy efficiency. As a para-
digm, it allows the computation to deviate from the reference or
deterministic execution behavior.

As illustrated in Figure 1, the concept of approximate computing
can be implemented with four different strategies: approximate sys-
tems, approximate software, approximate storage, and approximate
arithmetic circuits. At the system level, approximate computing is
realized using modified architectures where approximate accelera-
tors and programmable processors are typically adopted [13, 24, 26].
With software-level approximation, power consumption is reduced
by skipping the execution of the functions in a predicted part of the
code [10, 18], by relaxing the constraints on synchronization timing
and handshaking [15], by leveraging domain specific knowledge
to simplify application algorithms [25], or by altering the imple-
mentation of algorithms for a specific function [4]. Techniques for
approximate storage include applying different refresh rates on
different memory blocks [20], loosening guard band of multi-level
memory cells [23], and selective voltage scaling [5]. Circuit-level
approximation techniques reduce the computation resolution or

Figure 1: Approximate computing strategies.
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shorten the critical delay path to improve performance and energy
efficiency [7, 12, 17].

Existing research efforts mainly focus on finding approximation
mechanisms to trade off accuracy for delay/power/area. The secu-
rity issues related to approximate computing are often overlooked.
The work [21] initiates the investigation on the dark side of approx-
imate computing and provides a brief analysis how a transition
to the approximate computing paradigm would affect hardware
security. In this work, we study the potential attack surfaces on
approximate computing systems from circuit to software stacks.
Indeed, approximate computing presents a particularly poignant
security challenge, because it runs counter to emerging secure com-
puter system design patterns. For example, attackers could (1) alter
the original memory allocation map for precise memory and ap-
proximate memory blocks and then maliciously save critical data in
the approximate memory block, which often does not have strong
integrity check or authentication, (2) exploit the relaxation on de-
sign constraints (e.g., guard band) to incorrectly quantize analog
input for digital critical data, or (3) tamper the memory controller to
lose the original critical data (due to insufficient refresh frequency).
More detailed discussions on the potential attack risks are presented
in the later sections of this work.

The remainder of this work is organized as follows. In Section
2, we introduce security threats in the system-level framework for
approximate computing. In Section 3, we propose the possible attack
surfaces in three types of approximate storage, approximate DRAM,
approximate phase change memory (PCM), and approximate SRAM.
In Section 4, we briefly introduce an approximate arithmetic module
and highlight the potential security threats. This work is concluded
in Section 5.

2 GENERAL SYSTEM LEVEL APPROXIMATE
COMPUTING FRAMEWORK

Broadly speaking, the steps in the computing system design cy-
cle are functional description, functional specification, functional
and implementation modeling, and physical implementation. The
current secure computer system design patterns aim to eliminate
or minimize any semantic gaps between these design steps, and
implement strong module and state isolation. For example, both
active side-channel attack (e.g., cache side-channel attack) and pas-
sive side-channel attack (e.g., thermal analysis) exploit gaps within
these steps. Therefore, the push has been towards a greater se-
mantic consistency between the different implementation steps to
(a) avoid data leakage, (b) prevent an unauthorized party (users,
processes, etc) from accessing services, resources data or discover-
ing the existence of a critical piece of data, (c) check the integrity
of computing processes, (d) monitor and control access to system
resources, or (e) have predictable computing behaviors. The princi-
ple of approximate computing leaves or creates under-defined or
under-specified behaviors - “Attack Gadget (AG)" - in the design at
all levels. Figure 2 illustrates this problem.

Furthermore, in the light of recent micro-architecture security
issues, it has become harder to claim that the undefined or under-
specified behaviors of the system, which are being leveraged by
approximate computing, could also be used for obfuscation to im-
prove its resiliency. The current momentum is a move away from
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Figure 2: Computing system design cycle steps.
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Figure 3: Finite state machine (FSM) representation of the
computer system.

Start

a

b

a

b
c

S0

S1

S2

S3

a

b

c

S5

S4

Output

a

b

a

a

b

b

a

a

Sk

Sk-2

Sk-1

Sk-3

Sk-5

Sk-4

Sa

Sa+1

Sa+2

𝜺

𝜺

𝜺
𝜺

𝜺 𝜺

𝜺

𝜺

𝜺

𝜺

a

Figure 4: States and transitions illustrating the approxi-
mate nature of the computing system either at the soft-
ware/algorithmic level or hardware/device level.

security by secrecy or obscurity towards a formally secure design
paradigm. To illustrate this natural tension between approximation
and security in computing, and without loss of generality, let us
consider a simple finite state machine.

The canonical finite state machine (FSM) - deterministic finite
automaton (DFA) definition can be described as a tuple

A = (Q, Σ,δ , S0, F ) ,

where
• Q is a finite set of states,
• Σ is a finite alphabet, in this illustrative case Σ =

{
a,b, c, ε, d , T

}
• δ : Q × Σ → Q is the (total) transition function,
• S0 ∈ Q is the initial state, and
• F ⊆ Q is the set of final states.

The alphabet and the transition set can be decomposed in this
manner: Σ = Σs ∪ Σa ∪ Σv where

• Σs =
{
a,b, c

}
is the set of safe and deterministic alphabet

and associated transitions, i.e., non-approximate transitions,
shown in Figure 3,

• Σa is the approximation alphabet denoted by ε - in an ap-
proximation state could represent a software or hardware
level mechanism - Figure 4.

• Σv is the vulnerability alphabet set - Σv =
{
d , T

}
- for a

given system, T denotes the set of possible attack triggers
that can be used against the system, d denotes the possible
ways the attacker can manipulate the compute system when
under attack - Figure 5.

From the system behavior analysis standpoint, the challenge is
to decouple the approximation states from the vulnerable states.
Approximation states provide a certain level of obfuscation to the at-
tack states. Without the awareness of the states’ intent, which often
cannot be captured by system analysis tools, it is extremely difficult,
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Figure 5: Approximation states and attack states ambiguity.

if not impossible, to isolatemalicious states from the under-specified
or under-determined or under-provisioned states - Figure 5.

3 SECURITY THREATS IN APPROXIMATE
STORAGE

Power consumed by memory elements takes a large portion of
system power. Approximate storage is emerging to be an effective
way to achieve system-level energy efficiency. Unfortunately, ap-
proximate storage may incur new security threats over traditional
precise memory.

3.1 Overview of Attacks on Approximate
Storage

The use of approximate storage involves software and hardware,
both of which could be the attack target. In Figure 6, we highlight
some potential attack scenarios that could harm the integrity and
reliability of approximate storage. The rest of this section summa-
rizes the attack methods applicable on software and hardware for
approximate storage.

To facilitate the use of approximate storage, the authors [9] add
a new instruction (e.g. LDx.a) to the instruction set so that the
compiler will know whether the destination is approximate mem-
ory or not. A compromised compiler could replace the instruction
LDx.a with the regular instruction LDx, leading the system to ex-
perience unacceptable errors. The compiler and memory allocator
need a memory map, which indicates the address range of different
memory categories, to assign the registers, variables, and tempo-
ral storage space according to the acceptable error tolerance for
each data segment. If the memory boundary between the precise
memory and approximate memory is altered by an attacker, critical
data could be stored in the approximate memory blocks. As a result,
adversary may have an easy way to manipulate the data without
being captured. One type of approximate storage achieves energy
efficiency by relaxing the guard band for multi-level memory cells.
The number of writing iterations guarantees the success of write
operation. If an attacker maliciously modifies the number of writ-
ing iterations, the data stored in the approximate memory will be
changed stealthily.

In the hardware component of approximate storage, the preci-
sion flag bit could be misinterpreted if the instruction decoder is
sabotaged. Once the precision flag is ignored, the critical or approx-
imate data will be sent to a wrong place. Some volatile memory
components retains the same value only when the memory is re-
freshed periodically. A slower refresh rate would lead to the loss
of the originally saved data. Any tampering on the refresh counter
and refresh enable signal could ruin the memory content. Analog
input needs to be converted to digital bits before it is saved in

Figure 6: Potential attacks on approximate storage.

Figure 7: Process flow of approximate DRAM storage.

memory. Some types of approximate storage based on emerging
memory vary the precision of Analog-to-Digital Converter (ADC)
to reduce energy consumption. If an attacker takes charge of the
ADC precision adjuster, the critical data will be saved with a lower
precision than it should be, thus harming the system.

3.2 Attack on Approximate DRAM
3.2.1 Approximation Mechanism. A basic DRAM cell consists of
an access transistor and a capacitor. When the DRAM cell is in the
idle state, the capacitor starts to discharge. If the idle DRAM cell
is not refreshed periodically on time, the logic value stored in that
DRAM cell will be lost. As reported in [1], the power consumption
for memory refresh is almost 50% of the total power consumed by
DRAM. Moreover, write and read operations are prohibited during
the period of memory refreshing. This fact limits the throughput of
DRAM. To improve energy efficiency and throughput, approximate
DRAM selectively reduces the refresh rate. The DRAM segment
for precise storage is refreshed at every standard interval of time.
In contrast, the DRAM blocks for approximate storage is refreshed
with a slower rate, incurring storage error on some memory cells.

3.2.2 Potential Attack Surfaces. Despite of energy savings, approx-
imate DRAM opens new exploration space for an adversary to
implement new unique attacks. In Figure 7, we point out the vul-
nerable spots, where adversary could execute attacks in the process
of storing and maintaining data in a memory with mixed precise
and approximate DRAMs. Here, we assume that the application de-
veloper is trusted but the software and hardware that approximate
DRAM involves are not trusted. Users annotate approximate and
precise data in the high level description of the application. Main
attacks on the software and hardware are summarized in Figure 7.
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The compiler determines the specific instructions to save pre-
cise and approximate data. If attackers interchange the instruction
for precise data (e.g. LDx) to the one for approximate data (e.g.
LDx.a), the critical data for precise storage will be transferred to
the approximate memory blocks. The memory allocator decides
which specific memory pages to store the precise and approximate
data, respectively, and marks the pages containing approximate
data with a special bit in the page table entry. If an attacker can ma-
nipulate the allocator, the memory pages will be purposely marked
with a different indication bit. For instance, loading precise data
to the approximate memory will affect the accuracy of the final
computational output. The operating system converts the logical
address into physical address and guides the memory controller to
issue appropriate control signals over the command bus. Once the
refresh logic is compromised, the refresh interval for the approxi-
mate DRAM could be increased or reduced. The increased refresh
rate results in unnecessary power consumption. The decreased
refresh rate causes the memory block experience more error bits
than the upper limit that the error correction circuit can handle.
Interfering the command bus could cause timing violations. The
counter CNT inside the control logic unit provides the next memory
address to be refreshed in the self refresh mode [22]. If the counter
hardware is tampered by an attacker, the DRAM blocks for precise
and approximate storage will both suffer from the reduced mem-
ory refresh. Although precise DRAM typically has error correction
circuit, the frequent usage of error correction will slow down the
memory access speed and dramatic power increase. Due to the
inappropriate refresh frequency, the approximate DRAM may not
be able to achieve the acceptable precision.

3.2.3 Attack Example. Amemory composed of precise and approx-
imate DRAM cells will be refreshed in two modes: auto refresh and
self refresh [22]. In the auto refresh mode, the external memory
controller issues refresh commands. In the self refresh mode, the
refresh commands are generated inside the DRAM module, and the
counter in the control logic unit keeps track of the next address to
be refreshed. The work [22] proposes to extend the counter CNT
shown in Figure7 by adding loд2(n) bits, where n represents the
ratio of standard refresh frequency to the lower refresh frequency
for approximate DRAM. Once the MSB bits meet a pre-defined
condition (e.g. all zeros), the approximate DRAM will be refreshed.

To sabotage the data saved in the precise DRAM, the attacker
may only need to manipulate the configuration signal. As shown in
Figure 8, once the configuration signal goes to high, the extended
MSB bits of the refresh counter starts to increase. As a result, the
memory refresh enable signal drops down earlier. Since the precise
DRAM is not refreshed with the regular refresh rate, the data stored
in the precise DRAMmay lose charge and result in an uncorrectable
error. We conducted a set of experiments to show the impact of
attack induced by the reduced refresh rate on approximate DRAM
storage. The image Lena shown in Figure 9(a) stored in the precise
DRAM blocks was refreshed with an interval of 64ms before attack.
When the configuration signal shown in Figure 8 is pulled up due
to attack, the refresh happens every 60 seconds. We adopted the
error rate reported in [11] and accordingly injected bit errors to the
RGB values of the image pixels. Bit-flip and stuck-at-0 error models
were applied in our error injection. The targeted image pixels could

Figure 8: Timing diagram for the DRAM with incorrect re-
fresh frequency due to tampered memory counter.

(a) (b) (c) (d)

Figure 9: Impact of incorrect refresh rates on the output of
approximate DRAM. (a) original, (b) random attack, (c) re-
gional attack(bit-flip model), and (d) regional attack (stuck-
at-0 model).

be random or around in a region. Figures 9(b) and (c) show the
impact of the random and regional errors on the recovered image,
respectively. In this example, the attacker blurs the important char-
acteristics of the critical image by manipulating the configuration
signal for DRAM refreshing. If such an image is used for authenti-
cation, attacks on the approximate DRAM will significantly reduce
the effort to pass authentication.

3.3 Attack on Approximate Phase Change
Memory

3.3.1 Approximation Mechanism. Phase Change Memory (PCM)
is a non-volatile memory. The voltage applied on the memory cell
will turn the PCM material into either amorphous or crystalline.
As the analog resistance presented by the PCM material can be
quantized into multiple levels, the PCM is often observed as multi-
level memory cells. PCM has been used as a media to implement
approximate storage [23]. The main principle of approximation
here is to reduce the size of guard band. As shown in Figure 10,
the analog resistance is quantized into four levels to represent
2-bit information stored in a single PCM memory cell, and the
approximate PCM relaxes the noise margin from a small Tprecise
to a large Tapprox (i.e. the guard band of approximate PCM is
less than that of precise PCM). To save power consumption, the
number of writing iterations for approximate PCM is less than that
for precise PCM [23]. Although the approximation technique [23]
improves the speed of writing by 1.7× over the precise PCM, the
reduced guard band and the less number of writing iterations make
the approximate PCM vulnerable to security threats.

3.3.2 Potential Attack Surfaces. Based on the PCM writing pro-
cedure introduced in [23], we highlight the key steps of writing
operation for approximate PCM in Figure 11. The possible attacks
along the writing flow are proposed on the right side of Figure 11.
The parameter Tapprox defines the noise margin. If the initializa-
tion ofTapprox is compromised, a precise PCM block will be turned
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Figure 10: Comparison of precise and approximate multi-
level PCM cells.

Figure 11: Flowchart of PCM writing procedure with poten-
tial security attacks.

into an approximate memory block. Consequently, the integrity
of the critical data saved in the precise PCM will be affected. In
the iterative writing procedure, the parameters µr and σr are the
mean and standard deviation of the error effect (due to insufficient
writing voltage). The writing voltage v increases incrementally in
each writing iteration. When the noise function N (µr ,σ 2

r ) is under-
estimated or overestimated, the voltage step will be manipulated by
adversary and thus writing operation will fail. The determination
of the number of writing iterations relies on the voltage difference
sensed by the reading operation. If a voltage offset is stealthily
introduced to the sensing logic, the content stored in the PCM can
be modified arbitrarily. Or, the voltage comparator (r (v) − DL) is
muted by the attacker so that he/she could overwrite confidential
information, which is supposed to be saved in a precise PCM block.

3.3.3 Attack Example. We model the resistance distribution proba-
bility for the multi-level PCM cells shown in Figure 10, and set the
threshold T in a range of 60% to 90%. We consider the 90% case as
precise PCM, and the other cases are approximate PCM. The attack
implemented in this example consists of adding an offset to the out-
put voltage from the PCM cells. Due to the voltage offset ∆noise, the
logic content saved in the PCM cell will be misinterpreted. When
the resistance cannot be converted to the correct multi-bit state, we
consider this to be a quantization error. As shown in Figure 12, the
approximation mechanism incurs a higher quantization error rate
than the precise case and the error rate further increases with the
increasing noise. As presented in Figures 12(a) and (b), the impre-
cise writing makes the PCM more sensitive to a small noise. If the

(a) (b)

Figure 12: Quantization error rate of a precise/approximate
PCM cell written with (a) sufficient and (b) insufficient num-
ber of writing iterations.

write and read operations in the approximate PCM are executed,
the approximate PCM may suffer from more quantization errors.

3.4 Attack on Approximate SRAM
3.4.1 Approximation Mechanism. Approximate SRAM trades off
accuracy and energy efficiency by scaling supply voltage. In the
work [2], 8T SRAM cells are used to store the sign and exponent bits
of floating-point numbers as 8T SRAM cells have better resilience
than 6T SRAM cells against the noise. In contrast, 6T SRAM cells
are utilized to save mantissa bits. Thus, even if the 6T SRAM cells
experience read or write failures due to the lower supply voltage,
the effect of scaled voltage on the SRAM quality is acceptable by
some applications (e.g., image processing). The work [14] follows
the similar approximate mechanism by replacing 8T SRAM cells
with oversized 6T SRAM cells. A dual supply voltage technique is
proposed in [3], where high and low voltages are applied to the
precise and approximate SRAM cells, respectively. Alternatively,
error correction code is implemented in the precise SRAM blocks
to compensate for the errors induced by the overscaled supply
voltage [6].

3.4.2 Potential Attack Surfaces. Attackers could exploit the over-
scaled supply voltage technique in the work [6] to introduce more
errors than what can be tolerated by the error correction code (ECC)
available in the memory. The SRAM cells for the storage of ECC
check bits may be the potential attack surface. Assume a hybrid pre-
cise and approximate SRAM is used to implement a cache memory,
which is managed by a cache controller with the pre-knowledge of
the hybrid SRAM map. If an attacker sabotages the SRAM map in
the cache controller, critical data from the main memory could be
loaded to the approximate SRAM cells, which have limited (or no)
error correction capability. Or, data from the compromised main
memory will be successfully transferred to the CPU via the cache.

4 SECURITY THREATS IN APPROXIMATE
CIRCUIT

Circuit-level approximation techniques facilitate the system to re-
duce the computational power at the cost of decreased precision
on the system output. In this section, we use an approximate adder
as an illustrative example to present the potential security threats
in approximate circuits.
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Figure 13: Impact of approximation in adder circuit on Pear-
son correlation coefficient (PCC) between output and power.

The power consumption and critical-path delay due to the carry-
bit calculation is typically prominent in an adder. To minimize delay
and also achieve energy efficiency, researchers redesign adder archi-
tecture or alter the truth table for addition operations to reduce the
logic complexity and shorten the long path for carry propagation.
The work [17] proposes to replace the original carry-in bit with
an estimated one, which is based on the few input bits close to the
current bit position. Depending on the number of bits used for carry
estimation, the probability of getting the correct carry-in bit is in
the range of 75% to 99.98% [17]. In the work [8], the truth table is
modified in a way to achieve a better logic optimization. This type
of approximation is feasible for floating-point additions in image
processing applications, where the fractional part carried by the
LSBs often time does not need precise calculation.

Adversaries could leverage the natural inaccuracy of the approxi-
mate adder to implement several attacks. If an attacker manipulates
the adder inputs to persistently make the adder yield wrong out-
puts, the accumulated errors could trigger the system to utilize
the fault-tolerance mechanism more often than usual. The use of
the approximate adder may make verification process more chal-
lenging than the case of precise adders. If the verification is not
exhaustive, the adversary could tamper the hardware implemen-
tation of approximate adders. The malicious modification on the
approximate adder may not be detected by the side-channel anal-
ysis method. As a case study, we implemented two approximate
adders and one precise adder, 8 bits per input, with an IBM 180nm
CMOS technology, and compared the power correlation between
the measured power and output-based power estimation. Hamming
distance power model was used to estimate the power. As shown
in Figure 13, the power correlation coefficient for the approximate
adder is less than that for the precise adder. The test cases 1 and 2
were applied to an approximate adder with 25% output errors and
the rest of the test cases were for the adder with 50% errors.

5 CONCLUSION
Approximate computing systems are emerging as an effective way
to achieve energy efficiency without significantly sacrificing the
accuracy. Despite of the promising benefits, the approximate mech-
anisms adopted in storage, arithmetic circuit, system architecture,
and software stacks make approximate storage vulnerable to new
security attacks. This work is one of the early efforts that compre-
hensively foresee the potential security threats on approximate
computing systems.
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