Full Paper

ASHES °19, November 15, 2019, London, United Kingdom

Adaptive Caches as a Defense Mechanism Against Cache
Side-Channel Attacks

Sahan Bandara and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Boston University
{sahanb, mkinsy}@bu.edu

ABSTRACT

Side-channel attacks exploit architectural features of computing
systems and algorithmic properties of applications executing on
these systems to steal sensitive information. Cache side-channel
attacks are more powerful and practical compared to other classes
of side-channel attacks due to several factors, such as the ability
to be mounted without physical access to the system. Some secure
cache architectures have been proposed to counter side-channel
attacks. However, they all incur significant performance overheads.
This work explores the viability of using adaptive caches, which
are conventionally used as a performance-oriented architectural
feature, as a defense mechanism against cache side-channel attacks.
We conduct an empirical analysis, starting from establishing a base-
line for the attacker’s ability to infer information regarding the
memory accesses of the victim process when there is no active
defense mechanism in place and the attacker is fully aware of all
the cache parameters. Then, we analyze the effectiveness of the
attack without complete knowledge of the cache configuration. Fi-
nally, based on the insight that the success of the attack is heavily
dependent on knowledge of the cache configuration, we implement
the run-time cache reconfigurations and observe their effect on the
success of the attack. We observe that reconfiguring different cache
parameters during a side-channel attack reduces the accuracy of
the attack in detecting cache sets accessed by the victim by 44% on
average, with a maximum of 90% reduction.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; - Computer systems organization — Reconfigurable
computing; « Hardware — Reconfigurable logic applications.

KEYWORDS

Cache side-channel attack, attack mitigation, reconfigurable cache.
ACM Reference Format:

Sahan Bandara and Michel A. Kinsy. 2019. Adaptive Caches as a Defense
Mechanism Against Cache Side-Channel Attacks. In 3rd Attacks and Solu-
tions in Hardware Security Workshop (ASHES’19), November 15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3338508.3359574

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASHES’19, November 15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6839-1/19/11...$15.00
https://doi.org/10.1145/3338508.3359574

55

1 INTRODUCTION

Most modern processors use caches to overcome the “memory wall",
which is the widening gap between processor speed and memory
access speed. While being vital to the performance of a processor,
they have also been the target of numerous side-channel attacks.
Several recent side-channel attacks exploit processor caches as the
medium that transfers sensitive information from the victim to the
attacker [13] [14] [4]. Many of the attacks only use the caches as
the covert channel while targeting a different architecture feature,
such as speculative execution or out-of-order execution as the point
of attack.

Caches are very effective as side-channels, mainly because they
are a shared resource and can be used to share information between
processes. Primary caches are shared by all the processes running
on a core. The Last Level Cache (LLC) is shared among processes
from different cores. Other factors that make caches effective side-
channels are their high bandwidth, size, and central location in a
processor. An important feature of a cache side-channel attack is
that it can be software based, and the attacker does not require
physical access to the target computer system. Cache side-channel
attacks are capable of circumventing security measures, such as
privilege checks, address space layout randomization [12] [9], etc.
Previous work has shown the viability of same core, cross-core, and
cross-VM attacks [29].

Both hardware- and software-based defenses against cache side-
channel attacks have been explored [11]. The main drawback of the
majority of these defenses is their negative impact on performance.
Software-based defenses rely on monitoring the memory access
patterns and detecting suspicious processes. Since monitoring and
detection use processor time that could have been used to perform
useful computations, performance degradation is imminent. After
detection, the system may choose to terminate the suspicious pro-
cess. This gives rise to another issue. If the detection was of low
accuracy, there is a risk of the system terminating a benign process.
Rewriting applications to remove side-channel vulnerabilities is
another approach. However, these are specific to a given application
and may still result in performance degradations.

Several cache architectures have been proposed to defend against
cache side-channel attacks. However, these designs tend to provide
security at the expense of performance, area, and power. Hardware-
based cache side-channel defenses depend mainly on isolation and
obfuscation. Isolation fragments the cache and limits the cache ca-
pacity available to a given process. Obfuscation-based approaches
introduce added latency to cache accesses due to the additional
logic. It remains an open research challenge to develop a defense
mechanism against cache side-channels attacks that (i) does not
impose an unacceptable performance penalty on the system and (ii)

https://doi.org/10.1145/3338508.3359574
https://doi.org/10.1145/3338508.3359574
https://doi.org/10.1145/3338508.3359574

Full Paper

provides a means of mitigating the attacks without terminating the

suspicious processes. Apart from the above characteristics, the pro-

posed solution can work hand in hand with some of the previously
proposed attack detection mechanisms.

The main contributions of this work are:

e An empirical analysis of the impact of run-time cache reconfigu-
rations on the effectiveness of cache side-channel attacks.

e Demonstrating the effectiveness of adaptive caches as a de-
fense mechanism using representative implementations of side-
channel attacks and cycle-accurate RTL simulations.

o Demonstrating that even a single run-time cache reconfiguration
is sufficient to significantly reduce the effectiveness of a side-
channel attack.

e Proposing cache reconfigurations as an alternative response to
terminating a potentially malicious process detected by a detec-
tion mechanism.

The rest of this paper is organized as follows. Section 2 describes
prior work and defines the threat model. Section 3 introduces the
proposed defense against cache side-channel attacks. Section 4
presents the results and evaluates the effectiveness of the proposed
method. Section 5 proposes cache reconfigurations as an alternative
to terminating potentially malicious processes attempting to mount
a cache side-channel attack. Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 Cache Side-channel Attacks

Cache side-channel attacks can be used for many purposes, such as
stealing cryptographic keys [19], spying on keyboards/mice, break-
ing kernel address space layout randomization [12] [9], and violat-
ing browser sandboxing [18], among others. Cache side-channel
attacks exploit intrinsic characteristics of cache systems, such as
cache lines mapping to sets, inclusive property, hit/miss time dif-
ference, and cache coherence. The timing difference between a
cache hit and a miss is the most commonly exploited characteristic.
Caches are used to hide memory latency by keeping a small sub-
set of recently used memory contents on the processor die itself,
thereby avoiding accessing slower main memory on every memory
access. In case of a cache miss, the requested data must be brought
to the cache from lower levels of the cache hierarchy, main memory,
or disk. This makes the time to service a memory request signifi-
cantly longer compared to a cache hit, where the requested data is
available in the cache and can be sent to the processor immediately.
This timing difference can reveal certain information regarding
the contents of the cache and the memory access patterns of the
processes sharing the cache.

There exist several attack models, such as ‘flush+reload’ [25], and
‘prime+probe’ [15]. Although the mechanics may differ, all cache
side-channel attacks are based on the same principle: the attacker
and victim processes share cache resources, and the attacker can
observe or manipulate those shared resources. The cache acts as
a side-channel that the attacker can use to monitor the victim
process’ activity. This is done by monitoring the effects of the
victim’s activity on the shared cache resources. The general flow
of a cache side-channel attack is (i) set the cache contents to a
known state, (ii) allow the victim program to run, and (iii) check
the state of the cache and try to deduce information regarding the

56

ASHES °19, November 15, 2019, London, United Kingdom

victim’s access pattern from the current state of the cache contents.
Most of the early cache side-channel attacks depended on the co-
location of the attacker and the victim processes. That is, the two
processes were executed on the same core. However, this is not
common with high core counts in modern processors and cloud
service providers actively preventing process co-location in cloud
environments. To counter these trends, the recent attacks focus
on the Last Level Cache (LLC) to mount cross-core and cross-VM
attacks. The authors of [16] & [25] describe such attacks on the
LLC.

2.2 Defenses Proposed in Prior Works

Prior works propose two classes of defenses. The first is the set
of software-based defenses. These include solutions ranging from
application-level answers, such as rewriting applications to reduce
information leakage, to system-level fixes, such as monitoring hard-
ware performance counters and using machine learning to predict
potential attacks and terminate suspicious processes [5].

Cryptographic applications are the main target of cache side-
channel attacks. The vulnerability of these applications arises from
memory access patterns that are correlated with the secret informa-
tion that the attacker attempts to retrieve. For instance, Advanced
Encryption Standard AES [6] has been shown to be vulnerable to
cache side-channel attacks [19] [3]. While AES can theoretically be
implemented completely with arithmetic and logical operations in
the processor, some implementations use lookup tables to store the
outputs for every possible input for certain steps of the algorithm.
Accesses to these tables depend on the secret key and the plain-
text to be encrypted. Since all memory accesses go through the
cache hierarchy, this correlation between secret data and memory
accesses creates a cache side-channel. RSA [21] was also shown to
be vulnerable to cache side-channel attacks [20] [26]. The RSA al-
gorithm requires modular exponentiation operations. Certain RSA
implementations use a sliding window exponentiation algorithm,
which precomputes some values used throughout the exponen-
tiation. Accessing these precomputed values opens the door to
cache side-channel attacks to retrieve secret keys by exploiting the
correlation between the memory access pattern and the secret key.

The first type of defenses is rewriting the applications in a way
that minimizes information leakage. Since this typically prevents
usage of performance-oriented techniques, such as precomputing
certain values, the resulting implementation will generally perform
worse than the original implementation. The other drawback of this
approach is that the defense is very application-specific. Rewriting
certain legacy applications may not be feasible. A more generic so-
lution that provides a defense for a range of applications is desirable
compared to an application-specific solution.

Cache side-channel attacks depend on the timing difference
between cache hits and misses. To measure these differences, an
attacker needs access to high-resolution timers accessible through
the operating system. One proposed defense is to restrict access
to high-resolution timers. However, recent works have shown
that these attacks can be carried out even without access to high-
resolution timers [17]. Another defense, targeting ‘flush+reload’
and ‘flush+flush,’ [10] attacks is restricting access to cache flush
instructions. An obvious drawback of both these approaches is the
fact that benign applications will also be denied access to these

Full Paper

features and it will impact their performance and correct execu-
tion. In the case of restricting cache flush, this is a change to the
Instruction Set Architecture (ISA) that requires recompiling and, in
certain cases, even rewriting an application. Again, this may not be
an option with certain legacy applications.

The core challenge faced by software-based defenses is that the
side-channel attacks are not based on any particular weakness of the
software or the algorithms, but rather on features of the hardware
on which the software is executed. Therefore, there is no straight
forward defense against side-channel attacks at the software level.
While software-based defenses could successfully defend against
very specific attacks, those cannot provide any general guarantees
about a whole class of attacks or several different threat models. This
is due to the specific nature of the software-based solutions, and
the lack of control the software has over the underlying hardware.
In contrast, if the defenses against side-channels were implemented
in hardware, they can prevent attacks on more than one application
and will prevent the need to recompile/rewrite every application
with security concerns in mind.

The second class of side-channel defenses is hardware-based.
We only describe defenses related to cache architecture here. Wang
and Lee in [23] describe the Partition-Locked cache (PLcache) and
Random Permutation cache (RPcache). The PLcache allows a pro-
cess to lock cache lines to prevent other processes from evicting it.
This essentially creates a private partition inside the cache. PLcache
requires the ISA to be extended with a new set of load/store in-
structions with a lock/unlock sub-operation. The RPcache attempts
to randomize the memory to cache mapping by adding another
level of indirection in addressing cache sets. A ‘Permutation Table’
(PT) stores an alternate mapping of the index bits to cache sets.
The secure process will use the PT, while other processes will not.
This randomizes the set mapping and limits the attacker’s ability
to infer useful information about the cache sets accessed by the
victim process.

Authors of [24] propose an architecture similar to RPcache with
a dynamic mapping from memory to cache. They propose a direct
mapped implementation with a longer index than that which cor-
responds to the number of cache lines available. The ‘remapping
table’ and the replacement policy map a larger logical cache to the
physical cache while retaining the most recently used lines in the
cache. The authors of [8] propose Non-Monopolizable caches. They
restrict the maximum number of ways in a set a given process can
use. This reduces the ability of the attacker to evict the victim’s
data from a set and the amount of useful data the attacker can infer.
Moreover, this approach does not require extensions to the ISA or
support from the operating system. However, it requires additional
hardware to keep track of processes using the ways of each set.
This could also have a performance impact on benign processes by
restricting the effective amount of cache memory available.

Dai and Adegbija in [7] explore the use of reconfigurable caches
as a defense mechanism against cache side-channel attacks. They
utilize a highly configurable cache, similar to the architecture de-
scribed in [28], which allows total cache size, line width, and asso-
ciativity to be dynamically configured. The authors predetermine
a set of cache configurations, targeting a particular application or
an application domain, which satisfy two conditions (i) selected

57

ASHES °19, November 15, 2019, London, United Kingdom

configurations provide sufficient variability among themselves ren-
dering the information gathered by the attacker less effective and
(ii) average energy consumption of the set of configurations is be-
low a predefined energy threshold. A hardware cache tuner applies
the set of reconfigurations periodically at run-time. The reconfig-
uration period is static and determined based on a known attack
model. Since a predetermined set of configurations is applied in
a predetermined order, it may still be possible for an attacker to
design an attack that overcomes the limitations introduced by this
method. Having a predetermined reconfiguration window also re-
duces the effectiveness of this method, since that allows the attacker
to modify a given attack to fit the window of time available. The
reconfiguration takes place regardless of any other run-time factor.
Therefore, even if there is no attack taking place, the cache will
reconfigure itself periodically. This will result in performance degra-
dation, as some of the cache configurations may not be optimal for
the current application. The authors do not demonstrate the effec-
tiveness of reconfigurable caches as a defense by running concrete
implementations of side-channel attacks. Instead, they collect the
cache access pattern traces for a non-reconfigurable cache and a
configurable cache that reconfigures periodically and calculate the
correlation between the two traces to demonstrate the amount of
noise introduced by the proposed defense to the traces collected by
an attacker.

In summary, previous works include two different approaches
to hardware-based defenses against side-channel attacks. The first
is isolation, which limits the ability of one process to manipulate
the data belonging to other processes. Cache line locking and pre-
venting one process from monopolizing the cache fall under this
category. The second approach is obscuring certain information
regarding the cache structure and introducing noise to the informa-
tion collected by the attacker. This approach is based on the fact that
cache side-channel attacks require intimate knowledge of the exact
cache structure. Without an understanding of the cache parameters,
such as cache size, associativity, block size, replacement policy, and
cache line mapping function, etc., it is extremely difficult to mount
a successful cache side-channel attack. ‘RPcache’ described in [23]
and the defense proposed in [7] fall under this category.

2.3 Performance Impact of Prior Defenses

Different defenses against cache side-channel attacks have vary-
ing levels of impact on performance. Continuous monitoring in
software to detect side-channel attacks has a high impact on per-
formance, since the monitoring takes CPU cycles from the user
applications running on the system. Rewriting applications to limit
information leakage typically results in performance degradations,
either because of dummy calculations performed to obscure in-
formation or due to avoiding performance-improving alternatives,
such as using pre-computed lookup tables in computations. Meth-
ods based on attack detection usually terminate suspicious pro-
cesses. If the detection was not accurate and a benign application
was flagged, such defense mechanisms can affect not only the per-
formance but also the execution correctness of the application.
Partition locked cache [23], and ‘Non-Monopolizable’ caches [8]
restrict the maximum quantity of cache resources that can be uti-
lized by a given application. This could result in performance degra-
dation for certain applications. The cache architectures described

Full Paper

in [24] and the ‘RPcache’ [23] dynamically change the address map-
ping to cache sets. The additional functionality will have an area
overhead and an impact on the operating frequency. The reconfig-
urable cache based approach in [7] applies cache reconfigurations
periodically, without paying any attention to currently executing
application or whether there is an attack taking place. Since cer-
tain cache configurations may not be optimal for all applications,
and because reconfiguration also takes time, performance will be
impacted by this approach.

2.4 Threat Model

In this work, we assume the following threat model.

o The attacker can execute arbitrary user space programs.

e A process cannot access memory regions allocated for other
processes.

o The attacker is capable of mounting a cache side-channel attack
on either the primary or secondary caches.

o The attacker is fully aware of the configuration of the caches.
(Size, associativity, line width, replacement policy, etc.).

o The attacker does not have access to cache flush instructions
provided by the ISA.

3 ADAPTIVE CACHES AS A DEFENSE
MECHANISM

Since the success of cache side-channel attacks depends on the
understanding of the actual structure of the cache, a dynamic cache
structure makes mounting an attack more challenging. This is the
rationale behind using run-time reconfigurable caches as a defense
against side-channels. We hypothesize that the dynamic nature of
the cache will introduce sufficient noise to the data collected by the
attacker to prevent accurate information from being retrieved.

Cache side-channel attacks are performed by initializing the
cache contents to a known state and monitoring the effect of vic-
tim’s activity through the changes in the cache contents. Attack
models, such as ‘flush+reload’ and ‘flush+flush,” utilize the cache
flush instructions provided in certain ISAs to manipulate the cache.
Other attack models make multiple accesses to a set of addresses
that maps to the same cache set. A set of addresses which map to
the same set of a cache is called an ‘eviction set’ [22]. The success
of side-channel attacks depends on the attacker’s ability to find
eviction sets accurately and efficiently. To find an eviction set, the
attacker should be aware of the number of sets in the cache, the
size of cache blocks, and the associativity of the cache. An attacker
should also know the replacement policy and how the cache sets
are indexed. Lower level caches are usually physically indexed and
physically tagged (PIPT), while primary caches are virtually in-
dexed to avoid address translation latency. Primary caches can be
virtually or physically tagged. If the attacker is to mount an attack
on a secondary cache, an understanding of virtual to physical ad-
dress translation is also required. If an attacker fails to identify an
eviction set, the attack is unlikely to succeed. Dynamic reconfigura-
tion of the cache parameters can hinder the ability of the attacker
to identify correct eviction sets and mount an attack.

It is possible to declare an array larger than the total size of the
cache and use that to prime the whole cache. However, this is not
an efficient attack model. It is not necessary to prime every set in
the cache at once to mount an attack. Also, accessing the array

58

ASHES °19, November 15, 2019, London, United Kingdom

elements in order does not allow the attacker to prime the cache
sets one by one. Instead, way zero gets filled first. Then ways 1, 2,
and so on get filled. Therefore, to properly prime even a single set,
a large number of accesses are required, as opposed to utilizing an
eviction set identified before launching the attack.

Consider a ‘prime and probe’ attack on a W-way set associative
cache using an LRU replacement policy. In the prime step, the
attacker primes the cache by accessing addresses known to map to
certain cache sets. To prime a cache set with ‘W’ ways, the attacker
makes at least W accesses to the same cache set, in order to evict
the current contents of the set and fill it with known values. To
do this, the attacker first must find an eviction set of W addresses.
Now, assume that the cache is reconfigurable at run-time, and it
contains logic to detect the high number of evictions for the same
set. The cache control logic interprets the evictions as a result of
insufficient associativity and reconfigures to have associativity of
2-W. At this point, the eviction set of W words is useless, as it only
evicts half the words in the set. Since the cache has fixed resources,
doubling the associativity would mean reducing the number of sets
and/or the block size. Changing the number of sets or cache block
size changes the mapping from the memory to the cache. With the
modified line mapping, some of the addresses in the eviction set
may not map to the same set anymore. This makes the original
eviction set even more ineffective and, therefore, renders the attack
unsuccessful.

If the reconfigurable cache has a static reconfiguration period
and if the attacker is aware of it, then the attacker could modify the
attack to fit within the time window between two reconfigurations.
Although the time constraint limits the amount of information re-
trieved, the information collected will be accurate. The attacker
can still mount a successful attack, albeit one requiring more time
and effort. The reconfiguration process takes a certain number of
cycles that could have been used for useful computations. The per-
formance impact of reconfiguration increases with the frequency
of reconfigurations. Therefore, the frequency of reconfiguration
should remain low, which, in turn, makes the time window for the
attacker to mount an attack longer. An ideal solution will reconfig-
ure the cache only when a potential attack is detected. At least the
reconfigurations should take place at random time intervals.

Accuracy E=== Sensitivity E==3 Specificity
100 T T

80 [

40 -

20 [

% Accuracy, sensitivity & specificity of the attack

2 Cores
System configuration

Figure 1: Attack efficacy when targeting the level 2 cache.

4 Cores

If the reconfigurable cache supports a very low number of possi-
ble configurations, an attacker may still be able to work around the
reconfiguration and complete the attack. An attacker can detect
a cache reconfiguration by the excess delay in the cache servic-
ing requests from the processor. Then the attacker can perform a
simple preprocessing step to determine the current configuration

Full Paper

of the cache. Once it is found, the attacker performs the attack
until the next reconfiguration occurs. However, determining the
cache configuration becomes difficult when the cache has a higher
number of possible configurations. The attacker’s attempts to de-
termine the current cache configuration will take longer due to the
large number of potential cache configurations. This will reduce
the amount of information gathered by the attacker between two
reconfigurations because more time is spent on determining the
cache configuration. Therefore, a reconfigurable cache that sup-
ports a higher number of configurations will be more successful in
thwarting a cache side-channel attack.

3.1 Performance Impact

The proposed defense incurs a performance penalty due to addi-
tional stall cycles during a cache reconfiguration and the time taken
by the caches to warm-up after a reconfiguration. The latter can
be minimized by designing the reconfigurable cache in such a way
that the cache does not have to be cleared before a reconfigura-
tion. However, the cache used in this work requires all dirty lines
to be written back before a reconfiguration. The cache is empty
post-reconfiguration. The performance overhead of this defense
mechanism is lower compared to the solutions proposed in previous
work. This is because the performance penalty of cache reconfig-
uration is incurred only when a reconfiguration is performed. In
contrast, partitioning the caches and adding more levels of indi-
rection to cache indexing incurs performance penalties constantly,
regardless of whether there is an attack taking place. When there
are no side-channel attacks detected, the reconfigurable caches can
be used as a performance enhancing feature by setting the cache
configuration to best fit the memory access patterns of the appli-
cations running on the system. Therefore, adaptive caches have
the potential to outperform prior solutions in terms of minimizing
performance impact.

4 RESULTS AND EVALUATION
4.1 Experimental Setup

The success of a side-channel attack is determined by the amount of
information retrieved through the attack. Therefore, the success of
a defense mechanism can be measured through the reduction in the
amount of information retrieved when the defense mechanism is in
place compared to when there is no defense mechanism. We apply
the same principle to evaluate the effectiveness of the proposed
defense mechanism. First, a simplified model of a cache side-channel
attack is implemented and simulated on a RISC-V core adopted from
the BRISC-V platform [1]. The simulation is based on two programs.
The first is the victim program, which accesses a set of random
addresses. The victim program will access ‘N’ addresses such that
if every address maps to a different cache set, 10% of the total cache
sets will be accessed. The second is the attack program, which
attempts to correctly infer the cache lines accessed by the victim
program. In a real side-channel attack, the sensitive information is
retrieved by an attacker due to the attacker’s ability to detect the
cache sets accessed by the victim program. Therefore, measuring
the attacker program’s ability to correctly detect cache sets accessed
by the victim and how the aforementioned ability is impeded by a
defense mechanism is a representative measure of the effectiveness
of the defense mechanism. The attacker’s success is measured by

59

ASHES °19, November 15, 2019, London, United Kingdom

the accuracy of classifying cache sets as accessed by the victim
or not accessed by the victim. Each scenario was simulated 100
times with different address sequences accessed by the victim. The
attacker takes a simple ‘prime+probe’ approach in this attack.

We present the accuracy, sensitivity, and specificity of the at-
tacker in detecting cache sets accessed by the victim process. Sen-
sitivity is given by the equation “true positives/(true positives +
false negatives)”. This represents the attacker’s ability to correctly
flag cache sets accessed by the victim as accessed. Specificity
is given by “true negatives/(true negatives + false positives)”. It
shows the ability of the attacker to correctly filter out cache lines
not accessed by the victim. Accuracy is given by “(true positives +
true negatives)/(true positives + false positives + true negatives +
false negatives)”.

We have simulated side-channel attacks targeting level 1 and
level 2 caches. Two different scenarios are analyzed for the case
where the two processes are co-located on the same core and the at-
tack targets the level 1 cache. The first is a hardware multi-threaded
core where the two processes run on separate hardware threads.
The second scenario is where the core only supports a single thread,
and the processes are scheduled to favor the attacker. It represents
the best-case scenario for the attacker, where they get full control
over the cache right before and right after the victim process exe-
cutes. Therefore, the attack program can prime the cache with no
interference from other processes before the victim starts executing.
After the victim has completed execution, the attacker gets to probe
the cache without any interference from other processes. Since
attacker and victim are the only processes scheduled to the core,
there is no cache pollution by other processes.

Figure 1 shows the attacker’s efficacy when the attacker and
victim processes running on two separate cores on a multi-core
system and the attacker is targeting the shared L2 cache. The first
scenario is a dual-core system where attacker and victim are the
only processes running on the system. Accuracy of the attack is
lower compared to the attack on L1 cache. This is because the L2
cache is shared between data and instructions. The second scenario
is a quad-core system, with two other benign processes running on
the system apart from the attacker and victim. Since the L2 cache
is shared between more processes, there is higher cache pollution,
and the accuracy of the attack is lower.

Among the different scenarios simulated, the one where the
attacker and victim processes are manually scheduled one after
the other results in the highest success for the attacker. Attacker
success is expected because this is an artificial best-case scenario
for the attacker. In reality, there is no guarantee that a scheduler
will never preempt these processes in the middle of execution. And
it is also unrealistic to assume that the only processes running
are the attacker and the victim. However, since this experiment is
carried out to analyze the impact of run-time reconfigurations on
the accuracy of the information collected by the attacker, the best-
case scenario for the attacker is used as the baseline for the analysis.
After establishing a baseline for attacker success, the level 1 caches
in the BRISC-V system were replaced by the run-time reconfigurable
caches described in section 4.2 and the impact of run-time cache
reconfigurations on attacker success was observed. All simulations
are cycle-accurate RTL simulations using Verilog implementations

Full Paper

of a RISC-V processor system and run-time reconfigurable caches.
Simulations are run using Mentor Graphics® ModelSim.

4.2 Reconfigurable Cache Architecture

The aim of this work is to analyze the effectiveness of run-time
cache reconfigurations against cache side-channel attacks, rather
than one particular cache architecture. Although we use a specific
RTL implementation of a reconfigurable cache in this work, any
other reconfigurable cache architecture should provide similar secu-
rity in terms of impeding the success of cache side-channel attacks.
A highly reconfigurable cache architecture capable of changing
its configuration at a fine granularity at run-time is used in this
work. The cache architecture does not employ partial reconfigu-
ration techniques, which are specific to Field Programmable Gate
Arrays (FPGA). It is built around small independent memory blocks,
which can be used as tag or data storage depending on the current
configuration and achieves run-time reconfigurability by changing
the logical organization of the memory blocks.

The reconfigurable cache architecture is based on the caches
available in the BRISC-V platform [1]. It provides the ability to
change the associativity, cache line width, and the number of cache
sets at run-time. Since the cache line width can change at run-
time, modifications are made to the shared bus between L1 and L2
caches, and the bus interface in each cache. These modifications
are necessary to properly handle fetching and writing back cache
lines and to maintain cache coherence in a multi-core setup.

Another challenge faced when using a run-time reconfigurable
cache is maintaining data consistency across reconfigurations. The
cache architecture used in this work performs a complete cache
cleanup before a reconfiguration. All the dirty cache lines are writ-
ten back to the lower cache levels. After a reconfiguration, the cache
is empty, and this results in low hit rates temporarily. However, this
is not a feature required for the proposed defense mechanism. Even
if a cache maintains all of its contents across reconfigurations, the
run-time changes in the cache structure will reduce the amount of
information gathered by an attacker.

The cache structure is further modified to provide a higher de-
gree of flexibility in terms of how the reconfiguration sequence is
triggered. A cache reconfiguration can be triggered by writing to a
set of memory-mapped registers. This capability also enables pro-
grammable software-based methods to be used in reconfiguring the
cache. In other words, attack detection algorithms and associated
cache reconfiguration parameters can be implemented as software
routines or hardware logic. The modified cache structure can in-
terface with either modality (software or hardware) of detection
and reconfiguration since it has an internal module that can act as
a pass-through or active component. Due to the modular design,
new detection schemes can be easily implemented by replacing the
‘detector’ module. If a software-based detection method is used,
the internal trigger signals can be grounded. Figure 2 shows the
architecture of the reconfigurable level 1 cache.

The reconfigurable cache architecture used in this work has
some key modifications. The main changes related to run-time
reconfiguration are concentrated in the ‘cache_memory’ module,
which instantiates the dual-port SRAM blocks that store the cache
contents and meta-data. Although, we mainly analyze the effective-
ness of cache reconfigurations against side-channel attacks on the

60

ASHES °19, November 15, 2019, London, United Kingdom

level 1 cache in this work, the same defense can be easily adapted
to other cache levels.

Table 1: Overheads for the reconfigurable cache architecture
compared to the non-reconfigurable one.

Memory blocks | Unique configurations | Area | Fmax
20 26 +162% | -23%
40 45 +407% | -38%
80 71 +858% | -55%

For completeness of this work, we provide area overhead and
reduction in operating frequency for three design points of the
reconfigurable cache architecture used in this research compared
to the baseline cache design in Table 1. The cache architecture al-
lows an architect to perform a tradeoff between resource usage and
the level of reconfigurability by changing the number of memory
blocks and the size of a memory block, while keeping the total
memory size constant. Table 1 also provides the number of unique
configurations for different levels of resource usage. However, it
should be noted that the defense proposed in this work is not spe-
cific to a particular cache architecture. Any other cache architecture
with run-time reconfiguration capability can also be used in the
same manner. Different levels of flexibility in the cache architecture
may result in different levels of security. Identifying the number
of different configurations required to provide sufficient security
requires further analysis.

L1 cache
)
Cache C
Cache Memory

~ ~ 3 »
Reconfiguration Controller é 3
pt— : 1]
Dual-port Memory mem-maP1e9 | Attack Detector | ‘E N °
o mop g ' - s
mem_map_reg = <
 map_ @ &

-/ e L

Replacement
Controller -
Snooper

Figure 2: Reconfigurable cache architecture.

4.3 Results

In this experiment, we use the ability of the attack program to
correctly identify the cache sets accessed by the victim program
as the efficacy/performance metric for the attacker. The motive of
the attacker is to correctly classify a higher percentage of sets as
accessed or not accessed by the victim. We report the average and
standard deviation for the accuracy of the attack program across
100 trials. The plots also show the sensitivity and specificity of the
attack program.

Figure 3 shows the attack success under different cache config-
urations. The attacker is fully aware of the cache configuration
and there are no run-time reconfigurations performed in these test
scenarios. The baseline configuration considered is a 4-way set
associative cache with 64-byte wide cache lines and 128 cache sets.
The rest of the cache configurations are derived by changing one

Full Paper

Accuracy 10 Sensitivity C—1 Specificity

~
E 100

®

2 H

<

=] L J
5 % B h B i

2z

2

£ 96 1
3

aQ

&

<&

> 94

F

2

E=

2

o 92

&

>

9

o

5

S Baseline 2x 0.5x 2x 0.5x 2x 0.5x
<° Ways Ways Sets Sets Width Width
X

Modifications to the baseline configuration
Figure 3: Baseline attack efficacy/performance.

of the parameters from the baseline configuration. The changes
include doubling or halving the cache associativity, line width, or
the number of cache sets. We observe that the effectiveness of the at-
tack does not vary significantly based on the cache configuration as
long as the attacker is fully aware of the exact cache configuration.
Accuracy of the attack remains above 95% for all configurations.
The attacker can identify all of the cache sets accessed by the victim.
Hence the 100% sensitivity. However, the attacker program also
incorrectly identifies a few cache sets that were never accessed by
the victim program.

Accuracy = Sensitivity Specificity

100 — T T T T T
&

80 -

60

40

20

0 L L

% Accuracy, sensitivity & specificity of the attack
o
%

>

Q@“ﬁ”‘
Incorrect assumption

Figure 4: Attack efficacy with incorrect assumptions.

Next, we analyze the effectiveness of the attack when the at-
tacker does not know the correct value of one cache parameter
amongst associativity, line width, and number of cache sets. Fig-
ure 4 depicts the accuracy of the attack program when the attacker
makes an incorrect assumption about one of the cache parameters.
We observe that the accuracy and sensitivity of the attack decrease
significantly when even one cache parameter is not known.

When the attacker overestimates the associativity of the cache,
they construct eviction sets larger than the associativity of the cache.
This leads to the attacker evicting part of its known addresses from
the cache. Then, the attacker incorrectly identifies the sets that
contained the addresses evicted due to their own memory accesses.
This increases false positives and reduces the accuracy of the attack.
By underestimating the cache associativity, the attacker fails to
prime any of the cache sets and ends up identifying none of the sets
accessed by the victim, hence zero sensitivity. Similarly, over- and
underestimating cache sets result in either the attacker evicting
their own addresses from the cache or failing to completely prime
the cache. Both result in reducing the accuracy of the attack. Making
an incorrect assumption regarding either the cache line width or
set count results in an incorrect understanding of address mapping

61

ASHES °19, November 15, 2019, London, United Kingdom

to cache lines. This makes the formulation of eviction sets incorrect
and reduces accuracy.

The next step is analyzing the effectiveness of the attack when
there are run-time cache reconfigurations. The attack program is
designed assuming the baseline cache configuration. We analyze the
impact on the accuracy of the attack with cache reconfigurations
taking place during different phases of the ‘prime+probe’ attack.
Reconfigurations involving a single cache parameter and multiple
cache parameters are analyzed separately. The cases where only one
cache parameter changes do not keep the total cache size constant.
We allocate sufficient resources at the beginning to accommodate
doubling cache associativity, line width, or set count at run-time.
In test scenarios where the effective cache size is halved, part of
the memory block is not used after the reconfiguration. For the
test scenarios where multiple parameters may be reconfigured, the
total cache size is kept constant across reconfigurations.

Accuracy === Sensitivity /—= Specificity

100

60

40 -

20

o
Baseline 25% 50% 75% 25% 50% 75%
primed primed primed probed probed probed

Percentage of cache sets primed/probed before the reconfiguration
Figure 5: Attack efficacy when associativity is halved.

% Accuracy, sensitivity & specificity of the attack

Accuracy === Sensitivity —= Specificity

100

60

40

20

25%
primed

50%
primed

Baseline 75%

primed

25% 50% 75%
probed probed probed

Percentage of cache sets primed/probed before the reconfiguration

Figure 6: Attack efficacy when associativity is doubled.

% Accuracy, sensitivity & specificity of the attack

Figures 5 and 6 show the impact of doubling and halving the
associativity at run-time on the accuracy of the attack. Accuracy in-
creases as the reconfiguration is delayed and the attacker is allowed
to complete probing more cache sets. When the reconfiguration is
triggered after 75% of the probe phase, attack accuracy is almost 80%.
The impact of reconfigurations during the prime phase depends
on the exact change made to the cache organization. Reducing the
cache associativity results in very low accuracy for the attack. Dou-
bling the associativity shows a lesser impact on the accuracy of
the attack. However, the sensitivity of the attack is significantly
reduced. Sensitivity increases as more cache sets are primed before
the reconfiguration.

Figures 7, 8, 9, and 10 show the results for reconfiguring the
number of cache sets and line width during different phases of the
attack. We observe similar trends to those seen when reconfiguring
cache associativity. Reconfigurations during the prime phase of

Full Paper ASHES °19, November 15, 2019, London, United Kingdom

Baseline Assoc.& Assoc.& Sets& Sets& Width& Width&
Sets Width Assoc. Width Assoc. Sets.

Reconfigured cache parameters
Figure 11: Attack efficacy when two parameters are reconfig-
Accuracy =23 Sensitivity /—=3 Specificity = .
: : : ured after 25% cache sets are primed.

Percentage of cache sets primed/probed before the reconfiguration

the attack decrease the accuracy of the attack by 71% on average. parameters being reconfigured after 25%, 50% and 75% of the cache
The average reduction in accuracy is 44.4% for the reconfigurations sets are primed by the attacker. Similarly, figures 14, 15 and 16 show
during the probe phase. the effect of reconfiguring two cache parameters at the same time
~ Accuracy === Sensitivity =—2 Specificity = during the probe phase of the attack.
& 100
% v Accuracy === Sensitivity —= Specificity
2 ® 100 T T T T
P g -4
z £
S < 801 b
£ 60 >
g g
2 el
2 a0 g
'§ o
2 3
G > 40
§ 20 3
“n =2
d 2
g g 20
§ Baseline 25% 50% 75% 25% 50% 75% 5
f primed primed primed probed probed probed g
=

Figure 7: Attack efficacy when cache sets are halved.

Accuracy =31 Sensitivity E—= Specificity E
T T T

Baseline 25% 50% 75% 25% 50% 75%
primed primed primed probed probed probed

Percentage of cache sets primed/probed before the reconfiguration

Figure 8: Attack efficacy when sets are doubled.

% Accuracy, sensitivity & specificity of the attack

Baseline Assoc.& Assoc.& Sets& Sets& Width& Width&
Sets Width Assoc. Width Assoc. Sets

Reconfigured cache parameters
Figure 12: Attack efficacy when two parameters are reconfig-
ured after 50% cache sets are primed.

% Accuracy, sensitivity & specificity of the attack

Accuracy ====3 Sensitivity /—3 Specificity Emm—

Accuracy =31 Sensitivity =—= Specificity E==m

Baseline 25% 50% 75% 25% 50% 75%
primed primed primed probed probed probed

Percentage of cache sets primed/probed before the reconfiguration

Figure 9: Attack efficacy when line width is halved.

% Accuracy, sensitivity & specificity of the attack

Baseline Assoc.& Assoc.& Sets& Sets& Width& Width&

% Accuracy, sensitivity & specificity of the attack

Baseline 25% 50% 75% 25% 50% 75%
primed primed primed probed probed probed

Percentage of cache sets primed/probed before the reconfiguration

o ifici Sets Width Assoc. Width Assoc. Sets
%“é 100 Accuratl:y . Sens|t|vluty Specificity Reconfigured cache parameters
& Figure 13: Attack efficacy when two parameters are reconfig-
S oeof 1 ured after 75% cache sets are primed.
>
E
S 60 - Accuracy = Sensitivity =—= Specificity
&
2 aof
H
2
§ 20
g
>
8
5
g
<
=

Figure 10: Attack efficacy when width is doubled.

Finally, we analyze the effect of multiple-cache parameters being
reconfigured at run-time. This is more realistic because it allows
the total cache size to be kept constant, unlike reconfiguring one
cache parameter. Figures 11, 12 and 13 show the effect of two cache

Baseline Assoc.& Assoc.& Sets& Sets& Width& Width&
Sets Width Assoc. Width Assoc. Sets

Reconfigured cache parameters
Figure 14: Attack efficacy when two parameters are reconfig-
ured after 25% cache sets are probed.

% Accuracy, sensitivity & specificity of the attack

62

Full Paper

Accuracy === Sensitivity /—=3 Specificity

=
=)
=3

©

=3
T
L

o
=]
T
L

N
o
T

N
o
T

Attacker's accuracy, sensitivity and specificity

Sets&
Assoc.

Width&
Assoc.

Width&
Sets

o L
Baseline Assoc.& Assoc.& Sets&
Sets Width Width

Reconfigured cache parameters
Figure 15: Attack efficacy when two parameters are reconfig-

ured after 50% cache sets are probed.

Accuracy === Sensitivity /—=3 Specificity D

100

= =

80 - B

60

20

Sets&
Assoc.

Width&
Assoc.

Width&
Sets

o L
Baseline Assoc.& Assoc.& Sets&
Sets Width Width

Reconfigured cache parameters
Figure 16: Attack efficacy when two parameters are reconfig-

ured after 75% cache sets are probed.

% Accuracy, sensitivity & specificity of the attack

Similar to reconfiguring one cache parameter, in the cases where
the cache is reconfigured during the probe phase of the attack
process, the accuracy of the attack improves as more sets can be
probed before the reconfiguration. While reconfiguring different
parameters results in different levels of impact on the attack per-
formance, the overall trend of increasing accuracy with more sets
probed holds. This is intuitive because the attacker is allowed to
completely perform the attack on an increasing number of sets in
these scenarios. When the reconfiguration takes place after 25% of
the cache sets are probed, the accuracy of the attack decreased by
55%. Reconfiguring after 50% and 75% probing reduces accuracy by
36.6% and 17%, respectively.

When the cache is reconfigured during the prime phase of the
attack process, the attacker fails to properly prime the cache. This
increases the number of false negatives and, therefore, decreases the
sensitivity of detecting sets accessed by the victim. Then the probing
is done with false assumptions about the cache configuration, which
compounds the errors. When the reconfiguration is done after 25%,
50% and 75% of the sets are primed, on average the accuracy of the
attack decreases by 40.5%, 51%, and 64%, respectively.

4.4 Evaluation

The test scenarios with no run-time reconfigurations or other pro-
grams running on the system yield the highest success for the
attacker. This was expected because there is no noise polluting the
data collected by the attacker. The simplicity of the attack scenario
and the cache hierarchy used in these simulations also result in
high success rates for the attack. There are no virtual memory or
complex cache line mapping schemes the attacker has to work
around. All the caches use physical addresses to map cache lines.
The processor is running bare-metal code. Adding other benign
processes to the system reduces the success of the attack. This is

63

ASHES °19, November 15, 2019, London, United Kingdom

due to caches now being shared by all the other processes. The
attacker cannot distinguish between the accesses from the victim
and the other processes not targeted by the attack. This observation
is true for both the multi-threaded and multi-core test scenarios we
have analyzed.

Run-time reconfigurations drastically reduce the attack’s suc-
cess. Even a change in one cache parameter renders the information
gathered by the attacker more or less unusable. This is because the
attack is designed assuming a certain cache configuration. Once
the cache configuration changes, some of the assumptions made
in designing the attack become invalid. Therefore, the information
collected by the attacker becomes unreliable. A single reconfigura-
tion was shown to be sufficient to reduce the accuracy of the attack.
However, these experiments were conducted using a simple imple-
mentation of a cache side-channel attack that does not attempt to
identify a cache reconfiguration and the new cache configuration
after a reconfiguration. If a sophisticated implementation of the
attack was used, multiple reconfigurations may be necessary. A
cache with a higher number of possible configurations can counter
the attacker’s attempts to identify the new cache configuration and
then modify the attack to fit the new configuration. When there is
a large space of potential configurations, identifying the current
cache configuration takes longer and that reduces the time available
to mount the actual attack.

Another observation made was the effect of how long the attack
continued before a cache reconfiguration takes place. The time
taken by the detection mechanism to detect a potential attack and
trigger a cache reconfiguration is directly related to the success
of the attack. Reconfigurations earlier in probe phase result in a
larger reduction in accuracy of the attack. Reconfigurations during
prime phase on average result in a higher reduction in accuracy
than reconfigurations during the probe phase. This demonstrates
the importance of early attack detection.

5 RECONFIGURATION AS AN ALTERNATIVE
RESPONSE

In this work, we assumed that there is a detection mechanism
in place that will detect potential cache side-channel attacks and
trigger cache reconfiguration. Future work includes implement-
ing a real-time side-channel attack detection mechanism. Most of
the prior work in real-time side-channel attack detection utilizes
learning-based methods [5] [2] [27]. While prior work has shown
high accuracy in attack detection, false positives are not eliminated
by those detection methods. A false positive detection can result in
terminating a benign process. The alternative is human intervention
when the detection mechanism identifies a potentially malicious
process. However, this is also not a practical solution due to the
sheer number of processes running on a system. For certain use
cases, such as a cloud service provider, most of the processes will
be running client code, which the service provider has little to no
information on. Terminating a client’s benign process can have
financial repercussions.

Run-time cache reconfigurations can be used to complement
some of the real-time detection methods proposed in previous
works. Cache reconfiguration is orthogonal to attack detection,
and, therefore, the detection mechanism can be implemented in-
dependently. It can be hardware- or software-based. As discussed

Full Paper

earlier, terminating a process is not an acceptable response in most
instances of an attack detection system flagging a process as suspi-
cious. Reconfigurable caches provide another viable response to a
potential side-channel attack. If the detection mechanism detects
potential attacks with varying degrees of confidence, it is important
to have a defense that does not include potentially terminating a be-
nign application. In a system with run-time reconfigurable caches, a
low confidence detection of a potential attack could trigger a cache
reconfiguration. High confidence detections can still terminate the
suspicious process. With this scheme in place, even if the detec-
tion method has incorrectly flagged a benign process, it will only
experience performance degradation, as opposed to termination.

6 CONCLUSION

In this work, we analyzed the viability of adaptive caches as a
defense mechanism against cache side-channel attacks. Our obser-
vations indicate that the success of a cache side-channel attack is
severely impeded by run-time cache reconfigurations. We observed
that a single cache reconfiguration can reduce the ability of the
attacker to identify the cache sets accessed by the victim drastically.
The accuracy of the attack decreased by 57.6% on average when
a single cache parameter reconfiguration was performed without
maintaining the total cache size. Reconfiguring two parameters
while keeping the cache size constant resulted in an average reduc-
tion of 44.3% in accuracy. We were also able to demonstrate the
importance of early attack detection with our results. Against a
‘prime+probe’ attack, cache reconfigurations taking place after 75%,
50%, and 25% of the probe phase resulted in decreasing accuracy
for the attack. Reconfigurations during the prime phase resulted
in even lower success for the attack. We discussed how run-time
cache reconfigurations can be used as an alternative response to
potential side-channel attacks instead of terminating the suspicious
process. This reduces the potential of terminating a benign pro-
cess due to a false positive from the attack detection mechanism.
With a run-time cache reconfiguration, the process will experience
performance degradation as opposed to being terminated. The ma-
jor takeaways of this work are: (i) reconfigurable caches are an
effective defense mechanism against cache side-channel attacks;
(ii) they provide a strong defense with a negligible performance
overhead compared to previously proposed methods; (iii) the speed
of detecting a potential attack is paramount to the success of the
defense; (iv) using run-time cache reconfigurations to thwart cache
side-channel attacks reduces the pressure on attack detection; (v)
reconfiguring even a single cache parameter reduces the accuracy
of a cache side-channel attack significantly.

REFERENCES

[1] Sahan Bandara, Alan Ehret, Donato Kava, and Michel Kinsy. 2019. BRISC-V:
An Open-Source Architecture Design Space Exploration Toolbox. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA °19). ACM, New York, NY, USA, 306-306. https://doi.org/10.1145/
3289602.3293991

Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario Sudholt, and
Jean-Marc Menaud. 2018. Cache-based side-channel attacks detection through
intel cache monitoring technology and hardware performance counters. In Third
International Conference on Fog and Mobile Edge Computing (FMEC). IEEE, 7-12.
Daniel J Bernstein. 2005. Cache-timing attacks on AES. Available at http://cr.yp.
to/papers.html#cachetiming.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

0

=

64

(10]

[11

=
&

[13

[14

[15

(17]

[18

[25

[26]

[28

[29

ASHES °19, November 15, 2019, London, United Kingdom

Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 991-1008.

Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of
cache-based side-channel attacks using hardware performance counters. Applied
Soft Computing 49 (2016), 1162-1174.

Joan Daemen and Vincent Rijmen. 1999. AES Proposal: Rijndael. Avail-
able at https://csrc.nist.gov/csrc/media/projects/cryptographic- standards-and-
guidelines/documents/aes-development/rijndael-ammended.pdf.

Chenxi Dai and Tosiron Adegbija. 2017. Exploiting configurability as a defense
against cache side channel attacks. In 2017 IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI). IEEE, 495-500.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 8, 4 (2012), 35.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 40.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279—
299.

Hossein Hosseinzadeh, Mihailo Isakov, Mostafa Darabi, Ahmad Patooghy, and
Michel A. Kinsy. 2017. Janus: An uncertain cache architecture to cope with side
channel attacks. IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS) (2017), 827-830.

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side
channel attacks against kernel space ASLR. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 191-205.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre attacks: Exploiting speculative execution. arXiv preprint arXiv:1801.01203
(2018).

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE Symposium on Security
and Privacy. IEEE, 605-622.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. 2015. Last-Level Cache Side-
Channel Attacks are Practical. In 2015 IEEE Symposium on Security and Privacy.
605-622. https://doi.org/10.1109/SP.2015.43

Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. 2019.
Spectre is here to stay: An analysis of side-channels and speculative execution.
arXiv preprint arXiv:1902.05178 (2019).

Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript
and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1406-1418.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ track at the RSA conference.
Springer, 1-20.

Colin Percival. 2005. Cache missing for fun and profit.

R Rivest et al. 1983. Cryptographic communications system and method, US
4405829 A. (1983).

Pepe Vila, Boris Képf, and José Francisco Morales. 2018. Theory and practice of
finding eviction sets. arXiv preprint arXiv:1810.01497 (2018).

Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting soft-
ware cache-based side channel attacks. In ACM SIGARCH Computer Architecture
News, Vol. 35. ACM, 494-505.

Zhenghong Wang and Ruby B Lee. 2008. A novel cache architecture with en-
hanced performance and security. In Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 83-93.
Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: a high resolution, low
noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium (USENIX
Security 14). 719-732.

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7, 2
(2017), 99-112.

S. Yu, X. Gui, and J. Lin. 2013. An approach with two-stage mode to detect
cache-based side channel attacks. In The International Conference on Information
Networking 2013 (ICOIN). 186-191. https://doi.org/10.1109/ICOIN.2013.6496374
Chuanjun Zhang, Frank Vahid, and Walid Najjar. 2003. A highly configurable
cache architecture for embedded systems. In 30th Annual International Symposium
on Computer Architecture, 2003. Proceedings. IEEE, 136-146.

Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2012. Cross-
VM side channels and their use to extract private keys. In Proceedings of the 2012
ACM conference on Computer and communications security. ACM, 305-316.

https://doi.org/10.1145/3289602.3293991
https://doi.org/10.1145/3289602.3293991
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/ICOIN.2013.6496374

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cache Side-channel Attacks
	2.2 Defenses Proposed in Prior Works
	2.3 Performance Impact of Prior Defenses
	2.4 Threat Model

	3 Adaptive Caches as a Defense Mechanism
	3.1 Performance Impact

	4 Results and Evaluation
	4.1 Experimental Setup
	4.2 Reconfigurable Cache Architecture
	4.3 Results
	4.4 Evaluation

	5 Reconfiguration as an Alternative Response
	6 Conclusion
	References

