Chameleon: A Generalized Reconfigurable
Open-Source Architecture for Deep Neural Network
Training

Mihailo Isakov, Alan Ehret, Michel Kinsy
Department of Electrical and Computer Engineering
Boston University
Boston, United States of America
{mihailo, ehretaj, mkinsy} @bu.edu

Abstract—We present Chameleon, an architecture for neural
network training and inference design exploration on FPGAs.
While there exists a great number of different network types
and optimizations, it is not always clear how these differ-
ences impact the hardware implementation of neural networks.
Chameleon is created with extensibility and experimentation
in mind, supporting a number of activations, neuron types,
and signal bitwidths. Furthermore, Chameleon is created to
be modular, allowing designers to easily swap existing parts
for improved ones, speeding up research iteration. While there
exists a large number of inference architectures, we focus on
speeding up training, as training time is the bottleneck for
neural network architecture exploration. Chameleon therefore
aims to help researchers better understand the bottlenecks in
training deep neural networks and create models that circumvent
these barriers. Finally, Chameleon is designed to be simple,
without requiring a compiler or reconfiguration to function.
This allows quick localized changes to the architecture and
facilitates design exploration. We present synthesis results on
an Altera Cyclone V SoC and show the design resource usage.
We finish with an evaluation by training a network on the
Wisconsin Breast Cancer dataset. The RTL and synthesis files
for the architecture will be open-sourced upon publication at
http://ascslab.org/research/abc/chameleon/index.html.

Index Terms—neural networks, training, hardware, architec-
ture, FPGA, RTL, design exploration, open-source

I. INTRODUCTION

While there exists a number of high-performance inference
and training architectures, neural network accelerator design
exploration is still cumbersome for a variety of reasons. The
majority of published papers do not open-source their designs,
preventing researchers from effectively comparing different
approaches and optimizations. Additionally, parameter explo-
ration for new architectures is restricted. While there are
several open-sourced designs out there, they are often limited
to a certain network type [1], or even a single topology [2].

Other designs support a larger network design space, but
are too complex and difficult to modify. DnnWeaver [3]
generates deep neural network (DNN) architectures from a
Caffe specification using a library of hand-written Verilog
templates. While supporting a number of layer and neuron
types, DnnWeaver forces the user to conform to its framework
by modifying the generator and not the generated Verilog code.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

We aim to provide a simpler approach to testing designs by
removing the design generation step from the workflow, and
allowing direct modification of the underlying architecture.

Different architectures commonly utilize novel machine
learning improvements to speed up their designs. For example,
the FINN architecture [4] is a binary neural network acceler-
ator that utilizes the fact that neural networks can have binary
(-1 or +1) weights without sacrificing accuracy [5]. While
achieving state-of-the-art results in inference latency, FINN
does not permit larger design exploration.

We propose a generalized design, one that does not uti-
lize all possible optimizations and keeps its options open,
while permitting optimizations to be added later on through
extensibility and modularity. Furthermore, we do not take ad-
vantage of possible hardware time-multiplexing options such
as having only one matrix multiplier module used by both
the forward and backward pass. Instead, we directly map the
backpropagation algorithm to hardware. The reason for this
is twofold: (1) it allows a designer to have a clearer picture
of the area utilization of each part of the algorithm, and (2)
allows independent optimization of both datapaths (forward
and backward pass).

The majority of existing deep neural network and convolu-
tional neural network (CNN) accelerators focus on inference
in order to increase the battery life of mobile devices or allow
computation on the edge. While inference is important, we
choose to focus on training, as training time of large neural
networks is the bottleneck in neural network research and
exploration. Most neural networks are trained on GPUs, due
to the parallel nature of neural networks. For that reason,
Chameleon was built to focus on training. While GPUs may
offer fast matrix multiplications and convolutions, we believe
that certain neural network architectures (i.e. sparse or low-
precision networks) can take advantage of the FPGA fabric,
reconfigurability, and distributed resources, allowing certain
network topologies to train faster.

With many papers out there focusing on optimizing pro-
cessing elements [6], memory bandwidth and storage [7],
locality [8], etc. we feel that a naive benchmark architecture
is needed to compare different optimizations more equally.



By building a transparent and direct implementation of the
forward pass and backpropagation algorithms, we hope to gain
a greater insight into the bottlenecks of neural network training
and inference algorithms.

II. RELATED WORK

Open source. DnnWeaver [3] is an open-source DNN
accelerator generator which converts high-level Caffe network
specifications into synthesizable designs. DnnWeaver uses a li-
brary of optimized hand-written templates to generate designs,
and supports both Xilinx and Altera families of chips. ZyngNet
[2] is an open-source OpenCL network accelerator. It consists
of the custom ZynqgNet CNN topology, and an accelerator
implemented for that specific network. FINN [4] is a binary
neural network [5] accelerator with sub-microsecond latency
for MNIST image classification. The design is open-sourced
on Github.

Parametrizable. A significant number of FPGA CNN and
DNN implementations support different layer types and activa-
tions [8]-[10], requiring the user to only reconfigure the design
in order to change the network topology. In [11], the authors
aim to bridge the gap between efficient but slow-to-design
hand-written accelerators and inefficient HLS accelerators.
By creating a set of efficient and modular CNN primitives,
their compiler can adapt to specifics of CNN topologies and
quickly produce accelerators. A similar neural network design
automation tool is proposed in DeepBurning [12]. The authors
show that it is very difficult to create a single generalized ar-
chitecture that can provide good efficiency on a vast number of
different types of neural networks. They present DeepBurning,
which consists of an RTL-level accelerator generator and a
supporting compiler. DeepBurning supports a large number
of networks like conventional DNNs and CNNs, RNNs, NiN
[13], Hopfield networks, etc.

Inference. The majority of published FPGA DNN acceler-
ators focus on inference only [9]-[11], as it is assumed that
the training is performed offline using GPUs. In NeuFlow
[9], the authors implement a systolic array based neural
network accelerator that can reconfigure specific networks or
even layers. Their systolic cells can perform multiplications,
convolutions, neuron activations and routing. Authors also
develop a compiler to run Torch models on the accelerator.
In [14], the authors implement a layer-multiplexing neural
network with one physical layer. The network uses fixed-
point values for activations, weights, and biases, and simulates
different layers, one at a time. The size of the layers in the
network is restricted by the number of physical neurons that
are synthesized.

Training. Training neural networks requires significantly
more compute power, on-chip storage and bandwidth than
inference does. Early FPGA implementations were primarily
limited by the amount of logic available, leading to multi-
FGPA solutions [15] and stochastic computation solutions [6].
While some inference networks could still fit on a single
FPGA, backpropagation would require different logic for
inference, training, and updates, with some early solutions

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

opting for time-multiplexing these stages and reconfiguring
the FPGA for each stage [16]. In [17], the authors implement
a backpropagation architecture which time-multiplexes layers,
similar to the inference implementation from [14]. They imple-
ment only one physical layer of neurons, and the architecture
uses that single layer to process all the network layers. The
architecture is restricted by the available on-chip resources and
has a hard limit on the maximum number of neurons in any
layer. In [18] the authors test out how precision affects training,
and create a systolic array based accelerator, taking advantage
of the low bitwidth stochastic quantization. This approach is
further explored in ZipML, where authors train networks with
weights as low as two bits [19].

III. TRAINING NEURAL NETWORKS

Backpropagation is the most widely used method of training
neural networks. Training neural networks typically consists
of a forward pass, where an input is run through the network,
and backwards pass, where the network is updated to better
approximate the target output. We briefly illustrate the back-
propagation procedure here.

Forward pass is typically performed as:
for an activation function f, input a®, weight matrices W' to
WL, and biases b to bL, we calculate layer activations as:

2T = Wxaw—l + bE (l)
az = f(2z) @)

Once we have performed a forward pass, we can compare
the top layer activation a” with the target activation ¢ and
calculate the error as ¢ = t—a’”. From there, using the network
cost function C, we can calculate the delta signals § as:

st=vco f'(zh) (3)
Tt =(hTh e f1(ET) @)

This procedure is the reason for the name backpropagation, as
we are propagating deltas down the layers, starting from the
top. The weights and biases can be updated from there as:
ocC -1 0C l
dul, ~ 9% Gy = ®
1] [
IV. ARCHITECTURE

Chameleon top level architecture consists of the forward
pass module, the backwards pass module, the activation stack,
and dataset module, as illustrated in Figure 1. Initially, we
assume that the whole dataset is stored in DRAM, and we
fetch samples and corresponding labels into on-chip BRAM.
Since we can shuffle the dataset in advance, the prefetcher
incrementally loads portions of the DRAM into BRAM cache.
The cache module feeds the samples from the dataset to the
forward pass module, and the sample labels to the backwards
pass module.

The forward pass calculates the activations of all layers
in the network and sends each layer’s pre-activation value
(i.e. the value before the activation function is applied) to the



Forward
Pass Stack

; Activation]
Prefetcher L ) Igyer
activation

weight matrix

layer
Backward activation
Pass

~

<

Fig. 1. Top level view of our proposed architecture.

activation stack module which stores them. This is important
as the backward pass will require the values of both the
activation function and its derivative to work, and we choose
to calculate those on the fly rather than store them both. Once
all layers are processed for a specific input, the backwards pass
module reads activations from the module in the descending
order, starting from the output layer down to the input layer.
The backwards pass module learns by comparing the targets
received from the dataset module, and the activations received
from the stack module. From them it calculates the error signal
for each output neuron and (1) updates it’s weight matrices,
which it feeds to the forward pass module, and (2) propagates
the error signal to the lower layers, repeating the process. The
architecture is fully pipelined, allowing independent weight
updates and forward pass inference. While running inference
and at the same time changing the weight matrix might lead
to race conditions, our arbitration mechanism prevents this.

Additionally, there is the issue of stale reads and training
on stale models. Here the design’s forward pass may start
working on some samples before the backward pass has
finished integrating changes in the weight matrix. This may
lead the backward pass to optimize a stale model, which has
been shown to lead to a decreased accuracy. We disregard this
effect for two reasons: (1) the staleness we see in the model
can be measured in only a couple of samples, far lower than
the reported staleness needed to hurt accuracy [20], and (2)
this effect is similar to the momentum used in the optimizer
[21], and can be removed with careful momentum tuning. Stale
reads can therefore be ignored as long as a good momentum
is picked.

A. Conventions used

All values in our design use a fixed-point format. We have
opted for fixed-points instead of floating-points as there is
enough research [22] to show that training on sufficiently pre-
cise fixed-points does not reduce accuracy. In the architecture,
all signal bitwidths are defined by their integer width, and the
fraction width. We chose to have a unified fraction bitwidth
for the sake of simplicity, but are planning to remove this
constraint in the future.

B. Dataset Cache

The cache module holds both inputs and targets to the
network. It is implemented in BRAM, and loads its values
from a prefetcher, which loads the values from DRAM. The
inputs are accessed with the sample number which serves as

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

the index. As the forward pass processes the samples, this
counter is incremented, and wraps around when the end of
the dataset is reached. We assume that the dataset is shuffled
in advance.

C. Forward Pass Module

One of the main components of the architecture is the for-
ward pass module, which is used for calculating the activations
of all hidden and output layers in the network. This module
accepts a vector of inputs and a matrix of weights, and outputs
the activations of all the layers in the network, one layer at a
time. The forward pass module is illustrated in Figure 2.

Neuron sums

o I i 2
—— Layer

Layer

inputs
First
layer
neuron A A
inputs .1'.'_‘_' } B <
_
.
Neuron
activations

Fig. 2. Forward pass module architecture.

Initially, the forward pass requires the input layer’s input
values, and the first weight matrix. The module then calculates
the activations of the first hidden or output layer. In the case
that there are multiple layers in the network, the forward pass
module uses it’s output as it’s activation input and accepts a
new weight matrix (but no neuron inputs). The forward pass
module continues until it calculates the activation of the final,
output layer. It then accepts new input layer activations and
starts from the beginning.

Our implementation time-multiplexes layers. We synthesize
a fixed number of neurons, and process one layer at a time.
The layer module contains a number of physical neurons,
while the layer controller module applies activation functions
to individual neuron results, and chooses which input to feed
to the layer - a new input layer activation, or the previous
layer’s activation. If a certain layer has fewer neurons than the
number of physical neurons we synthesized, the extra neurons
are simply turned off. This number of neurons must be equal
to or greater than the largest layer in the network, prohibiting
training larger networks in this design.

Neuron Module: We opted for creating physical neurons
instead of following the conventional approach of perform-
ing matrix-vector multiplications in order to further explore
this design choice. Our neurons consist of simple multiply-
accumulate (MAC) units which iterate through the inputs and



appropriate matrix rows. The neurons keep track of results and
raise the overflow/underflow flag when appropriate. Neurons
also accept an input value describing the number of neurons
in the previous layer, in order to allow topologies where layers
have different numbers of neurons. Furthermore, neurons can
be deactivated for layers with smaller numbers of neurons.
We choose to use overflows instead of saturating logic for
(1) hardware simplicity, as verilog does not offer built-in
saturation logic, and (2) because we want to be aware of satu-
ration/overflows happening and hurting network performance.
Figure 2 shows the zoomed-in schematic of a neuron.

Activation Function: We implement multiple activation
functions, including the sigmoid activation, rectified linear
units (ReLU), and leaky rectified linear units. The sigmoid
activations are implemented as lookup tables (LUT) with a
parametrized input and output bitwidth. The choice of input
bitwidth b; directly affects the number of elements in the
lookup table, while the output bitwidth b, determines the
memory for each LUT element. The total memory needed for
the lookup table is 2% b, bits. We notice that for the sigmoid
activation, a majority of values in the lookup table is repeated
for a sequence of inputs, pointing to a possible optimization
for storing values. The ReL.U activation function is far simpler,
and we implement it as a combinational circuit.

We can see three sigmoid activation functions inside the
layer controller module in Figure 2.

D. Activation Stack Module

The activation stack is a simple stack module which saves
activations received from the forward pass module, and reads
them out to the backwards module in a reversed order. The
forward pass stores one activation at a time, while the back-
wards pass reads pairs of activations, one from the current
layer being trained, and one from the layer below.

E. Backwards Pass Module

The backpropagation module is the most complex module of
the design. It consists of three modules, the weight controller,
the error calculator, and the error propagator, as shown in
Figure 3. The error calculator determines the errors of the
top, output layer, while the error propagator takes these errors
and calculates the errors of the lower layers of the network.
The weight controller is charged with applying the errors
as updates to the weight matrices. Additionally, the weight
controller stores and serves the weight matrices to the forward
pass module discussed above. The whole backwards pass
module tracks overflows which is useful for parameter tuning.

Error Calculator: Calculating the delta values in a neural
network depends on the layer being processed. In case of the
top layer L, for a target y, neuron sum z” and activation
at = f(z1), we calculate the error as:

ot =(y—a") o f(h) (6)

In order to calculate the top layer error, we use the error
calculator module, as seen in Figure 3. The error calculator
accepts target values from the top level dataset module, along

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

Random\y."n‘
Initialized

layer #

Fig. 3. Proposed backpropagation module architecture. The s-shaped and
bell-shaped boxes are the sigmoid activation function and it’s derivative. Both
are implemented as lookup tables. The T block is the transpose, and the
MVM block is the matrix-vector-multiplication module. In the weight updater
module, the X box is the tensor product module, and the >> symbol is the
shift right operation. The shift operation applies the learning rate alpha to
the updates before they are added to the weights.

with the values calculated by the forward pass, and calculates
the top layer delta value according to Eq. 6.

Error Propagator: In case of lower layers, we calculate
the error 6“1 using the error from the previous layer 6% and
the weight matrix w as:

5L71 _ wT(SL ®f/(ZLfl) (7)

The error propagator module is used for calculating the
errors for layers below the top one. It accepts previous (above)
delta signals 6%, the weight matrix w, and this (lower) layer’s
neuron sum z"~!, and calculates 6%~ according to Eq. 7.

For the first hidden layer below the output layer, the error
propagator module will take the error calculator’s error signals.
For the layers below it however, it will use it’s own outputs,
which can be seen as the multiplexer between the error
calculator and propagator in Figure 3. The error calculator
sends out the delta signal to the weight controller, which uses
it to update the weight matrices of the network.

Weight Controller: The weight controller serves two pur-
poses: (1) it updates the weight matrices as new errors come
in, and (2) serves the weight matrices to both the forward
and backward pass modules. Both reading and writing must
happen independently, but we do not allow reads during writes.
Initially, the weight controller starts with randomized weight
matrices with values close to zero. Since we are using fixed
point values with n bits for the fraction, we make sure that we
pick random numbers in the [—k, k] range, where k << 2.
This is essential to prevent early saturation of neurons, which
can prohibit learning.



While serving weight matrices, the weight controller is also
charged with updating them as new errors come in. The weight
updater module inside the weight controller serves to calculate
the updated weights according to the incoming error from the
error calculator or propagator modules. For a cost function C'
and a weight wg in the L-th layer with coordinates ¢ and j, we
are interested in finding g—g. We calculate the weight update

AwiLj as:
oC

Awl‘ = = aL_l(SL
i L k J
ow;

®)

This product is calculated in the cross product module. The
module is generalized and accepts two vectors of parametriz-
able lengths m and n, and returns a matrix of size m x n. The
tensor product calculates the matrix in tiles, and consists of
T, and T,, multipliers, where T,,, and 7T,, are parametrizable
tile sizes. The updates are further multiplied with the learning
rate. Researchers rarely require high precision in choosing
a learning rate, often increasing it or decreasing it whole
orders of magnitude. We implement the learning rate as a
shift operator, operating on individual matrix elements. We
apply the learning rate after the aé _léjL in order to decrease
numerical errors. Finally, the updates are applied to the weight
matrix by adding them together in the vector adder module.
We have parametrized the module with a variable number of
adders, affecting throughput and latency.

V. EXTENSIBILITY AND MODULARITY

A goal of Chameleon is painless extensibility. We are
exploring using high level synthesis (HLS) languages such
as MyHDL [23] for two reasons: (1) as a powerful hard-
ware verification language (HVL) that can tap into the vast
amount of Python math and neural network libraries for testing
purposes, and (2) as a mocking framework [24], quickly
establishing a non-synthesizable golden model that can be
gradually “hardened”.

Having a suite of high-level parametrizable tests with pow-
erful assertion logic that can be run without the designers
interference is common in all branches of software devel-
opment. Hardware testing has fewer open-source frameworks
and many designers rely on manually checking waveforms
and testbenches. Furthermore, gradient descent is notoriously
difficult to debug, as small errors, such as off-by-one mistakes,
may not prevent a system from learning, but only slightly
affect its performance. Having a robust and user-friendly set of
architecture-independent tests allows the designer to proceed
with certainty and focus on improving performance rather than
maintaining correctness.

We also propose the use of mocking in our neural net
designs. According to Fowler [24], mocks are “objects pre-
programmed with expectations which form a specification
of the calls they are expected to receive”. We extend this
definition to mean: mocks are software modules that have
correct behaviours but are not synthesizable and have arbi-
trarily defined latencies between inputs and outputs. We use

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

mocks as a way to quickly define a correct, golden, latency-
insensitive design, which we will later “harden” by converting
HLS mocks into verilog modules with the same behavior
but different latency requirements. With a full test suite
and a golden model, designers can quickly make localized
changes, test functionality, and observe the throughput and
area changes.

A. Implementing Recurrent Layers

To show the proposed extensibility, we implement recurrent
neural network (RNN) layers in Chameleon. Unlike the fully-
connected networks, recurrent neural networks possess mem-
ory, i.e., their outputs are dependent on both the inputs and
their state. The inputs to the network at each sample are not
independent, but are a temporal sequence such as sound, video,
or stock market data. Instead of serving the whole sequence
at the same time, which would require a very large input size,
the sequence is fed to the network one sample at a time.

In RNNs, each neuron stores a scalar value and we mark
all these values as s. Given the activation function f, weight
matrices W;, Wy, W,, inputs z, and states s; at timestep t,
we can write the new state and output equations as:

s = f(Waay + Wise_1) &)

o = W,s; (10)

In Figure 4 we see a recurrent neural network unfolded
across time. This way, we can treat previous states as inputs to
the network, and implement the RNN similarly as we did with
fully-connected networks. Here the inputs 7; and the states
s¢—1 need to be concatenated, as well as the weight matrices
W, and W;.

o, o,

Xt=1 Xt=2

Fig. 4. A recurrent neural network unfolded across timesteps.

When a fully-connected layer is stacked on top of the
recurrent layer, we see that the output weights become un-
necessary, as the fully-connected layer will again multiply the
RNN outputs with it’s own weights. We rewrite equation 10 as
o; = s;. This further simplifies our hardware implementation,
as the user can choose to add a fully-connected layer if needed.

In Figure 5 we show the upgraded forward pass module
architecture that enables processing both fully-connected and
recurrent layers. The architecture has two changes: (1) we
add a Neuron Memory register that stores the activations of
RNN layers, and (2) we replace the multiplexer choosing
between the outside inputs and layer outputs with the Concat
/ Mux module. The neuron states register stores the states of
recurrent layers between two full forward passes. The Concat
/ Mux module is tasked with picking between forwarding (1)
outside inputs when processing the first layer of the network,



(2) previous layer’s outputs when processing a hidden layer,
(3) concatenating the outside inputs with neuron states when
the first layer of the network is recurrent, or (4) concatenating
the previous layer’s outputs with neuron states when a hidden
layer is recurrent.

Neuron sums

e Tty f1
—— Layer

Layer A A AA
inputs

First
[ Concat / Mux
A

Fig. 5. New forward pass architecture enabling processing both fully-
connected and recurrent layers.

Training recurrent neural networks is complicated by the
fact that gradients must be propagated not only down the lay-
ers, but also back through time. We leave the implementation
of BPTT for future work.

VI. EVALUATION

We present synthesis results on an Altera Cyclone V SoC
and show the design resource usage. We compare two designs
with different numbers of neurons and tiling parameters in
Table L.

Parameters: The majority of the building blocks of this
design are parametrizable. The parameters were determined
through iterative latency measurements described in the pre-
vious subsection V.A. The majority of these parameters are
shared to the smallest building blocks but we omit them to
increase legibility.

Module name Parameter Design 1 Design 2

Top module Neuron # 4 8

Top module Activation bitwidth 9 9

Top module Weight bitwidth 16 16

Top module Delta bitwidth 9 9

Top module Fraction bitwidth 8 8

Top module Learning rate shift 4 4

Top module Activation function sigmoid sigmoid

Error propagator Tiling row 2 4

Error propagator Tiling column 2 4

Vector subtract Tiling 1 2

Vector dot Tiling 1 2
TABLE I

MODULE PARAMETERS

Resources: We analyze the adaptive logic module (ALM),
register, BRAM, and DSP block usage of different modules of
the design. First, in Table II we present the memory and logic
consumed by each of the top modules, and go more in depth
for each of them. We notice that the amount of registers used
by the design grows quadratically with the number of neurons.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

We later identified this to be the result of our inefficient weight
controller implementation, which will be updated in the next
revision. The updated weight controller will grow linearly with
the number of neurons in the network.

Design 1 Design 2
ALM Usage 3,030 10,453
Registers 5,759 29,123
BRAM Bits 18,624 37,248
DSP Blocks 13 32
TABLE 11

RESOURCE USAGE

Accuracy: We test out the architecture on the Wisconsin
Breast Cancer dataset. This dataset contains 569 samples
with 30 dimensions each, 357 labeled as benign and 212
as malignant. To confirm that the architecture is working
properly, we write a Python script for training fixed-point
networks, and confirm that both the design and the script
are behaving identically. This is not far-fetched, as the net-
work only performs simple operations such as matrix-vector
multiplications, vector additions, subtractions, multiplications,
shifts, and lookup table based activation functions. Since the
values for our hardware LUT-based activations are derived
from the same Python script, we see the same values in both
designs. We show the training accuracy of a 30 neuron network
with three different bitwidth configurations: (1) 4 integer bits
and 16 fractional bits, (2) 4 integer bits with 12 fractional bits,
and (3) 4 integer bits with 8 fractional bits. The smoothed
out accuracy over 10000 training samples is shown in Figure
6. Notice that there is no added benefit in training with 16
fractional bits over 12, but the accuracy significantly degrades
when using only 8 fractional bits. This is in line with the
findings in [22].

Wisconsin Breast Cancer Dataset Training Accuracy

A\ PO P

W Sy e Y, v i o

g 80
>
I
S 70
Q
Q 65
<
60
55
50
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sample Number
—~8 fraction bits —12 fraction bits —16 fraction bits
Fig. 6. Chameleon accuracy during training on the Wisconsin Breast Cancer
dataset.

VII. CONCLUSION

In this work we present Chameleon - a hardware archi-
tecture for neural network training focusing on extensibility,
modularity, and simplicity. We describe the implementation
in detail, and offer our vision of how open-sourcing such
a design will allow further experimentation, exploration, and
modular refinement. We present the synthesis results for two
designs and show the achieved accuracy on the Wisconsin
Breast Cancer dataset.



[1]

[3]

[4]

[5]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

D. Wang, K. Xu and D. Jiang, “"PipeCNN: An OpenCL-based open-
source FPGA accelerator for convolution neural networks,” 2017 In-
ternational Conference on Field Programmable Technology (ICFPT),
Melbourne, VIC, 2017, pp. 279-282.

David Gschwend. Zyngnet: An fpga-accelerated embedded convolu-
tional neural network. Masters thesis, Swiss Federal Institute of Tech-
nology Zurich (ETH-Zurich), 2016.

H. Sharma et al., ”From high-level deep neural models to FPGAs,” 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Taipei, 2016, pp. 1-12.

Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. 2017. FINN:
A Framework for Fast, Scalable Binarized Neural Network Inference.
In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA '17). ACM, New York, NY,
USA, 65-74.

Courbariaux, Matthieu and Yoshua Bengio. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -1.
CoRR abs/1602.02830 (2016): n. pag.

K. Kollmann, K. -. Riemschneider and H. C. Zeidler, ”"On-chip back-
propagation training using parallel stochastic bit streams,” Proceedings
of Fifth International Conference on Microelectronics for Neural Net-
works, Lausanne, Switzerland, 1996, pp. 149-156.

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and
William (Bill) J. Dally. 2017. ESE: Efficient Speech Recognition Engine
with Sparse LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA
’17). ACM, New York, NY, USA, 75-84.

DianNao: a small-footprint high-throughput accelerator for ubiquitous
machine-learning. SIGPLAN Not. 49, 4 (February 2014), 269-284.

P. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun and E. Culur-
ciello, "NeuFlow: Dataflow vision processing system-on-a-chip,” 2012
IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS), Boise, ID, 2012, pp. 1044-1047.

S. Han et al., ”EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), Seoul, 2016, pp. 243-254.
Yufei Ma, N. Suda, Yu Cao, J. Seo and S. Vrudhula, ”Scalable and
modularized RTL compilation of Convolutional Neural Networks onto
FPGA,” 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), Lausanne, 2016, pp. 1-8.

Y. Wang, J. Xu, Y. Han, H. Li and X. Li, "DeepBurning: Automatic
generation of FPGA-based learning accelerators for the Neural Network
family,” 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, 2016, pp. 1-6.

M. Lin, Q. Chen, and S. Yan, Network in network, CoRR, vol.
abs/1312.4400, 2013. [Online]. Available: http://arxiv.org/abs/1312.4400
S. Himavathi, D. Anitha and A. Muthuramalingam, "Feedforward Neural
Network Implementation in FPGA Using Layer Multiplexing for Effec-
tive Resource Utilization,” in IEEE Transactions on Neural Networks,
vol. 18, no. 3, pp. 880-888, May 2007.

C. E. Cox and W. E. Blanz, "GANGLION-a fast field-programmable
gate array implementation of a connectionist classifier,” in IEEE Journal
of Solid-State Circuits, vol. 27, no. 3, pp. 288-299, March 1992.

C. E. Cox and W. E. Blanz, "GANGLION-a fast field-programmable
gate array implementation of a connectionist classifier,” in IEEE Journal
of Solid-State Circuits, vol. 27, no. 3, pp. 288-299, March 1992.
Ortega-Zamorano F., Jerez J.M., Gmez 1., Franco L. (2016) Deep
Neural Network Architecture Implementation on FPGAs Using a Layer
Multiplexing Scheme. In: Omatu S. et al. (eds) Distributed Computing
and Artificial Intelligence, 13th International Conference. Advances in
Intelligent Systems and Computing, vol 474. Springer, Cham

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. 2015. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37 (ICML’15), Francis Bach
and David Blei (Eds.), Vol. 37. IMLR.org 1737-1746.

Zhang, Hantian & Kara, Kaan & Li, Jerry & Alistarh, Dan & Liu, Ji
& Zhang, Ce. (2016). ZipML: An End-to-end Bitwise Framework for
Dense Generalized Linear Models.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

[20]

[21]

(22]
[23]

[24]

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, Marc’ Aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large scale distributed deep
networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1 (NIPS’12), F. Pereira, C.
J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.), Vol. 1. Curran
Associates Inc., USA, 1223-1231.

Mitliagkas, 1., Zhang, C., Hadjis, S., & R, C. (2016). Asynchrony begets
momentum, with an application to deep learning. 2016 54th Annual
Allerton Conference on Communication, Control, and Computing (Aller-
ton), 997-1004.

Courbariaux, Matthieu & Bengio, Y & David, Jean-Pierre. (2015).
Training deep neural networks with low precision multiplications.
Decaluwe, Jan. (2004). MyHDL: a python-based hardware description
language. Linux Journal. 2004. 5.

M. Fowler, Mocks Arent Stubs,
https://martinfowler.com/articles/mocks ArentStubs.html, 2007, [Online;
accessed 24-May-2018].



