Panelist Position Paper

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

Secure Computing Systems Design Through Formal
Micro-Contracts

Michel A. Kinsy
Adaptive and Secure Computing Systems Laboratory
Department of Electrical and Computer Engineering
Boston University
mkinsy@bu.edu

ABSTRACT

Two enduring concepts in computer system design are abstraction
levels and layered composition. The design generally takes a lay-
ered approach where each layer implements a different abstraction
of the system. The layers communicate through interfaces that
are designed to support functional specification of the system as
a whole. Traditionally, these layers and interfaces have primarily
focused on functionality and efficiency — performance, power and
area. Security-related issues are often overlooked or deferred until
later in the design cycle or applied as add-ons when some security
features are explicitly required. The challenge with this approach is
that chasing security implications of certain design decisions along
the multiple layers is a complex and error-prone task. Therefore,
in this work, we are introducing the notion of “security micro-
contracts" or simply “micro-contracts". We propose a novel secure
computer systems design approach through minimal contracts —
micro-contracts — between adjacent layers. These contracts have
strict structures that contain security-relevant details of each con-
nected layer and the secure properties that have to be preserved to
assure confidentiality, integrity and availability of the data of inter-
est. Micro-contracts may be used as (i) basic formalism for proving
security properties of computing systems both in the software and
hardware layers and across them or (ii) run time security policy
checks.

CCS CONCEPTS

« Security and privacy — Formal security models; Hardware-
based security protocols.

KEYWORDS

security, secure system design, micro-contracts, formal methods,
layered composition, abstract level.

ACM Reference Format:

Michel A. Kinsy and Novak Boskov. 2019. Secure Computing Systems Design
Through Formal Micro-Contracts. In Great Lakes Symposium on VLSI 2019
(GLSVLSI ’19), May 9-11, 2019, Tysons Corner, VA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3299874.3319447

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GLSVLSI 19, May 9-11, 2019, Tysons Corner, VA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6252-8/19/05.

https://doi.org/10.1145/3299874.3319447

537

Novak Boskov
Adaptive and Secure Computing Systems Laboratory
Department of Electrical and Computer Engineering
Boston University

boskov@bu.edu
1 INTRODUCTION

The partitioning of computing systems into layers originates from
the need for abstraction. Abstraction-based design enables system
designers to cope with the ever-increasing complexity of the system.
One of the benefits that abstraction brings into the design fold is
the principle of separation of concerns. This principle gives us the
mechanisms to achieve modularity. We usually specify module
internals separately from the interfaces between modules through
which the communication flows in order to implement desired
functionality of the whole system. Interfaces tend to be minimal
and clear in order to allow for different internal implementations of
adjacent layers. However, the abstraction has also failed to establish
strong security guarantees across these levels [5].

In the process of defining the interfaces, some details of the
design that are considered non-essential to the functionality of
the system are abstracted out, and are not necessarily preserved
across the interfaces. This abstraction technique has traditionally
worked. In fact, it is adopted across the full computing system stack,
from instruction set architectures (ISAs) and memory subsystems
to high level application programming interfaces (APIs). However,
this abstraction process sometimes removes or misses important
contextual or security-related information. Essentially, the process
may create semantic gaps or widen them.

Through the analysis of known security vulnerabilities, one can
distinguish three major classes. In this work, we use these classes
to illustrate the space of possible vulnerabilities and to introduce
the notion of “micro-contracts”.

One class of security vulnerabilities is caused by human error.
We usually refer to this class of vulnerabilities as security bugs.
Security bugs happen when a programmer or designer of the sys-
tem makes design mistakes mostly due to the weight of inherent
system’s complexity. In this case, security threats normally can be
precluded by applying existing well-known mitigations, e.g., best
software/hardware development practices. This class of vulnera-
bilities happens in a variety of real-world cases such as wrongly
ordered pointer dereferencing causing privilege escalation in Linux
kernel [12] and poor application of the separation of concerns prin-
ciple in OpenSSH library that allows for connecting unauthorized
clients to the server [11]. This ubiquitous class of security vul-
nerabilities encompasses a large portion of the vulnerabilities in
publicly available databases such as Common Vulnerabilities and
Exposures (CVE) and National Vulnerability Database (NVD). Pro-
vided that vulnerabilities are correctly documented and timely pub-
lished, needed solutions are usually developed in a tolerable time
frame. These solutions may require diverse set of actions including

https://doi.org/10.1145/3299874.3319447
https://doi.org/10.1145/3299874.3319447

Panelist Position Paper

design changes but normally do not rely on massive abstraction
modifications.

The second vulnerability class stems from misuse of the existing
abstractions. For example, a programmer may unintentionally estab-
lish its security guards on the basis of optimization-unstable code
in C/C++ [15]. This may happen when a security-related logic is on
a control flow path removed through an optimization. For instance,
the correctness of a compiler optimization is judged in accordance
with functionality and performance, not necessarily its security.
In other words, when a piece of code is pruned by the compiler,
program’s functionality is guaranteed to remain the same while
security properties as intended by the programmer may be violated.
Consequently, a program that expresses some security guard in its
source code may not contain the same guard in its binary. Similar
security vulnerabilities may also happen with other programming
languages and runtime environments with more complex and dy-
namic behaviors like Java [8].

Both vulnerability classes — i.e., caused by human errors and by
abstraction misuse — may be partially or completely mitigated by
applying static analysis techniques. The human error vulnerabil-
ity class is straightforward and its resolution has been the object
of many research efforts. The case of abstraction misuse is more
subtle to analyze. However, there are known common abstraction
misuse patterns that can be described and guarded against within
the abstraction itself. Thus, some vulnerabilities within this class
can be partially or completely mitigated. For example, according
to the C programming language standard, there are 77 examples
of undefined behavior in the core language description [4]. In gen-
eral, if there is a known list of abstraction misuses, one can erect
guards as part of the abstraction construction to prevent abuses,
and consequently, security holes. For instance, at the programming
language level, through its compiler, one can detect “negative” se-
mantic constructs and add rewrite rules to cover cases of undefined
behavior [3]. One simple approach is for the compiler to halt the
compilation process when it detects an undefined behavior and alert
the programmer. Using the compiler’s error message, the program-
mer can rewrite their program to retain desired security-related
properties.

The third class is the security vulnerabilities inherent to the ab-
straction itself. These vulnerabilities are generally hard or even
impossible to solve without significant redesigning of abstraction.
Even if the designer uses the abstraction in a correct and consistent
manner, security threats are not neutralized. One such a case is
speculative execution side-channel based attacks [7]. Speculative
execution timing side-channel based attacks may be considered an
inherent security vulnerability tied to the abstraction view that the
programmer and the compiler have of the processor. Specifically,
this view is an isolated, sequential execution of the program state-
ments/instructions as opposed to a pipelined, speculative, multi-
threaded, multi-program execution environment.

The CPU micro-architecture implements the abstraction given
through the ISA on one end, while for example compilers imple-
ment the same abstraction on the software side. By the virtue of
abstraction both layers have freedom to implement their internals
independently as long as the abstraction itself remains intact. For
example, CPUs minimize time per cycle and cycles per instruction

538

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

abstracting out micro-architectural features such as speculative ex-
ecution and caches. These features are usually not exposed through
the ISA as the interface corresponding to the abstraction. That is, an
adjacent layer that uses ISA (e.g., a compiler) does not distinguish
loads and stores that cause a cache hit from those which cause a
cache miss. The properties of instructions other than their func-
tionality are normally absent from the abstraction. One of such
absent properties that an attacker may use to obtain sensitive in-
formation is timing. An attacker may measure the time difference
of cache hits and cache misses to infer the data. Since timing of the
instructions is not described in the ISA and since an attacker can
use this information to affect the confidentiality of the system, we
consider this class of vulnerabilities as inherent to the abstraction.
However, the three classes are not mutually exclusive and a single
vulnerability may belong to more than one class.

2 RELATED WORK

Various approaches have been used in the study of security property
preservation targeting the different layers of computing abstrac-
tions. Some approaches focus on guarding the compilation process
from attacks in low-level co-linked components [13]. Other re-
searchers have tackled security implications of undefined behavior
in programming languages by also taking into account the internal
machine states to bridge the gap between security and the cor-
rectness. For example, D’Silva et al. [2] study security effects by
extending source machine, a formalism used in studying compiler
correctness. Some other approaches [3, 15] consider all the unde-
finedness in C as potential security holes and give rewrite rules to
catch all the standard-prescribed undefined behaviors or use other
techniques to discover it.

Multi-layer approaches are particularly interesting from the per-
spective of this work. In some approaches, the authors chose to
implement a subset of C [1] on top of capability hardware [16] and
investigate the preservation of security properties through memory
object model [10]. With other techniques the focus was more on
enforcing end-to-end security policies starting from high-level lan-
guages as described by Sabelfeld and Myers [14]. Mcilroy et. al. [9]
recently took on the problem of understanding microarchitectural
side channels and the formal analysis of their security implications.

3 GENERAL FRAMEWORK FOR
MICRO-CONTRACTS

Micro-contracts are designed as a unified framework to tackle all
three classes of vulnerabilities in a formal and security-centric
manner. The solutions for known vulnerabilities that we are aware
of normally mitigate each vulnerability using a relatively unique
method. However, they do not describe security implications of the
mitigations themselves. The solutions are normally demonstrated
on minimal examples contained in vulnerability databases. Their
implementation in complex systems usually requires numerous
other changes whose security implications are studied separately
from the vulnerability being mitigated.

For example, compilers rely on ISA of the underlying proces-
sor. They usually perform various optimizations without taking
into account implementation details of instructions nor the high
level intent of the programmer. One such optimization is strength

Panelist Position Paper

reduction which can modify two previously equally time intensive
branches to two branches that have observable difference in execu-
tion time. In this case, the difference is caused by compiler’s decision
to replace expressions with static values that do not consume any
execution time or to change time complexity of the calculation.
Further, an attacker may time branches and infer security sensitive
information [2]. Even though some of the security implications of
this kind may be tackled by disabling certain optimizations in the
compiler, it may also cause an unacceptable runtime overhead. Hav-
ing these constraints in mind, the programmer is forced to make
an ad-hoc performance-security trade-off. The programmer can
apply the separation of concern principle and separate critical code
portions from the rest of the program. When the separation into
critical functions (or even files) is done, the programmer can use
specific compiler options to suspend particular optimizations on
the critical code portions. In practice, this process usually requires
a programmer that understands not only the motivation for the
particular compiler optimization but also its internal implemen-
tation in the specific compiler. Furthermore, the programmer has
to understand details of the compiler’s infrastructure to properly
apply optimization restrictions.

The approaches similar to the previous one may be useful as
ad-hoc solutions. However, the approaches may also be consid-
ered as intermingling multiple abstractions through bypassing the
high level interface of the programming language imposed by the
standard and implemented by the compiler. The programmer is
expected to explicitly use compiler’s internals in order to achieve
the desired program behavior. This poses a violation of computing
system modularity and thus impedes reasoning about the complex
systems’ behavior. Consequentially, tracing security implications
of certain design decisions becomes harder.

We propose micro-contracts, a strictly defined, minimal and
modular framework for ensuring the security of layered computing
systems. Micro-contracts are security-centric in the sense that they
consider security of the whole system as the strict boundaries
imposed to the functionality. This framework is also data-centric
in the sense that it focuses on expressing desired security-related
properties of the data instead of describing the internals of security
preserving functions of the system’s parts.

3.1 Design

Micro-contracts are designed as a framework for security analysis
and policy enforcement in complex computing systems divided into
layers. Policies are formed on the basis of the concrete attacks being
analyzed. A general overview of the micro-contracts framework is
given in Figure 1.

A micro-contract represents a security-related agreement be-
tween two adjacent layers in the computing stack. The two adjacent
layers are represented as CSL; and CSL;+1 and may denote e.g.,
high level programming language and its compiler, respectively.
CSL; describes higher level intents of the programmer while the
compiler produces the binary image that is executed. In general,
CSLs are given through their abstractions such as a programming
language standard or an ISA of a CPU.

Security policies from layer CSL; are translated in CSL;41 by

CSL; CSL

some function f: SP - SP, *1_ As we explain in §4, some

539

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

[ith Computing System Layer (CSL;)]
Eio(i+1)<>(k-1)

Eio(i+1)<>k

k-1t Security Policy.
(SPy1)

kth Security Policy
(SPW)

Eio(iq-ﬂok

S10B1U0D-0I0IN

k+1t" Security Policy.
(SPi41)

@io(i+1)<>k+1

[(i+1)!" Computing System Layer (CSLj41)]

Figure 1: Overview of the micro-contracts framework.

properties of SP;. may be lost after the application of function f
while some other properties may be added. To preserve security
properties originally expressed in SPy. while it gets passed down the
layers, one has to characterize the translation (f). A micro-contract
is the tool that helps us to describe the translation with regards to
the security property that we want to enforce. Additionally, it offers
the mechanism for the analysis of the security implications of the
design decisions made on different layers of the computing system.
A security policy may be enforced by many micro-contracts while a
single micro-contract should be related to only one security policy.
Relations between security policies should be studied through the
composition of micro-contracts. Normally, we have multiple micro-
contracts between two layers. Micro-contracts must conform to the
strict structure given in Figure 2. This structure is logical rather
than syntactical and may be implemented in different syntaxes as
well as in the form of ontologies. For the sake of simplicity, in this
work we give the examples using a language similar to YAML.

:= "information: " (info-descriptor
["Any") ;

{ID primary-concept} ;
"primary concept:"
("confidentiality"

| "integrity"

| "availability") ;
"involved layers:" {layer} ;

information :

info-descriptor ::=
primary-concept ::=

involved-layers ::=
layer ::= "compiler"
| "programming language"
| "microarchitecture" ;
layer-concepts ::= "layer concepts:" {layer-concept}
layer-concept ::= ID
"belongs to:" layer
"defined as:" definition
"criteria:" criteria ;
definition ::= (x available definitions %) ;
criteria ::= (* criteria expressions x) ;

Figure 2: Partial general micro-contract grammar in ex-
tended Backus-Naur form.

The specification of micro-contracts has three major parts: in-
formation, involved layers and layer concepts. The information part
is aimed to express the data that is compromised in the attack for
which the mitigation is enforced within the security policy. Each
part of the information can be described separately. The primary

Panelist Position Paper

security feature that may be violated must be listed for each part.
Available primary information security features are confidentiality,
integrity and availability. If for any reason information part is not
applicable for the micro-contract, “Any” may be used. In §4.2 we
give an example of such a micro-contract.

Involved layers are possible concretizations of CSLs. For the
sake of grammar brevity we do not list all the possible layers in the
computing stack. There is also an additional rule imposed on this
micro-contract part: two layers listed in a micro contract have to be
adjacent in the computing stack. Only two layers are allowed, when
there is the need for connecting more then two layers a composition
should be used.

Layer concepts are the central part of a micro-contract. Each
layer concept represents a layer abstraction’s part crucial for the
enforcement of the security policy. Layer concepts are internally
distinguished using identifiers. Each layer explicitly lists the ab-
straction that it belongs to. It also declares the way it is defined in
the native layer. Some important kinds of definitions are: property
(specific ability of a layer), internal (internal layer concept), simple
data (numbers, strings etc.) and auxiliary definitions. The last kind
represents the predicates that have to be defined by the author
of the micro contract for the involved layer. In the examples in
§4 we use only one auxiliary definition — grammar. In one case it
represents the grammatical rule in programming language C while
in other it represents grammatical rule in RISC-V ISA.

The criteria part of layer concepts is given in the form of condi-
tion that is used to decide whether particular layer concept must
be enforced. It may contain auxiliary predicates that have to be
implementable in the native concepts of the corresponding layer.
For example, in §4.2 we use contains(expression, variable)
auxiliary predicate from the compiler layer. Since all compilers have
the notion of expressions and variables, the auxiliary predicate is
easily implemented.

3.2 Composition of Micro-Contracts

Often, it is not enough to track the security implications only to
the adjacent layer but also deeper along the computing stack. In
this case, micro-contracts provide the mechanism of multi-layer
composition. This kind of composition is aimed at tracking the
enforcement of security policies along the computing system stack.

As shown in Figure 3, we connect two or more layers by inserting
at least one micro-contract between each two layers. The mapping
represented by the arrows in Figure 3 is now:

. opCSLi_y CSL; CSLis

f: SPk — SPk — SPk
However, not all the micro-contracts can compose so as to pre-
serve desired security property. Thus, we define the following rule:

Two micro-contracts can compose iff the conjunction of
their criteria is satisfiable.

Criteria of a micro-contract, denoted as M CJ?’ it is given as a logical
expression MC;’” = a — (f Ay) where a, f and y represent
constituents of the criteria expression in MCST#,

Assume that we compose MC; with MCj;1 and that:

Mccrit =

T = (@ =) A S — (¥ AP))

540

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

Then, the criteria of composition becomes:
BAY)AN(@—8) A (S — (my AP))

This composition is satisfiable for {(a, B, y,) := (L, T, L, T) mean-
ing that MC; can compose with MC;j1 so as to preserve security
policies expressed by the micro-contracts. If the composition crite-
ria were unsatisfiable that would indicate that two micro-contracts
cannot compose in the security-preserving manner.

crit crit —
MCSTHAMCSTY = a -

[(i-1)t" Computing System Layer (CSL;-1)]

g

(i-)<i<k

kth Security Policy
(SPy

ith Computing System Layer (CSL;)]

g

i<(i+1)<k

[(i+1)th Computing System Layer (CSLj4+1)]

Figure 3: Multi-layer composition of micro-contracts.

4 ILLUSTRATIVE EXAMPLES

To illustrate the spirit of micro-contracts we give two examples of
their usage on two distinct layer joints. The first one is a timing
side channel attack opened by the strength reduction compiler opti-
mization [2, IIl C]. This example describes a micro-contract that lies
between high level code in programming language C and its com-
piler. The second example is Spectrel.1 speculative buffer overflow
attack [6]. For the sake of illustration we present a hypothetical
micro-contract that tackles Spectrel.1 on the joint between ISA and
microarchitecture.

4.1 A Strength Reduction Micro-Contract

A simple example of strength reduction is implementation of mul-
tiplication using bit shift operations. For example, an expression
that contains multiplication by 2 can be reduced to a functionally
equivalent yet less processor intensive expression that uses left shift
by one. Thus, expressions in the form expr*63+23 can be rewritten
as (expr<<6)-expr+23 for any expr representing an integer.
Even though strength reduction can substantially improve the
performance of various arithmetic expressions especially in loops,
it may have hazardous security implications. Sometimes, program-
mers intentionally try to make branches equally computationally
intensive in order to hide the information about what branch has
been taken. In this case, strength reduction may open a timing side
channel through which sensitive information can be leaked [2].
In the Figure 5 we give an example of a micro-contract to tackle
the vulnerability incurred by strength reduction optimization in
the compiler. This micro-contract pertains the information con-
tained in the critical variable. The primary security feature that
is compromised in this kind of attack is the confidentiality of the
cryptographic key stored in the critical variable. In practice, we
want to maximally hide the key from the attacker. Since attacker

Panelist Position Paper

may utilize the time difference between branches, it may be bet-
ter to leave the branches that handle the key in the original form
expressed by the programmer. We assume that the programmer
is aware of the timing side channels and is able to apply some of
the known measures to make branches as closely computationally
intensive as possible. Having said that, the security analyst may
decide to use the following policy:
The programmer should declare keys using the KEY_DECL
pragma. Compiler is not allowed to apply strength re-
duction on branches that contain computation that in-
volves keys.

In Figure 4 we show C code snippet that uses the KEY_DECL
pragma on declaration of variable that holds the key at line 2.
The programmer’s idea is to avoid the timing difference between
branches in line 5 and 7 by using one multiplication and one sub-
traction in both cases. Such written code should not exhibit any
timing differences between the two branches.

1 int crypt(int x) {

2 #pragma KEY_DECL

3 int key = 0x23;

4 if (x == 0xDEAD) {

5 key = key * 7 - 5;
6 } else {

7 key = 2 x 17 - 3

8 3

9 return key;

10 3}

Figure 4: An example of a micro-contract-abiding C imple-
mentation of a toy cryptographic function.

information:
- critical_variable
primary concept: confidentiality
involved layers:
- programming language
- compiler
layer concepts:
- critical_variable:
belongs to: programming language
defined as: grammar("#pragma KEY_DECL")
criteria: Always
- expression:
belongs to: compiler
defined as: internal
criteria: Always
- strength_reduction:
belongs to: compiler
defined as: property
criteria:
if contains(expression, critical_variable)
then absent
else present

Figure 5: An example of a micro-contract for mitigating tim-
ing side channel attacks allowed by the strength reduction
compiler optimization.

This is an example of the micro-contract between the program-
ming language and the compiler. Such a contract may be imple-
mented between e.g. C11 programming language and the LLVM
compiler.

The layer concepts involved in the micro-contract are the critical
variable, condition and strength reduction. The critical variable be-
longs to the programming language. This practically means that the

541

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

designers of the micro-contract decided to extend C programming
language with a technique for marking critical variables. The id-
iomatic way of doing so in C is by defining a pragma which will then
have a generic pragma syntax #pragma KEY_DECL. expression is
the primitive concept that belongs to compiler and is defined as
its internal. This means that a compiler internally contains the no-
tion of expression that can be given to disposal of micro-contracts.
Strength_reduction is the concept that belongs to compiler and
is defined as property. This means that the micro-contract uses it as
the capability of the compiler that can be instrumented. The way a
micro-contract instruments the property is given by the criteria. In
this case, the micro-contract turns off strength reduction by declar-
ing it absent in the cases when the expression contains the critical
variable.

The mechanism for checking whether some variable is contained
in the expression is normally present in the compiler’s framework
because it is needed even in the fundamental scope resolution.

It is important to mention that the vulnerabilities that are in-
curred by compiler optimizations can involve other optimizations
such as common subexpression elimination or peephole optimiza-
tions. To tackle these vulnerabilities, the security analysts may
decide to extend their policy and design one contract that describes
the extended policy. However, the micro-contracts framework is de-
signed to embrace minimal contracts and advocate the approaches
with their composition.

4.2 A Spectrel.1 Micro-Contract

Spectrel.1, as introduced by Kiriansky and Waldspurger, is a Spec-
tre [7] variant that uses speculative store instruction execution in
modern superscalar processors to induce buffer overflows. Specu-
lative store may be utilized to cause an out-of-bounds write that
overwrites the return address of the function in which a vulnerable
code portion resides. From that moment on, the attack resembles
return-oriented-programming and can even invoke the critical part
of Spectrel.0 gadget if present to leak sensitive information.
However, an important prerequisite of Spectrel.1 is pointed out

by its authors. The speculative window must be wide enough to
admit all the payload gadgets plus the instructions that lie between
the vulnerable conditional branch and the indirect return instruc-
tion that is being attacked. If the wrong prediction is discovered
before the return, the corrupt data needed for the attack will be
invalidated and the attack will fail. For our purposes, we will as-
sume that the security analyst that works on mitigating the critical
vulnerability decided to approach the problem using the following
policy:

Branches that lead to basic blocks with small number of

instructions are more vulnerable to Spectrel.1. Instruc-

tion set defines sb* (short branch) instructions for all the

branching conditions. sb* branches are branches that

do not allow speculation window wider than ICgp 4

instructions.

Since the policy is given in the terms of ISA and does not refer to
any higher layers (e.g. compiler), the micro-contract corresponding
to the policy will lie between ISA and the microarchitecture. There
is a multitude of such micro-contracts that may be constructed. We
are giving one in Figure 6 as an illustrative example.

Panelist Position Paper

Layer concepts involved in the micro-contract from Figure 6
are maximal number of instructions in short branches (IC_short),
short branch itself and speculation. IC_short belongs to ISA. This
practically means that ISA is being extended to include this infor-
mation. It is defined as a number. Since this is primitive concept
needed for more complex ones, it should always be enforced by
the micro-contract. Short_branch_eq is a more complex concept
present on the level of ISA. It is defined grammatically as a regular
instruction similar to BEQ (branch if equal). For the purpose of this
example, we use RISC-V-like instruction syntax. However, the con-
cept is general and supports any concrete ISA for which the author
can provide corresponding grammar definition. Finally, this concept
has to be enforced by the micro-contract when instruction count
of the branch is smaller than the maximal number of instructions
in short branches.

The speculation part represents the processor’s ability to spec-
ulatively execute instructions. It is clearly a property of the mi-
croarchitecture itself. The criteria under which the micro-contract
enforces speculation to be turned off is short_branch_eq. When
short_branch_eq is enforced on the ISA level then speculation is
suspended. This particular part of the micro-contract illustrates the
logical junction between two abstractions without intermingling
their internals.

It is also important to note that sb* is not completely covered
by the micro-contract in Figure 6. However, the criteria for all the
branch instructions is considered to be the same. Thus, extension
of this micro-contract to cover all the branches would just add
simple grammatical definitions for the other five RISC-V branch
counterparts (BNE. s, BLT.s, BGE.s, BLTU. s and BGU. s) while other
parts would remain the same. For the sake of convenience, future
versions of the micro-contracts framework will provide the sup-
port for concise expressions of repeating parts. One of the possible
approaches is inheritance of the layer concepts. However, the on-
tological information contained in a more concise version of the
micro-contract is exactly the same as in its extended version.

Additionally, we may need to construct a finely-grained mecha-
nism for tackling security implications of Spectrel.1 further up the
computing stack. That is, we may be interested in analyzing the se-
curity of our system through reasoning about the high level concept
such as cryptographic keys given to the system as variables of a pro-
gram. To do so, we need to design the chain of micro-contracts so
as to cover upper layers such as e.g. assembler, linker, compiler and
the programming language itself. The micro-contracts framework
embraces writing multiple micro-contracts that chain to each other
all the way down to the microarchitecture. Therefore, we eliminate
a portion of the complexity of non-trivial computing systems that
impedes our reasoning about information security.

5 CONCLUSION

In this paper we introduced the micro-contracts framework as a
formal, minimal and modular methodology for enforcing security
policies over multiple layers of computing systems. We discussed
the building blocks of a micro-contract as well as the internal struc-
ture. Afterwards, we described multi-layer composition of multiple
micro-contracts and introduced the concept of composability. Fi-
nally, we demonstrated the usability of the introduced concepts
through the design of the micro-contracts among different layers.

542

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

information:
- Any
involved layers:
- ISA
- microarchitecture
layer concepts:
- IC_short:
belongs to: ISA
defined as: number
criteria: Always
- short_branch_eq:
belongs to: ISA
defined as: grammar("BEQ.s rs1, rs2, imm")
criteria: instruction_count() > IC_short
- speculation:
belongs to: microarchitecture
defined as: property
criteria: if short_branch_eq then absent
else present

Figure 6: An example of micro-contract for mitigating Spec-
trel.1 attack.

We focused on guarding against timing side channel attacks intro-
duced by strength reduction compiler optimization and Spectrel.1.
We envision micro-contracts as a sound methodology for studying
cross-layer security implications of both future attacks and their
mitigations.

REFERENCES

[1] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann.
2015. Beyond the PDP-11. ACM SIGARCH Computer Architecture News 43, 1 (Mar
2015), 117-130.

Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The Correctness-Security
Gap in Compiler Optimization. 2015 IEEE Security and Privacy Workshops (May
2015).

Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the unde-
finedness of C. ACM SIGPLAN Notices 50, 6 (Jun 2015), 336—-345.

ISO/IEC JTC1/SC22/WG14. 2011. Information technology - Programming languages
- C. ISO/IEC 9899:2011. International Organization for Standardization.

M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh. 2017. Hermes: Secure hetero-
geneous multicore architecture design. In 2017 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). 14-20.

Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. arXiv:cs.CR/1807.03757

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14 (SSYM’05). USENIX Association,
Berkeley, CA, USA, 18-18.

Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. arXiv:cs.PL/1902.05178

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. 2016. Into the depths of C:
elaborating the de facto standards. ACM SIGPLAN Notices 51, 6 (Jun 2016), 1-15.
MITRE. 2009. CVE-2009-1897.

MITRE. 2018. CVE-2018-10933.

Marco Patrignani and Deepak Garg. 2017. Secure Compilation and Hyperproperty
Preservation. 2017 IEEE 30th Computer Security Foundations Symposium (CSF)
(Aug 2017).

Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5-19.

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards optimization-safe systems. Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles - SOSP °13 (2013).

Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, and et al. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. 2015 IEEE Symposium on Security and
Privacy (May 2015).

—_ =
A

(8]

(14]

[15

[16]

http://arxiv.org/abs/cs.CR/1807.03757
http://arxiv.org/abs/cs.PL/1902.05178

	Abstract
	1 Introduction
	2 Related Work
	3 General Framework for Micro-Contracts
	3.1 Design
	3.2 Composition of Micro-Contracts

	4 Illustrative Examples
	4.1 A Strength Reduction Micro-Contract
	4.2 A Spectre1.1 Micro-Contract

	5 Conclusion
	References

