
Advertiser Elevator: A Fault Tolerant Routing

Algorithm for Partially Connected 3D

Network-on-Chips
Ebadollah Taheri, Mihailo Isakov, Ahmad Patooghy and Michel A. Kinsy

Adaptive and Secure Computing Systems (ASCS) Laboratory

Department of Electrical and Computer Engineering, Boston University

Abstract—In this paper, we propose an adaptive routing algo-
rithm for vertically partially connected 3D NoCs to (1) overcome
failures in vertical links, and (2) find the nearest available vertical
link for rerouting of packets. To track the position of each
vertical link and distance to the other nodes, the proposed routing
algorithm, named Advertiser Elevator, indexes each vertical link
and implements a mechanism for announcing and sharing these
indexes with the other nodes of the network. Packets are routed
toward the nearest vertical link based on received indexes. The
routing algorithm tolerates vertical link failures by interpreting
the absence of index messages from a vertical link node as a
link failure at the node. Packets are rerouted around failed links
based on collected messages. The performance of the Advertiser
Elevator routing algorithm is evaluated using the Access Noxim
NoC simulator under different network congestion levels and
fault rates. The results show that the proposed routing algorithm
(1) is able to deliver packets as long as there are at least four
live vertical links in the network (e.g., corner links) and (2)
improves the average network latency by 15% over the well-
known Elevator-First routing algorithm.

I. INTRODUCTION

Conventional communication frameworks such as point-

to-point and bus-based communications do not scale with

the increasing number of processing elements in multicore

and system-on-chip (SoC) architectures [1]. As a conse-

quence, network-on-chip (NoC) has emerged as an effi-

cient, scalable communication infrastructure for these multi-

processing element architectures. NoC-based chips, generally,

have higher communication concurrency and performance

with lower power utilization [2]. NoC-based architectures are

often implemented using a tile-based approach and a mesh

topology with logic-based dimensional-order routing due to

their manufacturing and routing simplicity [2]. However, the

continue increase in the number of processing elements in the

2D implementation of these architectures has resulted in higher

average inter-node distance, longer routing delay, and more

power consumption [3]. To mitigate these design issues, 3D

IC technologies and 3D NoCs are being introduced. Under the

same number of processing elements, 3D integration reduces

the network diameter, routing delay, and power consumption

of the chip [4]. Most 3D NoCs use Through-Silicon Via (TSV)

as the vertical links to connect the different planes/layers of a

3D chip [5]. Although, TSV links have higher bandwidth than

the electrical links, they have higher fabrication cost [6] and

tend to have higher rates of failure [7]. Therefore, they must be

used judiciously and optimally. As a solution to the fabrication

costs of these vertical TSV links, system designers have

proposed the use of vertically integrated, partially connected

3D NoC [6]. Different deadlock-free routing algorithms have

been proposed for 3D NoCs [8], [9]. Currently, these routing

algorithms have two major drawbacks: (1) the reduction in

finding minimal paths, and (2) the need for extra hardware to

prevent deadlock. Non-minimal path routing algorithms pose

optimization problems in terms of the TSV link placements

[10]. As mentioned above, reliability issues are more pro-

nounced with the use of TSV links, not just for the links

themselves but for the chip as a whole [4]. In order to

compensate for these reliability problems, the use of TSV

links in 3D NoCs must be tightly coupled with fault tolerant

techniques [11]. In this work, we propose and evaluate a fault

tolerant routing algorithm for vertically integrated partially

connected 3D NoCs. The proposed routing algorithm is able to

route network packets around failed TSV links and uses three

virtual channels per physical channel to achieve deadlock-

freedom.

II. RELATED WORK

The overall reliability of network-on-chip based architec-

tures is closely related to that of their interconnected network.

As a result, several research efforts have tried to address the

reliability issue in NoC designs [12]. The proposed techniques

fall in three categories: (1) fault avoidance, (2) fault masking,

and (3) fault tolerance. The implementations of fault avoidance

and fault masking schemes generally require considerable

hardware overheads. Therefore, the common approach for

NoC reliability is fault tolerance [13]. This design decision still

holds for 3D NoCs. In 3D interconnect networks, in addition

to detecting electrical link failures in the 2D planes, the fault

tolerance mechanism must also try to detect failed TSVs and

reroute traffic around them. To support the runtime rerouting

decisions, adaptive routing algorithms are often adopted [6].

Fault Tolerant Routing Algorithms for Fully Connected

3D NoCs: Akbari et al. [11] introduced a fault tolerant

routing algorithm, AFRA, for mesh based 3D NoCs with fully

connected vertical links. The routing algorithm tries to tolerate

failures on vertical links by bypassing failed vertical links.

This is done by packet rerouting without using an extra virtual

channel. However, this routing algorithm only tolerates faults

of vertical links in one direction, i.e., the routing can only

tolerate failure in upward or downward vertical links but not

both. Although there are several other papers [4] proposing

different fault tolerant routing algorithms for 3D NoCs, the

978-1-5090-6389-5/17/$31.00 ©2017 IEEE 136

current trend in prototyped or commercial 3D chips points to

vertically partially connected topologies.

Fault Tolerant Routing Algorithms for Partially Con-

nected 3D NoCs: Jiang et al. in [12] proposed a deadlock free

routing algorithm that uses 2 virtual channels for vertically

partially connected 3D NoCs. In this routing scheme, all

the routers at a layer are aware of locations of all vertical

links in that layer. However, the runtime computations of best

vertical links lead to longer routing times and higher hardware

overheads. In [14], authors proposed a routing algorithm

without an extra virtual channel. This proposed algorithm

imposes some constraints on the locations of vertical links to

achieve deadlock-freedom. One downside to this approach is

the fact that with a small number of TSVs, location constraints

can render the algorithm unusable. Using two virtual channels,

Elevator-First routing algorithm [6] improves the network

performance while simplifying the routing complexity asso-

ciated with vertically partially connected 3D NoCs. Elevator-

First routing algorithm supports different topologies and TSV

arrangement in the layer. However, lack of path diversity can

be an issue leading to low redundant routes and in turn to no

tolerance to TSV failure.

III. ADVERTISER ELEVATOR ROUTING ALGORITHM

A common routing approach in vertically partially con-

nected 3D NoCs is to first route packets in the horizontal plane

toward the vertical links, called elevators, then second, route

them vertically to reach the destination node/layer using these

elevators. A key design decision in these routing algorithms

is the assignment of the elevator links to packets. Assigning

a fixed elevator to each source and destination pair, e.g.,

Elevator-First routing algorithm [6], has many advantages but

it can also lead to lower path diversity and network reliability

in the case of vertical link failures. To tolerate vertical link

failures, one can build in the routing protocol mechanisms

to (i) detect failed elevators and (ii) reroute packets around

such elevators. However, runtime packet rerouting severely

complicates the deadlock freedom policy. Another approach

is to increase the number of elevators that a router may

use in routing packets. Under this design, a router has more

than one elevator address in its routing table or logic. When

a faulty elevator is detected, routers start rerouting packets

through other links. The detection of faulty elevators and the

propagation on that information may add to the average routing

delay and hardware costs.

A. Adaptive Selection of Elevator Links to Improve Reliability

In the proposed Advertiser Elevator algorithm, elevator

links are assigned indexes based on their state of operability.

Each router maintains its own copy of the index table. Through

the elevator announcement process of the algorithm, elevator

link locations, i.e., indexes are shared in the routers. Figure

1 shows the vertical link index sharing process. The nodes

with healthy elevators are assigned the largest elevator index,

in this example, 4. The elevator indexes are shared among

routers using dedicated links between neighboring routers.

After receiving elevator indexes from neighbors, each router

Fig. 1. Elevator indexes of each node for packet with (a) north destination
and (b) south destination.

selects the maximum index among the received indexes and its

own elevator index and updates its index table accordingly. In

the following cycle, the routers send their maximum received

elevator indexes minus one to their neighbors. The liveness

checking of the elevator links is done in a distributed fashion

where each node informs on its local elevator link status. As

shown in Algorithm 1, a node with a functioning elevator

labels the elevator index as a 4 and sends the value to its

neighbors. If a node receives an index value, e.g., 4, from

a neighbor and its own local vertical link is faulty, then the

node decrements the received index value, e.g., 4 becomes

3. In this way, nodes that are close to fault-free elevators

have higher elevator indexes. The elevator indexes assist the

routing algorithm find the best elevator for a given source

and destination pair. In order to implement a fully adaptive

routing without deadlock in the layers, packets are classified

as southward and northward packets. The elevator indexes

are shared in two directions, south and north directions, to

distinguish southward and northward routing.

B. Virtual Channel (VC) Assignment

In vertically partially connected 3D NoCs, use of extra

virtual channels is widely proposed to improve the network

performance and provide deadlock freedom [6], [8], [9],

[12]. To reach fully adaptive and deadlock-freedom, the Ad-

vertiser Elevator needs at least three virtual channels; two

virtual channels to be fully adaptive in XY planes without

any deadlock, plus one virtual channel for deadlock-freedom

among packets which use X/Y channels after Z channel. The

algorithm judiciously selects high index elevator routers in

the source layer to send packets in the XY plane. Packets are

routed through the southward and northward virtual networks

based on their destinations. Two of the three VCs associated

with each physical link are used to form the southward and

northward virtual networks. Northward packets are put on

the first virtual network and use VC 0. Similarly, southward

packets are assigned to the second virtual network and VC 1.

Packets with destinations outside the source layer are routed

in the source layer using VCs 0 and 1, and are routed in

the destination layer through VC 2. Based on the turn model

for the proposed routing algorithm, when a packet leaves its

source layer for a lower layer or enters its destination layer

for an upper layer, it switches to the third VC.

137

Algorithm 1 Update the elevator indexes for each node.

S U : South elevator Index to Up

S D: South elevator Index to Down

N U : North elevator Index to Up

N D: North elevator Index to Down

1: all local elevator indexes ← 0

2: if (router has fault-free elevator to UP) then
3: S U and N U ← 4

4: end if
5: if (router has fault-free elevator to Down) then
6: S D and N D ← 4

7: end if
8: send local elevator index minus 1 to the neighbor nodes
9: while (5 cycles after the update starts) do

10: if (received S U > local S U) then
11: local S U ← the received S U

12: end if
13: if (received S D > local S D) then
14: local S D ← the received S D

15: end if
16: if (received N U > local N U) then
17: local N U ← the received N U

18: end if
19: if (received N D > local N D) then
20: local N D ← the received N D

21: end if
22: send local elevator index minus 1 to the neighbor nodes
23: end while

Fig. 2. Turn model of the first virtual channel (a), the second virtual channel
(b), and the third virtual channel (c).

C. Advertiser Elevator Algorithm and Deadlock Discussion

As presented in Algorithm 2, the Advertiser Elevator algo-

rithm is a two-stage routing protocol. In the first stage, packets

are routed to the destination layer (cf. lines 7 to 25). In the

second stage, packets are routed within the destination layer to

destination node (cf. lines 1 to 6). If a packet is coming from

an upper layer, it needs to use the third VC in its destination

layer (cf. lines 2-4). Upward turns in the XY plane (i.e., Up-

North, Up-East, Up-South, and Up-West) are prohibited when

a packet is assigned to the third VC. In the first and second

VCs, for deadlock freedom purposes, the Advertiser Elevator

algorithm prohibits lateral-downward turns (i.e., North-Down,

East-Down, South-Down, West-Down) - cf. line 10. The algo-

rithm routes packets upward or downward depending on the

availability of up and down elevators (cf. lines 7-11). Packets

in XY plane are routed according to their virtual networks

and the position of fault-free elevators. The routing directions

are based on elevator indexes (cf. line 24) and allowed virtual

network turns (cf. lines 12-18). Similar to other papers [12],

[14], the Advertiser Elevator algorithm views communication

links between two nodes n(x, y, li) and n(x, y, lj) in adjacent

horizontal planes/layers li and lj as up/down elevators and

all the elevators at n(x, y,) locations in the network are

part of the (x, y) pillar. Unlike AFRA routing algorithm [11],

where an elevator failure renders the whole pillar unusable, in

the proposed approach the liveness of the up/down elevators

forming the pillar are decoupled. Each node is aware of the

failure or liveness of its up/down elevator. If an elevator in a

pillar is faulty, the Advertiser Elevator algorithm marks that

elevator as unusable, but keeps the other elevators in the pillar

available for routing traffic. This optimization of the protocol

can lead to two special routing cases. In the first scenario, a

packet is either in the first or second VC (a downward packet)

and needs to be routed through some middle layers (non-

source and non-destination layers). This particular situation

arises when a packet encounters a faulty elevator on its path.

In such a case, the algorithm selects a routing path using the

same set of rules as in the source layer. In the second scenario,

the packet is already using the third VC (an upward packet),

in this case, west-first routing mode is used to forward the

packet (cf. lines 12-13).

In general, livelock may occur when a non-minimal routing

algorithm like Advertiser Elevator is used. Therefore, for

livelock avoidance, Advertiser Elevator algorithm (a) prohibits

180◦ turns in the east-west and west-east routing modes and

(b) does not allow the corner nodes to have both up and down

elevators. As shown in Figure 2 the proposed algorithm by

using three VCs is deadlock free. In summary, packets using

VC 0 or 1 may switch to the third VC (2). But if a packet is

already using VC 2, then there is no alternative switching VC.

This approach ensures that there are no cyclic dependencies in

the virtual channel allocation process. It is worth noting that

although the algorithm is presented with three virtual channels

0 − 2, any number of VCs greater than three can be used

and the deadlock-freedom property of the algorithm is still

preserved if those VCs are divided into three sets. Without

lost of generality, we assume an orthogonal topology network

and XY -planes of four corners. Through different heuristics

and simulation settings, we examine a number of optimal or

near-optimal elevator placement schemes. Although a detailed

report of the study is beyond the scope of this paper, it is

worth noting that the average probability of finding the best

elevator is 99.2% for an 8× 8×X network using 2-bit index

transmission bandwidth.

IV. EVALUATIONS

To evaluate the Advertiser Elevator routing algorithm, we

use the Access Noxim [15] simulator. We compare our Ad-

vertiser Elevator algorithm with the Elevator-First routing

algorithm [6] using an 8 × 8 × 4 network. Three networks

with different number of elevators were considered in our

evaluations. We set the packet size to 8 flits, the VC depth to

138

Algorithm 2 Proposed Routing Algorithm.

1: if (current is in the destination layer) then
2: if (packet is not in the third virtual channel) then
3: switch to the third virtual channel
4: end if
5: return XY routing to destination
6: else

7: if

(
upward routing is needed and
an upward fault-free elevator exists

)
then

8: return Up direction

9: else if

(
downward routing is needed and
a downward fault-free elevator exists

)
then

10: switch to the third virtual channel
11: return Down direction
12: else if (packet is in the third virtual channel) then
13: Directions ← east, south and north (if exist)
14: else if (packet is in the first virtual channel) then
15: Directions ← south, east and west (if exist)
16: else if (packet is in the second virtual channel) then
17: Directions ← north, east and west (if exist)
18: end if
19: if (direction in previous routing is west) then
20: remove east from Directions
21: else if (direction in previous routing is east) then
22: remove west from Directions
23: end if
24: return direction with largest index in Directions
25: end if

Packet Injection Rate(Flit/cycles/nodes)
0 0.005 0.01 0.015 0.02 0.025

A
ve

ra
ge

 L
at

an
cy

 (
cy

cl
es

)

0

20

40

60

80

100
elevator first 15%
proposed 15%
elevator-first 30%
proposed 30%
elevator-first 40%
proposed 40%

Fig. 3. Average latency of the proposed routing algorithm.

4, the fault injection and elevator placements to random, and

the traffic pattern to random uniform. The results presented in

Figure 3 show that the Advertiser Elevator routing algorithm

improves the average latency by 14-16% in three networks.

As shown in Figure 4, the proposed routing is able to tolerate

vertical link faults at a lower average latency. Injected faults

disable vertical links between two adjacent layers. If a vertical

link becomes faulty, the vertical links in other layers belonging

to the same pillar are not necessarily faulty. For fault injection

rates of 7%, 14% and 28% the average network latencies are

17%, 21% and 42% lower when compared to the Elevator-

First routing algorithm.

V. CONLUSION

This paper proposes a fault tolerant routing algorithm for

vertically partially connected 3D NoCs, named Advertiser

Elevator. The proposed algorithm utilizes the assigned elevator

indexes to find the best fault-free vertical link for routing

packets. Using dedicated links/extra bits, fault-free elevators

share their elevator indexes with the rest of the nodes in the

network. With only two bits for the elevator index sharing,

Packet Injection Rate(Flit/cycles/nodes)
0 0.005 0.01 0.015 0.02

A
ve

ra
ge

 L
at

an
cy

 (
cy

cl
es

)

0

20

40

60

80

100
proposed with 32 faults
proposed with 16 faults
proposed with 8 faults
elevator-first 30%
proposed 30% (fault-free)

Fig. 4. Average latency with fault injection.

the probability of selecting the best elevator is above 98%.

Simulation results show an average latency improvement of

∼14% over the Elevator-First algorithm.

REFERENCES

[1] W. Dally and B. Towles, Principles and practices of interconnection

networks. Morgan Kaufmann, 2004.
[2] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm

for a fault-tolerant 2d-mesh network-on-chip,” in Proceedings of the 45th

annual Design Automation Conference. ACM, 2008, pp. 441–446.
[3] J. H. Lau, “Evolution, challenge, and outlook of tsv, 3d ic integration

and 3d silicon integration,” in Advanced Packaging Materials (APM),

2011 International Symposium on. IEEE, 2011, pp. 462–488.
[4] S. Pasricha and Y. Zou, “A low overhead fault tolerant routing scheme

for 3d networks-on-chip,” in Quality Electronic Design (ISQED), 2011

12th International Symposium on. IEEE, 2011, pp. 1–8.
[5] E. Beyne, P. D. Moor, W. Ruythooren, R. Labie, A. Jourdain, H. Tilmans,

D. S. Tezcan, P. Soussan, B. Swinnen, and R. Cartuyvels, “Through-
silicon via and die stacking technologies for microsystems-integration,”
in Electron Devices Meeting, 2008. IEDM 2008. IEEE International,
Dec 2008, pp. 1–4.

[6] F. Dubois, A. Sheibanyrad, F. Petrot, and M. Bahmani, “Elevator-first:
A deadlock-free distributed routing algorithm for vertically partially
connected 3d-nocs,” Computers, IEEE Transactions on, vol. 62, no. 3,
pp. 609–615, 2013.

[7] L. Jiang, Q. Xu, and B. Eklow, “On effective tsv repair for 3d-stacked
ics,” in 2012 Design, Automation Test in Europe Conference Exhibition

(DATE), March 2012, pp. 793–798.
[8] R. Salamat, M. Khayambashi, M. Ebrahimi, and N. Bagherzadeh, “A

resilient routing algorithm with formal reliability analysis for partially
connected 3d-nocs,” IEEE Transactions on Computers, vol. PP, no. 99,
pp. 1–1, 2016.

[9] E. Taheri, A. Patooghy, and K. Mohammadi, “Cool elevator: A thermal-
aware routing algorithm for partially connected 3d nocs,” in Computer

and Knowledge Engineering (ICCKE), 2016 6th International Confer-

ence on. IEEE, 2016, pp. 111–116.
[10] S. Foroutan, A. Sheibanyrad, and F. Petrot, “Assignment of vertical-links

to routers in vertically-partially-connected 3-d-nocs,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 8, pp. 1208–1218, Aug 2014.

[11] S. Akbari, A. Shafiee, M. Fathy, and R. Berangi, “Afra: A low cost high
performance reliable routing for 3d mesh nocs,” in Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2012. IEEE, 2012,
pp. 332–337.

[12] X. Jiang, L. Zeng, and T. Watanabe, “A sophisticated routing algorithm
in 3d noc with fixed tsvs for low energy and latency,” IPSJ Transactions

on System LSI Design Methodology, vol. 7, no. 0, pp. 101–109, 2014.
[13] P. Ren, X. Ren, S. Sane, M. A. Kinsy, and N. Zheng, “A deadlock-free

and connectivity-guaranteed methodology for achieving fault-tolerance
in on-chip networks,” IEEE Transactions on Computers, vol. 65, no. 2,
pp. 353–366, Feb 2016.

[14] H. Ying, A. Jaiswal, and K. Hofmann, “Deadlock-free routing algorithms
for 3-dimension networks-on-chip with reduced vertical channel density
topologies,” in High Performance Computing and Simulation (HPCS),

2012 International Conference on. IEEE, 2012, pp. 268–274.
[15] K.-Y. Jheng, C.-H. Chao, H.-Y. Wang, and A.-Y. Wu, “Traffic-thermal

mutual-coupling co-simulation platform for three-dimensional network-
on-chip,” in VLSI Design Automation and Test (VLSI-DAT), 2010

International Symposium on. IEEE, 2010, pp. 135–138.

139

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

