
Design-flow Methodology for Secure Group
Anonymous Authentication

Rashmi Agrawal, Lake Bu†, Eliakin Del Rosario, Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory, ECE Department, Boston University

{rashmi23, edelrosa, mkinsy}@bu.edu
†The Charles Stark Draper Laboratory, Inc.

†{lbu}@draper.com

Abstract—In heterogeneous distributed systems, computing
devices and software components often come from different
providers and have different security, trust, and privacy levels.
In many of these systems, the need frequently arises to (i) control
the access to services and resources granted to individual devices
or components in a context-aware manner and (ii) establish and
enforce data sharing policies that preserve the privacy of the
critical information on end users. In essence, the need is to
authenticate and anonymize an entity or device simultaneously,
two seemingly contradictory goals. The design challenge is
further complicated by potential security problems, such as man-
in-the-middle attacks, hijacked devices, and counterfeits. In this
work, we present a system design flow for a trustworthy group
anonymous authentication protocol (GAAP), which not only
fulfills the desired functionality for authentication and privacy,
but also provides strong security guarantees.

Index Terms—authentication, anonymity, group, counterfeit-
resistant, double blindness

I. INTRODUCTION

With the emergence of Internet of Things (IoT) applications
and cloud computing, a new class of security and privacy
concerns has arisen. In current Systems-on-Chip (SoCs) and
distributed computing systems, the devices, software compo-
nents, processing elements, and intellectual property (IP) cores
may have different provenances, security, trust, and privacy
protection levels. In these heterogeneous computing systems,
authentication at the group granularity can provide anonymity.
When devices are partitioned by groups, it is possible for
a device to authenticate itself as a genuine member of a
group with certain privileges, without disclosing information
about itself, as long as individual identities cannot be inferred
from the group identity or tag. Therefore, the monitoring,
tracking, recording, and analysis of activities or behaviors –
i.e., an access to a particular compute resource in the system
– of specific devices or entities are rendered impossible. In
short, the group members demand certain privileges without
an obligation to disclose their full identities. Such a scenario
is illustrated in Fig. 1.

The concept of a “group” can stand for a home with IoT
devices, a department or team at a company with multiple
employees, or an army unit, etc. For example, in a company
of a certain size, different room or building access policies
may apply to different employees and departments. While
the company needs to configure its access cards to enforce
these access policies, this should be done in a manner that
provides employees a certain level of privacy. Similarly, an

 Mobile Device

Network Device

Media Device

Network
Data

Media
Data

Mobile
Data

Data CenterAnonymous Requests
from the "Network

Device" group

"Network Data" granted

Fig. 1: When a request is made from a device in a certain group,
say, the “Network Device” group, the data center is able to verify the
group attribute of the request. So that the “Network Data” which can
only be accessed by devices in that group is granted. Meanwhile,
for privacy reasons, the device’s individual identity is kept from
disclosure during the entire process.

IoT device in a smart home may need a key piece of data
to perform its function. For the request to be validated, the
device should provide, to a server or another IoT device,
its credential(s) or attribute(s) to a smart home. Ideally, it
should not have to reveal other auxiliary information, such
as its identity key, model, or usage, in order to preserve the
privacy of its owner. In the same vein, for bare metal cloud-
based computing, a service provider may avoid disclosing the
single unique hardware identity to all the users ever assigned
to that machine. A derived, user-specific, one-time access key
or certificate may not be sufficient, since the user also needs
to attest that his/her application is running directly on the bare
metal matching his/her payment level, and not in a machine
with lower specifications or even a virtual machine.

In terms of security challenges, there is a fundamental
problem with using a single identifier – even an unclonable
one – to authenticate a device directly. The identifier is static
and thus, subject to replay attacks when there is a man-in-
the-middle adversary. Similarly, using a single identifier to
derive multiple certificates exposes the authentication proto-
col to certificate impersonation attacks [1]. In addition, the
current single identifier approach does not directly support
authorization revocation or forward/backward secrecy in dis-
tributed systems. For the design of future secure distributed
computing systems, the challenge of anonymous and dynamic
authentication must be addressed. More explicitly, there is
a pressing need for a generalized framework to perform (a)
robust authentication with (b) strong privacy guarantees, and
(c) fine-grained context-aware access control mechanisms.

In this work, we introduce a design methodology to anony-
mously authenticate objects/entities in distributed systems. The
major contributions are:

1) A novel cryptographic group anonymous authentication
protocol (GAAP) that enables entities to be authenticated
through their group attributes, while preserving the pri-
vacy of their individual identities.

2) An architectural support for GAAP - the proposed ar-
chitecture and its implementation provide a convenient
hardware add-on to enable the seamless integration of
the protocol into existing device networks without major
modifications to their topology or functionality.

Section II reviews the related works in this field that form
the base upon which we propose the desired functionality
and security criteria of GAAP. Sections III and IV present
the system design flow of the trustworthy group anonymous
authentication and its hardware architecture implementation,
respectively. Section V concludes the paper with open prob-
lems and future work.

II. RELATED WORK AND DESIGN CRITERIA
In this section, we briefly introduce the current research

efforts trying to achieve group anonymous authentication (or
some aspect of the problem). Their deficiencies in either
functionality or security lead to the proposal of our GAAP
scheme.
A. Related Works

A naive solution would be to have all the devices in a group
use an identical ID as their individual identities. However, this
suffers from many vulnerabilities. A compromised device can
spoof other devices or be leveraged to make unlimited coun-
terfeits, since they all share the same static secret. Harn [2],
[3] first brought up the concept of group authentication using
threshold secret sharing. This procedure allows the validation
of an entire group of devices in one authentication step.
However, due to the mathematical nature of its group tag
reconstruction, all the devices’ identities have to be disclosed,
failing to provide the anonymity required in GAAP.

Anonymous authentication proposed by Camenisch [4], [5],
has been widely adopted in many areas. The scheme, based
on blind signature, has been applied to the e-cash protocol
and the VOPRF algorithm in Tor networks [6]. However,
since the authentication tags are generated by the edge devices
themselves, this is hardly a trusted way to verify their group
attributes. The group signature (GS) scheme by Chaum et al.
allows any group member to sign a piece of data anonymously
on behalf of the group [7], [8]. This scheme is now widely
adopted in securing vehicular ad hoc networks (VANETs) [9].
The scheme relies on a key manager in the initial setup, leaving
the devices’ privacy susceptible to curious authorities. Fur-
thermore, there are also challenges with dynamic membership
removal and counterfeits from hijacked devices.

Verifiably Common Secret (VCS) encoding [10] was pro-
posed by Schechter et al. In each authentication session, the
verifier produces an encoded secret that can be decoded by any
device of the same group. Therefore, when a device returns

the decoded secret, it is indistinguishable from other group
members. However, as with Chaum’s group signature, this
signature-based scheme also has a potential vulnerability to a
curious authority (the certificate manager) and unlimited coun-
terfeits on any hijacked device. These are critical security gaps,
especially in heterogeneous distributed computing systems like
SoCs and IoT networks, where a key can leak or a device can
be hijacked [11].
B. Design Criteria

Based on these inadequacies, we define the desired func-
tionality and security for a trustworthy Group Anonymous
Authentication Protocol (GAAP) as follows:
Definition II.1. The functionality of GAAP should satisfy:

(i) Anonymity: All devices in the same group should be
indistinguishable to the verifier;

(ii) Group Attribute: The verifier should be able to distin-
guish requests from different groups, without revealing
the individual identities of the requesting devices;

(iii) Unlinkability: The verifier should not be able to link
several authentication requests/transactions to the same
anonymous device;

(iv) Double-blindness: In addition to remaining anonymous to
the verifier, devices must be oblivious to the interactions
between other devices and the verifier;

(v) Dynamic Group Membership: A device should be able
to belong to multiple groups. In other words, groups can
overlap. New devices should be able to join groups and
old devices should be able to leave.

Definition II.2. The security of GAAP should satisfy:
(i) Curious Authority-resistance: A curious authority in

the network, such as a verifier, a key distributor, or
a certificate manager, should not be able to learn the
individual identity of any device;

(ii) Impostor-resistance: Any device in a group should not
be able to spoof another. In addition, any number of
dishonest devices working together should not be able
to acquire more information than what they are legally
granted;

(iii) Counterfeit-resistance: The ability of attackers to intro-
duce counterfeits by a hijacked device should be strictly
restricted;

(iv) Eavesdrop-resistance: A passive Man-in-the-Middle
(MITM) should not be able to acquire any information
by eavesdropping on the channel.

In the following two sections, we propose the design flow
of a trustworthy group anonymous authentication system sat-
isfying both the functionality and security criteria above.

III. GROUP ANONYMOUS AUTHENTICATION PROTOCOL
(GAAP) DESIGN

A. Design Flow and Methodology
Figure 2 gives the design flow overview of the Group

Anonymous Authentication Protocol (GAAP). The main steps
of the design and deployment process are as follows:

Collect
network

information

Use GAAP to
generate design

parameters

Design
Parameters

Construct hardware
modules to facilitate

GAAP

Device plug-in
module

Verifier plug-in
module

System
initiation

System
Diagnosis

Malicious
behavior
detected?

Network
ready

N

Y

IM module

Malicious
device

information

Fig. 2: Group Anonymous Authentication Protocol (GAAP) Design Flow.

1. Collect the target network attributes, including the groups
and the group members;

2. Generate system design parameters based on the collected
attributes;

3. Instantiate set of GAAP hardware modules using the design
parameters, and install the modules on the devices and the
verifier;

4. Initialize physical system by having each device fetch its
group identity certificates from the verifier. The system
will diagnose to detect any malicious device behavior and
update the network information accordingly. If no such
behavior is detected, then the network is activated for
GAAP.

Below, we expand each of the phases of the GAAP deploy-
ment process, i.e., algorithm, implementation or reconfigura-
tion and activation phases.

B. Illustrative Demonstration

Before we present the mathematical definition and proof,
we sketch out an analogy to illustrate the GAAP protocol’s
key characteristics.

Analogy III.1. A manager wants to give several groups of
employees one-time access codes to different buildings, so that
each employee in a certain group can access a corresponding
building anonymously. For example, in group A with three
employees, the manager prepares three different access codes
for building x. The criteria governing access code assignment
are:

a. For security reasons, the access codes cannot be left in an
unsupervised room for the employees to pick up freely;

b. There should be no collision in the picking of the codes
among the three employees;

c. The manager should not know any employee’s code
selection;

d. An employee should not know his colleagues’ codes.
Thus, any of the employees can enter building x with their

access code, without leaking their personal identification.
Such a scheme can be implemented with the procedure

illustrated in Fig. 3.
1 Initial setup:

a) There are three types of papers (blue, green, red) and
three corresponding solutions (αb, αg, αr). When a
solution is applied to its paired type of paper, it does no

1

2

3

β1

β2

β3

αb

αg

αr

αb αg αr

1

2

3

γ

β1

β2

β3

β1

β2

β3

a b c

a

b

c

Fig. 3: A 4-step access code blind-fetching protocol. With this
protocol, each employee can only acquire his/her own access code,
and will remain completely unaware of other codes. The manager
also does not know the code selection of the employees.

harm to it. However, when it is applied to other types,
it permanently wipes out all the content from them.
Access codes a, b, c are written to the blue, green, and
red papers respectively for multiple copies, one copy
of each for each employee;

b) In addition, each of the 3 employees has a special
colorless solution denoted by β1, β2, β3, which can
temporarily erase the content from any of the paper
types. Reapplying this solution will restore the content.
However, βi cannot restore the content masked by βj
if i 6= j.

c) Lastly, there is a solution γ, which, when mixed with α,
changes color to a random bijection mapping to the set
{blue, green, red}, which is unknown to the manager.

2 The three employees are given the three solutions, and
each picks one solution. At this point, no one has informa-
tion about the access codes (a, b, c). In Fig. 3, employee
1 picks αb, acquiring access code a; employee 2 picks

αg , acquiring access code b, and employee 3 gets αr for
code c. Each employee’s solution β is mixed with the
selected α respectively, and then with solution γ. The
resulting solution colors are a bijection of the original
color set. For example, in Fig. 3, αb +β1 is converted to
red, αg + β2 to blue, and αr + β3 to green.

3 The manager looks at the three new solutions and has no
knowledge of what their original colors were. Thus he
also does not know about the employees’ access code
selection. However, the manager can tell if they have
made a collision-free selection. He applies each of the
solutions to a set of access code papers (green, blue, red)
with a, b, c on them. All the papers are now wiped out,
some temporarily, and some permanently.

4 When each employee gets back their set of blank papers,
they apply their own β solution to those papers. Only
the previously picked color paper with the correct access
code can be restored. The other two papers will remain
garbled. The employee can now use their assigned code
(employee 1 gets a, 2 with b, 3 with c) to access building
x without being specifically identified. �

Similar procedures can be applied to other groups or other
departments. This illustrative analogy already satisfies some
of the important criteria in DEFINITION II.1 and II.2, in-
cluding Anonymity, Group Attribute, Double-blindness, Curi-
ous Authority-resistance, Impostor-resistance, and Eavesdrop-
resistance. A more detailed and rigorous mathematical formu-
lation of the protocol now follows.

C. The Group Anonymous Authentication Protocol
We adopt tag matching as the authentication approach in the

proposed protocol. Compared with signature-based schemes,
tag matching can more effectively restrict counterfeits on
hijacked devices. In such a protocol, a device proves its legit-
imacy by showing the verifier a one-time authentication tag
with its group attribute, which has been previously acquired
from the verifier itself in a double-blind manner.

We first define the following functions.
◦ TagGen(n,m): for a group of n devices where each

device can be authenticated m times, the verifier uses
this function to generate nm tags.

◦ IndexSel({j}, {i}): all devices in a group use this func-
tion to create a bijection mapping from the device IDs to
the tag indexes. The output of this function is a set {cj},
where cj = i, meaning device j has chosen the ith tag.
◦ ColnChk({z}): this function checks if there are dupli-

cates in the extensional set {z}.
◦ Enc(x, pkj): the verifier uses this function to encrypt a

message x with the public key pkj of device j.
◦ Dec(y, skj): device j uses this function to decrypt y with

its private key skj .
In addition to the above functions, the protocol uses:
◦ Initializer Module (IM): its only task is to generate and

distribute random numbers. It has no other functional
capability and cannot participate in any other activity.
◦ ⊕: an involution operator such as xor.

Protocol III.1. Let us assume that there are w devices and u
groups in a distributed system. For an arbitrary group g, there
are n devices.

1) For the group g, the server uses TagGen(n,m) to
generate nm arbitrary authentication tags ti stored in
set T . There are n devices {devj} indexed by j ∈
{0, 1, · · · , n−1}. Each device fetches m tags to enable m
authentication sessions. Every device has a public-private
key pair: {pkj , skj};

2) In the 1st round of tag acquisition, the server arbitrarily
takes n tags out of the nm tags, and indexes them by
i ∈ {0, 1, 2, · · · , n− 1} as {t0, t1, t2, · · · , ti, · · · , tn−1};

3) The n devices come to an agreement over the index i
selection with IndexSel({j}, {i}) = {cj}. Each device’s
choice is cj = i, meaning that the device devj plans
to acquire tcj . This agreement should be performed
in a collision-free manner. (Any double-dealing in the
agreement will be spotted in step 6 by the verifier);

4) An Initializer Module (IM) generates n random vec-
tors {r0, r1, r2, · · · , rn−1}, and a random number
d ∈ {0, 1, 2, · · · , n − 1}. The IM sends d and rd to
all the devices. It also sends all the random vectors
{r0, r1, r2, · · · , rn−1} to the verifier. The transmission
can be protected against MITM eavesdropping simply by
using the public key systems of the verifier and devices;

5) Each device computes

ej = cj + d (mod n), (1)

and sends ej to the verifier. ej leaks zero-knowledge of
cj since the verifier has no knowledge of d;

6) The verifier checks if there are any index selection
collisions using the function ColnChk({ej}), where j ∈
{0, 1, · · · , n− 1}. If any device fools the index selection
agreement function IndexSel() in step (3), it will be
detected with probability of 1 without nullifying the
tag selection process. If no collision exists, the verifier
proceeds;

7) For any device devj’s ej , the verifier computes

fi = ti ⊕ rej−i (mod n) (2)

for all i ∈ {0, 1, · · · , n− 1}, and stores the results in the
set of {fi}devj whose cardinality is n;

8) The verifier uses each device’s public key pkj to compute
Enc({fi}devj

, pkj), and sends the results to devj ;
9) When device devj receives its tag set, it uses

Dec(Enc({fi}devj , pkj), skj) to decrypt and retrieve
{fi}. Then by the previously received rd from the IM,
devj computes its selected authentication tag by

tcj = fcj ⊕ rd, (3)

and it has zero-knowledge of the other tags;
10) All the participants repeat the steps above for another

(m− 1) rounds allowing each device to acquire m tags.
In each round, the IM generates a new set of random
vectors {r0, r1, r2, · · · , rn−1} and a new d;

11) During the authentication itself, a device shows one of
its tags to the verifier to prove that it belongs to group

g. If that tag matches a tag in the verifier’s T set, the
device is successfully authenticated. Then, the device
can legitimately request privileges assigned to its group
without revealing its individual identity. �

Remark III.1. We can see the following parallels correlating
the building access code distribution analogy and Protocol
III.1:

• d generated by the IM is equivalent to the solution γ;
• cj is equivalent to the solution α;
• The device’s public-private key pair is equivalent to the

solution β ;
• PROTOCOL III.1 (7) is equivalent to the step (3) in the

“access code” analogy, which erases the selected paper
temporarily, and destroys all other papers permanently. �

Remark III.2. We now discuss how Protocol III.1 satisfies
DEFINITIONS II.1 and II.2.

Since the selection of authentication tags is obscured by the
random number d (updated in each round), which is unknown
to the verifier, the verifier cannot link any tag(s) to a device.
Thus both Anonymity and Unlinkability are satisfied, and the
protocol is therefore also Curious Authority-resistant.

By keeping a record of each group’s tag pool, the verifier is
able to tell the Group Attribute of each authentication request.
As for the Flexible Group Membership, a single device can
possess memberships in multiple groups by legally fetching
the authentication tags of those groups. A device can join a
group by repeating Protocol III.1. A device is also able to
leave in an anonymous manner by returning all its tags to the
verifier, who remains unaware of the change.

Besides being anonymous to the verifier, steps 8 and 9
of PROTOCOL III.1 and [Eq. 2] also ensure that a device
or a Man-in-the-Middle cannot acquire information of other
devices’ tags. Thus, the protocol achieves Double-blindness
and has Impostor-resistance and Eavesdrop-resistance.

For any device, possessing m tags enables it to be authenti-
cated up to m times. Consequently, even with device hijacking,
the number of possible counterfeits is also strictly restricted,
due to the tag matching mechanism. In contrast, in signature-
based schemes, the counterfeits can be unlimited upon device
hijacking or key leakage [11]. �

IV. GROUP ANONYMOUS AUTHENTICATION PROTOCOL
(GAAP) IMPLEMENTATION

In this section, we present the GAAP hardware architec-
ture details through an FPGA implementation illustration. As
mentioned in Section I, because the hardware architecture is
implemented as a standalone module, it enables convenient
add-on deployment in existing connected device network sys-
tems. The add-on consists of three components: an initializer
module, a plug-in for each device, and a plug-in for the verifier.

A. Initializer Module (IM)
The only task of the initializer module (IM) is to generate

and distribute random numbers. It does not participate in any
other activity. An IM consists of two sub-modules as shown in
Fig. 4: a random number generator (RNG) and an encryption

unit (ENC) to carry out the Enc() function with RSA/R-LWE.

IM
RNG

Device Device... Verifier

ENC

Random Vectors{d, rd}

Fig. 4: The IM functions as described in Protocol III.1 step 4.

B. Authentication Plug-in for Devices
As shown in Fig. 5, the first task of a device’s plug-in is to

coordinate with other devices, in order to achieve the collision-
free index selection agreement in Protocol III.1 step 3.

Plug-in for Device
Index

Selection

MEM

Index
Obfuscation

DEC

Tag
De-obfuscation

{d, rd}

SelectedIndex

tag

rd

Ve
rif

ie
r

Obfuscated Index

Plug-in for Device
Storage

d

IM

IndexSet

Updated IndexSet

Fig. 5: The device plug-in and its interaction with other entities.

The actual algorithm carried out in the Index Selection
module is:

1 IndexSet = [0 to n-1]
2 from device 0 to device n-1:
3 SelectedIndex = random.choice(IndexSet)
4 IndexSet = IndexSet.remove(SelectedIndex)

Algorithm 1: Index Selection Agreement

Then the SelectedIndex cj is obfuscated by [Eq. 2] in
Protocol III.1 step 5 before being sent to the verifier.

In Protocol III.1 step 9, on receiving the encrypted authen-
tication tags, the DEC and Tag De-obfuscation modules are
able to retrieve the targeted tag tcj using the Dec() function
with a RSA or R-LWE public-key scheme and de-obfuscation
[Eq. 3].

C. Authentication Plug-in for the Verifier
In the verifier plug-in, shown in Fig. 6, the Tag Generator

module is another RNG, generating nm authentication tags as
in Protocol III.1 steps 1 and 2.

On receiving the obfuscated index selections from the de-
vices, the Collision Check module functions as Protocol III.1

Plug-in for Verifier

Tag Generator

MEM

ENC

Collision Check

Tag
Obfuscation

Device Device...

...

IM

...

Obfuscated
Tags

Obfuscated Index

Encrypted
Obfuscated

Tags

Tags

Fig. 6: The verifier plug-in and its interaction with other entities.

step 6. Since the obfuscated index selection is a bijection to the
original index set, we are able to adopt an efficient collision
check algorithm. First, each obfuscated index is assigned an
extra FlagBit. The FlagBit is initialized to 0, indicating this
vector has not been visited yet; it flips to 1 when visited. Then
the Collision Check module traverses the obfuscated index set
and uses each element as a pointer to visit another. If any
element is visited more than once, a collision is detected.

1 ObIndexSet = [n obfuscated indexes]
2 for i in range(0, n):
3 if ObIndexSet[ObIndexSet[i]].FlagBit == 0:
4 ObIndexSet[ObIndexSet[i]].FlagBit = 1
5 else:
6 report collision on ObIndexSet[i]

Algorithm 2: Collision Check with time complexity O(n)

With the previously received n random vectors, the Tag
Obfuscation module performs [Eq. 2] in Protocol III.1 step 7.
[Eq. 2] is a critical operation to ensure the delivery of tcj and
the concealment of other tags. The obfuscated tags are then
encrypted by the ENC module before being sent back to the
devices, as in Protocol III.1 step 8.

The latency of a complete authentication tag fetching is
affected by both n, the number of devices, and m, the number
of fetching rounds. The trends are shown by Fig. 7.

When nm grows larger, tag fetching can take longer.
However, the task is merely a one-time initialization. Once
it is done, the authentication procedure is simple and fast.

V. CONCLUSION

A secure group anonymous authentication protocol (GAAP)
is introduced in this work. It enables a device to be authenti-
cated without revealing its individual identity. In a distributed
computing system setting, using GAAP, devices can be verified
using their group attributes. Unique or specific identities tied
to physical devices can be concealed, and end-users’ privacy
can be preserved. Moreover, this protocol provides strong
security guarantees against various attacks. Curious authorities

0

2000

4000

6000

8000

10000

12000

0 128 256 384 512 640 768 896 1024

m
s

n or m

Latency as n and m grows

Latency-n Latency-m

Linear (Latency-m) Linear (Latency-n)

Fig. 7: As m (fetching round) grows, the latency is almost m times
the single round latency since each round is independent. As n grows,
the latency grows with a smaller slope because many operations
within one round can be parallelized.

or dishonest group members cannot breach the anonymity of
devices. The creation of counterfeits is also strictly restricted.

Although the proposed protocol satisfies both DEFINITIONS
II.1 and II.2, improvements to the technique can still be made.
For example, can the initializer module (IM) – which we
currently assume to be a trusted third party – be removed
from the protocol without loss in functionality or weakening
security? Addressing this challenge will also eliminate the
hazard of the IM being compromised, which is beyond the
scope of this paper and remains an open problem.

REFERENCES

[1] P. N. Brown, H. Borowski, and J. R. Marden, “Security against imper-
sonation attacks in distributed systems,” IEEE Transactions on Control
of Network Systems, 2018.

[2] L. Harn, “Group authentication,” IEEE Transactions on computers,
2013.

[3] L. Harn and C. Lin, “An efficient group authentication for group
communications,” arXiv preprint, 2013.

[4] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,”
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2005.

[5] J. Camenisch, S. Hohenberger, and M. Kohlweiss, “How to win the
clonewars: efficient periodic n-times anonymous authentication,” Pro-
ceedings of the 13th ACM conference on Computer and communications
security, 2006.

[6] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda,
“Privacy pass: Bypassing internet challenges anonymously,” Proceedings
on Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 164–180,
2018.

[7] D. Chaum and E. Van Heyst, “Group signatures,” in Workshop on the
Theory and Application of of Cryptographic Techniques. Springer,
1991, pp. 257–265.

[8] J. Camenisch and M. Stadler, “Efficient group signature schemes
for large groups,” in Annual International Cryptology Conference.
Springer, 1997, pp. 410–424.

[9] Y. Sun, Z. Feng, Q. Hu, and J. Su, “An efficient distributed key man-
agement scheme for group-signature based anonymous authentication in
vanet,” Security and Communication Networks, vol. 5, no. 1, pp. 79–86,
2012.

[10] S. Schechter, T. Parnell, and A. Hartemink, “Anonymous authentication
of membership in dynamic groups,” in International Conference on
Financial Cryptography. Springer, 1999, pp. 184–195.

[11] S. Khandelwal. Millions of iot devices using same hard-coded
crypto keys. [Online]. Available: thehackernews.com/2015/11/iot-
device-crypto-keys.html

