IET Research Journals l W
The Institution of

Defect and Fault Tolerance in VLSI and Nanotechnology Systems Engineering and Technology

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Design of Reliable Storage and Compute
Systems with Lightweight Group Testing
Based Non-Binary Error Correction Codes

Lake Bu'*, Mark G. Karpovsky, Michel A. Kinsy'

t Adaptive and Secure Computing Systems Laboratory, § Reliable Computing Laboratory
Department of Electrical and Computer Engineering

Boston University, Boston, USA

* E-mail: {bulake, markkar, mkinsy}@bu.edu

Abstract: In this paper we propose a new Group Testing Based (GTB) error control codes (ECCs) approach for improving the
reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting (SEC
and DEC) codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are
cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like
most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the
computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length NV, where @ > 2, the compute
complexity is mere O(mNlogQ). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve
better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high
reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems

with straggler tolerance etc.

1 Introduction

The Very-Large-Scale Integration (VLSI) industry has been growing
exponentially in the last two decades. The semiconductor products
now have much higher integration and speed by the increasing den-
sity of transistors on chip and clock frequency. Their sizes are reduc-
ing and the performance is still improving. However, the growth of
integration and speed in electronic components will cause instability
in compute and storage systems, which leads to the increase of prob-
ability of errors. Thus it is crucial to provide higher reliability and
faster correction with relatively low overhead to those systems.

To equip the electronic systems with reliability on data level,
error control codes (ECCs) are commonly used, which are capable
of recovering the system from random errors [1]. Even the widely-
adopted reliability techniques such as duplication for single error
detection and triplication for single error correction are but varia-
tions of ECCs. For memories, bit-error correcting codes are mostly
adapted, among which single and double-bit ECCs are the majority.
However, nowadays most memories are byte-organized or word-
organized. Meaning each byte contains b bits, and a single error can
affect the whole byte. Moreover, for large-capacity and high-speed
memories, due to their high-density nature, they can be very vulnera-
ble to the impact of particles [2]. It is not rare that even multiple b-bit
bytes can be distorted in this case [3, 4]. In addition, in distributed
systems, errors appear in the form of stragglers, where multiple data
blocks sized 32-, 64-bit, or larger can be missing. Bit-level error
correction will thus be insufficient.

In the domain of byte-error correction, Reed-Solomon (RS) codes
and non-binary Hamming codes are known for having the smallest
code redundancy (minimal number of redundant bytes). However,
their decoding complexity is relatively high by requiring multiplica-
tions and inversions over finite fields.

*Part of the work was done while Lake Bu was at the Reliable

Computing Laboratory at Boston University.

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

Generally speaking, the decoding complexity of a byte-level (or
non-binary) Q-ary ECC is determined by three factors: the error cor-
recting capability m (number of erroneous bytes to be located and
corrected), the size of each codeword byte b, where usually for a Q-
ary code, b = log@, and N the number of bytes in each codeword.
For most byte-level ECCs, the encoding and decoding complexity
grows proportionally to b2 Particularly for RS codes, when b > 32,
the complexity cannot be neglected and the implementation becomes
impractical in both hardware and software [5, 6].

Another drawback of conventional non-binary ECCs is the decod-
ing latency. For example, the decoding of Reed-Solomon (RS) codes
based on Berlekamp-Massey algorithm and Chien search requires
(2m? +9m + 3+ N) clock cycles for m-error correction in a
N-byte RS codeword [7-9]. Even the single-byte ECCs such as
non-binary Hamming codes cost considerable latency on finite field
multiplications to correct single byte errors. As modern systems and
smart devices are all working at high speed, such latency is hardly
acceptable.

Hence, interleaved codes are invented as an alternative solution.
Interleaved Hamming codes [10] can be used for single-byte error
correction, and interleaved Orthogonal Latin Square Codes (OLSCs)
[11, 12] usually for multi-byte error correction. Other types of inter-
leaved codes also exist. Briefly, they all are to interleave b binary
ECC codewords to form one non-binary codeword consisting of b-
bit bytes. In the decoding procedure, error correction is performed
on each of the binary codewords first. Then they are de-interleaved
to restore the correct non-binary codeword. The decoding of this
technique is in low complexity by avoiding multiplications and
inversions over G’F(Qb) fields. However, the simplicity is achieved
at the cost of b identical decoders for each code. When b is large, the
hardware cost on decoders is non-negligible.

In response to these disadvantages, we propose a new class of
Group Testing Based (GTB) ECC. The major properties of the
proposed codes are:

1. The GTB codes function over GF(Q) field, where Q = 2°
and b > 1;

2. High reliability: GTB codes feature multi-byte error correc-
tion capability;

3. Low encoding and decoding complexity: bitwise XORs and
integer additions are the only operations performed in the
encoding and decoding procedures of GTB codes. No finite
field multiplications or inversions are needed;

4. Parallelism: the encoding and decoding procedures of GTB
codes can be parallelized to 1-step encoding, 1-step syndrome
computing, and 1-step error correction;

5. Code rate: GTB codes trade redundancy for computation com-
plexity. Nevertheless, they still achieve better code rates than
ECC:s of the same trade-off, such as OLSCs.

In short, GTB codes are a new class of ECC that is high in error
tolerance, low in computation complexity and latency. The price
paid for these advantages is smaller code rate than that of Hamming
and Reed-Solomon codes. However, it is managed in an acceptable
range.

The rest of the paper is organized as follows. Section 2 is on the
construction of the check matrices for GTB codes. Section 3 intro-
duces the mathematical definition and optimal parameters of GTB
codes. The encoding and decoding algorithms of GTB codes are
explained in sections 4 and 5. In Section 6, a new concept of 1-step
threshold decoding is introduced to simplify and generalize the pro-
cedure. In Section 7, single and double-byte error correction, the two
most common and important cases from the practical point of view,
are discussed.

In terms of evaluation, the GTB codes are compared in vari-
ous aspects with the classical codes, such as non-binary Hamming,
Reed-Solomon, and interleaved codes. Section 8 is on the code rate
comparison, and section 9 investigates their potential beyond the
designed error detection and correction capability. Section 10 is on
the implementation of the GTB decoder, as well as the hardware
comparison with other ECCs’ decoders. In this section we show that
the hardware cost of GTB decoder is linear to its codeword size and
error tolerance capacity.

Section 11 illustrates several possible applications of the GTB
codes. Finally section 12 concludes the paper.

2 The Check Matrices of the Group Testing
Based (GTB) codes

Before we formally define the Group Testing Based (GTB) codes,
the construction of their check matrices is discussed in this section.
Most ECCs’ definitions are closely related to their check matrices,
which can contain critical information on length, code rate, and error
tolerance capability of a code. GTB codes are no exception.

More importantly, for both binary and non-binary GTB codes, the
check matrices remain in the binary form. The simplicity of check
matrices ensures the low decoding complexity for GTB codes, even
under non-binary scenarios. In our proposal, the superimposed codes
will be used for the construction of check matrices for GTB codes.

2.1 The Definition of Superimposed Codes

First, the original definition of superimposed codes is given below.

Definition 1. Let M; ; € {0, 1} be the element in row ¢ and column
j in a binary matrix M of size A x N. The set of columns of M is
called an m-superimposed code, if for any set 7" of up to m columns
and any single column h ¢ T, there exists a row k in the matrix
M, for which My, , = 1 for column h, and My, ; = O forall j € T
[13, 14].

The above property is called zero-false-drop of order m. Next,
two properties of superimposed codes are defined.

Definition 2. For any two A-bit binary vectors u and v, we say that
u covers v if u - v = u, where - denotes the dot product of the two
vectors. An (A x N) binary matrix M is m-disjunct if the bitwise
OR of any set of no more than m columns does not cover any other

single column that is not in the set. The columns of an m-disjunct
matrix compose an m-superimposed code [15].

For example, the columns of the following matrix are 1-disjunct
superimposed code:

=

I
SO~ O
Ok OO
SO = —=O
O~ OO

It follows that, the superimposed codes are uniquely decodable of
order m, as defined below.

Definition 3. An (A x N) binary matrix M is m-separable, if the
bitwise OR of any up to m columns are all different.

It has been proved that the matrix M constructed from superim-
posed codes is not only m-separable, but also m-disjunct. Because
of its zero-false-drop and uniquely decodable properties, superim-
posed codes are often used in non-adaptive group testings. For an
m-superimposed code matrix sized A X IV, A is the number of tests
needed to locate m particular (erroneous, defective, or poisonous
etc.) objects, and N the total number of objects in the tests. The
rows of M are test patterns, and the 1’s in each column indicate
which tests an object will participate.

A positive test result is represented as 1 (meaning at least one
or more targeted objects located in the test), and negative result as
0. Therefore, the A-bit test syndrome is essentially the bitwise OR
of all the m columns corresponding to the m targeted objects. By
Definition 3, for each possible combination of m (or less) columns,
the resulted A-bit test syndrome is unique and thus the targeted
objects are decodable.

2.2 The Lower and Upper Bounds on Minimal Length of
Superimposed Codes

The bounds on lengths of superimposed codes are actually the
bounds on the minimum numbers of tests for non-adaptive group
testing. Adaptive testing may result in a smaller number of tests
(length of the syndrome) than non-adaptive testing. However, the
decoding for the corresponding GTB codes will be much more com-
plicated. According to D’yachkov and Singleton’s research [16], the
lower and upper bounds on the shortest superimposed codes’ length
Apnin are very tight by a factor of S

logm*

m? log N

g) < Amin < O(m®log N), 1)

Q(

where A,,;n is the length of the shortest m-superimposed codes
with N codewords.

It is notable that when m = 1, [Eq. 1] becomes the most com-
monly seen case where A,,,;,, = [log N|.

2.3 Notations

Before describing the construction of superimposed codes, which
will be used for the construction of check matrices for GTB codes,
we introduce the following notations:

o ng: the total number of bytes in codewords of a g-ary
(nq, kg, dg)q code Cy;

kq: the number of information bytes in Cy;

rq = Ng — kq¢: the number of redundant bytes in C;

dg: the minimum Hamming distance in Cy;

A: the length of codewords in a superimposed code Cgr;

N = |Cgy|: the number of codewords in Cgy;

M: the binary matrix of size A x N whose columns are
codewords in Cg as its columns;

[: the maximum Hamming weight of rows in M

[e]
[e]
[e]
[e]
[e]
[e]

[e]

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

o dg: the distance between codewords of C'gr;
o m: the number of errors to be corrected by a GTB code.

2.4 Construction of Superimposed Codes

Construction 1. Let Cy be a g-ary (¢ = p° is a power of prime
and p # 2) conventional error correcting code with parameters
(nq, kq,dq)q. Each byte of Cyq in GF(q) can be represented by
a g-bit binary vector with Hamming weight one. A superimposed
code Cgr can be constructed by substituting every g-ary digit of
codewords in Cy by its corresponding binary vector. The resulting
m-superimposed code C'sy will have the following parameters [17]:

A: an7

N =g~

| = qkq—l’)
dsy = 2dg,

-1
m:{LJ,
ng — dq

If Cq is a maximal-distance separable (MDS) g-nary code, for
which dg = 74 + 1 and ngq < g, such as RS codes, then m can be

written as [15]:
_|ng—1
m = L’Cq — 1J . 3)

The codewords of the m-superimposed code Cgy form the
columns of an A x N matrix M. In every row there are exactly [
1’s, and every column exactly ng 1’s.

Example 1. An extended ternary Reed-Solomon code has its param-
eters (ng, kg, dq)q = (3,2, 2)3. The codewords are:

Cq ={(0,0,0),(0,1,2),(0,2,1),(1,0,2),
(1,1,1),(1,2,0),(2,0,1),(2,1,0),(2,2,2)}.

Suppose 0, 1, 2 are substituted by 3-bit binary vectors (100),
(010), (001) respectively. According to (2), N =9, A =19,dg; =
4, and m = 2. The code Cgy is a 2-superimposed code.

Then the code C's consisting of the following N = 9 codewords
can be listed as the columns of a 9 X 9 matrix M.

1110 0 0 0 0 O
0001 1 1 00O0
000 O0O0O0OT1T1:1
1001 00100
M=|0 10010 010
0 01 0 01001
100001010
001 01 010O0
01010 0O0O01

The superimposed codeword length A generated from Construc-
tion 1 is usually not the minimal according to the lower bound in
section 2.2. Other constructions can achieve smaller A (e.g., the
approaches presented in [13, 14]), but will result in a higher decoding
complexity for GTB codes.

As section 5 will show, with the low-density binary matrices built
for GTB codes by Construction 1, only a small number of binary
operations are needed for multi-byte error correction. The construc-
tion makes GTB codes low computation complexity and high-speed
in contrary to most popular non-binary ECCs.

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

3 Group Testing Based (GTB) Codes

The definition of Group Testing Based (GTB) codes are based on
the binary check matrices M constructed by superimposed codes in
section 2. In order to facilitate the introduction of GTB codes and
their properties, we define the notations below:

M : the it" row of M;

M, ;: the jth column of M;

N: the length of a (V, K, D) GTB codeword V';

K: the number of information bytes in a GTB codeword;

R: the number of redundant bytes in a GTB codeword;

b: the number of bits in each byte of a Q-ary GTB codeword,

where QQ = 2 and b >1;

o A: the maximal number of 1’s in common between any two
columns in M [18]. Then we have | M, ; - M, ;|< Mfori, j €
{1,2,...,N},i # j, where - is bitwise AND;

o : the bitwise XOR operator;

o Block: M can be partitioned into ny sub-matrices, such that

each one has exactly g rows. Each sub-matrix is called a block

By — a set of g rows where By = {M; . | [i/q] =1}, t €

{1,2,...,nq}. Each row in a block has exactly { 1’s and each

column has exactly one 1.

O O O O 0O ©O

3.1 Definition of GTB Codes

We now define GTB codes based on the binary check matrix
constructed in section 2:

Definition 4. Let M be an A x N binary matrix whose columns are
the codewords of an m-superimposed code constructed in Construc-
tion 1. V is called a GTB code if:

V = {v|]M-v=0},veGFQY),)

where v is any codeword of the GTB code V.

Remark 1. Since the check matrix M of a Q-ary GTB code is a
binary matrix regardless of the value of (), the syndrome computa-
tion M - v will be as simple as a number of additions in GF(2°),
namely bitwise XORs (denoted by @). No multiplications or inver-
sions in finite filed GF (Zb) are involved in the decoding procedures.
Moreover, the number of XORs performed in M - v is determined
by the number of 1’s in M, which is always a low-density matrix by
Construction 1.

For the optimal construction of GTB codes to be introduced in
the f001510Wing sub-section, the fraction of 1’s in M can be as low as
N2,

3.2 The Optimal Construction of GTB Codes

As discussed in Remark 1, the complexity of GTB codes’ decoding
procedure is closely related to the number of 1’s in M, which is also
the number of bitwise XORs required to compute the syndrome.

Definition 5. A GTB code is optimal if the number of 1’s in its
check matrix M is minimum. Since there are A rows in M and each
row has [1’s, the total number of 1’s in M can be calculated by Al.

Construction 1 shows that M can be constructed from any con-
ventional g-ary error correcting codes. One of the most popular
multi-byte ECCs is the Bose-Chaudhuri-Hocquenghem (BCH) code
and it owns many fine properties. Reed-Solomon (RS) code as
another choice is a special case of BCH code. We compare the two
codes in terms of Al to suggest a proper choice for the optimal GTB
codes.

Given N and m, by the properties of BCH code [19] are:
ng =kq +17g;
k;q = lqu N7 (5)
rqg = (d¢g —2)i+1,

where ng = ¢' — 1. With [Eq. 2], the parameters of the BCH code-
based GTB code are:

_ | ng—1 |
m_{"q*qu’

I =q" 6)
A=qng = (kg + (dg — 2)i + 1)g;
Al = (kq + (dg — 2)i + 1)g"s.

Reed-Solomon code is a special case of BCH codes when ¢ = 1.
The RS code a MDS code where dg = rq + 1. Therefore for Reed-
Solomon codes the above equations can be rewritten as:

ng =kq +17¢;
kq =log, N; @)

rg =719 =dg — 1.
With [Eq. 2], the parameters of the RS code-based GTB code are:
-l
L=q" Y
A =qng = (kg +dg — 1)g;
Al = (kq + dg — 1)g".

®

By [Eq. 6 and 8], to correct the same number of errors in code-
words of the same length, RS code-based GTB codes have smaller A
and Al the BCH code-based, as shown in Fig. 1. Therefore we will
use Reed-Solomon as the base code to construct the check matrices
for GTB codes.

5000
4500
4000
3500
3000

Al 2500
2000
1500
1000

500

—4—RS-based GTB —=—BCH-based GTB

Fig. 1: Al comparison between GTB codes constructed from RS
codes and BCH codes under the same N and m. As N grows larger,
the RS code-based GTB has larger advantage over the BCH-based.

Remark 2. Since Reed-Solomon codes are MDS codes, it has max-
imal dg. Under the same ng, it is able to generate larger m than other
non-MDS codes by [20]:

-1
m:[LJ.
ng — dg

We now specify the parameters of the Reed-Solomon codes
achieving the minimal Al.

Theorem 1. Given N the length of GTB codewords and m the
number of errors to be corrected, the optimal Q-ary GTB code

and its check matrix with minimal Al can be constructed by the
Reed-Solomon code with the following parameters:

(ng, kq,dg)qg = (m +1,2,m)q;)

Then by [Eq. 2] we have:

N =%
A=qg(m+1); (10
l=gq.

The minimal syndrome computation complexity is then:
Al = (m+1)¢* = (m + 1)N. (11)

The proof of Theorem 1 is given in Appendix A.

There are also cases when a GTB code needs to be designed by
given K and m. In this scenario based on Theorem 1, we are able to
compute the optimal g to construct its check matrix.

Corollary 1. If K and m are given, then the optimal qop¢ minimiz-
ing Al will be [21]:

1 12 7 4(K —
dopt = |)+\/(m; PraE-—m)| gy

ps

where p® stands for the nearest power of prime that is larger than the
value inside [].

The proof of the corollary is given in Appendix B.

3.3 The Parameters of Optimal GTB Codes

With the RS parameters presented above, we show that the GTB
codes have the following properties.

Theorem 2. If a Q-ary GTB code V of length N is defined
by V = {v|M -v =0}, v e GF(QY), where M is generated by
Construction 1 and Theorem 1, then V' has the following parameters:

(N,K,D)g = (¢*,¢* — q(m +1) +m,2m +2)q,

where N is the length of any GTB codeword, K the number of
information bytes, and D the distance of the code.

Such a code is able to detect up to 2m + 1 errors and correct up
to m errors.

The proof of Theorem 2 is given in Appendix C.

Remark 3. By Theorem 2, there are two advantages of GTBs over
most other ECCs:

1. The check matrix and optimal parameters of an (N, K, D)g
me-error correcting GTB codes do not depend on Q. It indi-
cates that the increase of () will not negatively affect the
decoding complexity or code rate of a GTB code;

2. The distance of an me-error correcting GTB code is D =
2m + 2, while for most other ECCs it is 2m + 1. The larger
distance provided by GTB code enables it to have higher error
detection capability.

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

Corollary 2. The rate of GTB codes is:

K A—m
el —-1—
N N q

(m—|—1;q—m. (13)

It is obvious that when:

N:q2—>c>oandﬂ—>07
q

we have:

K
— — L
N

Remark 4. We note that Construction 1 also provides the
trade-offs between syndrome computation complexity (Al) and
code rates. For a GTB code based on a (ng,kq,dq)g=
(kg +m —1,kq,m)q RS code, if k%c> 2, then this GTB code
will have parameters (N, K, D)g = (q @ g — (kg +m—1)g+
kq+m — 2,2m + 2)(. Although its Al will be larger than what
has been given in Theorem 1, its code rate will be better.

4 Encoding

Since the rows in the check matrix of a GTB code are not all linear
independent, to acquire the encoding matrix, the check matrix M
needs to be transformed into the row canonical form. The row canon-
ical form and the standard encoding matrix are very similar, except
the order of a few columns. Similar to its decoding, the encoding of
GTB codes requires no finite field computations but bitwise XORs.

Definition 6. A matrix M is said to be in row canonical form
or Reduced Row Echelon Form (RREF) [22] if the following
conditions hold:

o All zero rows, if any, are at the bottom of the matrix;

o Each first nonzero entry in a row is to the right of the first
nonzero entry in the preceding row;

o Each pivot (the first nonzero entry) is equal to 1;

o Each pivot is the only nonzero entry in its column.

Corollary 3. Ifan A x N matrix M is a binary check matrix gener-
ated from an m-superimposed code for a (N, K, D)o GTB code V,
then it can be transformed to a row canonical form M’, with A — m
non-zero rows. In M all the A — m columns with the pivots repre-
sent the locations of redundant bytes, and the remaining N — A +m
columns the information bytes.

We now show an example of GTB code encoding, which is very
similar to conventional binary ECC encoding.

Example 2. A GTB code V over GF(Q),Q =23, has N =9
information digits and is able to correct single-digit errors. Accord-
ing to Theorem 1 its check matrix M can be constructed from the
(ng, kq,dq)q = (2,2,1)3 Reed-Solomon code. Then code V' has
the parameters of (N, K, D)g = (9, 4, 4)9s and for this code:

<

Il
OO =OO
(=N N eNeNal
OO OO
SO, OO
O~ OO ~O
O o oo
OO, R OO
OO OO
—HoOOoO—~,OO

By Corollary 3, after transforming M into row canonical form we
have:

M =

SO OO
(NNl]
[eNeN e N
O, OO0 O
OO~
O~ O
—oooco

1
1
0
0
1

—_ OO

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

M’ indicates that in a codeword (message) v = (v1, v2, v3, V4,
vs, V6, V7,08, V9), the redundant bytes are vy, va, v3, v4, v7, and the
information byte vs, ve, vs, vg.

If vs = (011), vg = (101), vg = (110), vg = (111), then the
codeword can be encoded by M’ as:

v1 = v5 B vg Dvg Dvg = (111);

vy = v5 B vg = (101); v = vg B vg = (010);
v4 = V5 D vg = (110); v7 = v8 D vg = (001)

And sov = (111,101,010,110,011,101,001,110, 111).

5 Decoding: Error Locating and Correction

The decoding procedure of GTB codes consists of three parts:
syndrome computation, error locating, and error correction.

5.1 Syndrome Computation for GTB Codes

Definition 7. For a GTB code V = {v|M - v = 0} over GF(Q™),
where M is an A x N binary matrix, if a codeword v =
(v1,v2,...,vN) is distorted by an error e to o =v @ e, U,v,e €
GF(Q), then the syndrome:

S=M-v=M -e.

There are A digits in S = (S(1),5(2),---,S5(4)), and S(i) €
GF(Q). Then the support of syndrome Ssup = (Ssup(1) ,Ssup(2),
-+, Ssup(A)) is defined as:

)0, S(i)=0;
Ssup(i) = {1, S(i) #0.

The A-bit binary syndrome Ssyyp is used for error locating, and
the A-digit Q-ary syndrome S for error correction.

The syndrome computation of GTB codes only involve bitwise
XORs, and its complexity can be minimized as shown in Theorem
1.

5.2 Error Locating

The GTB codes’ m-error locating algorithm is generated by the
following algorithm.

Algorithm 1. Let the columns of an A X N binary matrix M be
the set of all codewords of an m-superimposed code constructed
by Construction 2.1 from a (ng, kq, dgq)q Reed-Solomon code Cj.
Let Ssup = (Ssup(1), Ssup(1), -, Ssup(A)) be the A-bit binary
vector representing the support of syndrome S =M -0 =M -e,
and ¥ = (01,2, ..., 9N),0; = v; D ej. Let u = (u1,uz,...,un)
be the NN-bit error locating vector for GTB codes such that:

Ssup(i)=m—+1]71:0.

w=

{ilM;, =1}

Iij =1, then ’Ej =v; Dey, and \ej\ # 0.
Note: through this paper, ¢ = (a = b)? 1 : 0 denotes:

1, ifa = b;
c =
0, otherwise.

The proof of Algorithm 1 is given in Appendix D.

Remark 5. Itisnotable thatif M; . - e = 0 and e # 0, then the cor-
responding Ssup(i) = 0. This can result in u; = 0 even if e; # 0.
We call the mis-detection error masking, as multiple errors can mask
each other from being revealed, whose probability is Q@ ! Therefore
Algorithm 1 provides an error locating and correction probability
close to 1 as @ is relatively large. This algorithm can be modified
to achieve error locating and correction probability of 1 in important
practical cases, such as m = 1 and m = 2 in section 7.

In section 6, we develop a I-step threshold decoding algorithm,
which for any m it provides a trade-off between the error correction
probability and redundancy R. We show that by increasing R to at
most a factor of 2, the error correction probability achieves exactly
1.

5.3 Error Correction

For any located m-error, it always can be corrected by the algorithm
presented by the following algorithm.

Algorithm 2. Let a codeword v over GF(Q) be distorted by an
m-digit error to ¥ = v @ e. e is located by the error locating vec-
tor u = (u1,u2, -, uj,---,uy), where if u; = 1, |e;| # 0. Also
let S be the A-digit syndrome where S =M -0 =M -eand S =
(S(1),5(2),--+,5(@),---,S(A)), S(¥) € GF(Q). For any non-
zero error digit e; in e, there must exist at least one row M; . in
M, such that

Uj =1.
{3IM;,;=1}

Then S(i) = M; - = M; . - e = ej. And so 7; can be cor-
rected by:

v Iflj D e;j I@jGBS(i)A

The proof of Algorithm 2 is given in Appendix E.

To summarize, the decoding procedure consists of the follow-
ing fine-grained steps: calculating the syndrome, converting it to the
support of the syndrome, error locating, finding the m x m identity
sub-matrix corresponding to the m-digit error, and error correction.
With parallelization, the procedure can be combined to two steps:
error locating and error correction.

Example 3. A @Q-ary GTB code has Q = 23 =8 and param-
eters (N,K,D)g =(9,2,6)s. The distorted codeword © =
(17 27 37 67 67 27 27 37 1)8

Since D = 6, we can do double-error correction with this code.
Firstly by Theorem 3.1 we have:

q:m=3; dg=m=—7—=2
k¢g=2ng=m+1=3.

Thus the check matrix can be constructed by a (ngq, kq,dq)q =
(3,2,2)3 RS code:

1110 0 0 0 0 0
0001 1 1000
000 0O0O0OT1T1]1
‘100100100
M=|0 1001 0 010
0 01 0 01001
100001010
001 01 01O0O0
0101 00O0O0°1

The syndrome and the support of the syndrome are:

S=M-v=(0,2,0,5,7,0,0,7,5);
Ssup = (07 1707 17170707 171)

By Theorem 5.1, the double-error is located as:
u=(0,0,0,1,1,0,0,0,0).
Knowing that e = (0,0,0, eq,€5,0,0,0,0), (e4 # 0, e5 # 0),

by Theorem 5.2 the identity sub-matrix corresponding to e4 and es
is:

Mgs4 Mgs| (0 1
M974 M975 |1 ol
And so:
vy = 04 B S(8) = 3;

vs =04 ®S(9) =1;
(17213737172727371)8'

S
I

6 Generalized 1-Step Threshold Decoding

The error correcting algorithm introduced in the previous section
requires that for any e; € e, e; # 0, there are ng digits of the syn-
drome affected by it. However, if there exists one or more than one
row M; , in M such that S(i) = M; 4 -0 =M; . -e=¢; D ey ®
~--@®e;=0,andej, e, -+, ez € e, thenu; = 0 and so e; cannot
be located. We will refer to this case as error masking in position <.

For a Q-ary GTB code, Q = 2% itis obvious that the upper bound
on the probability of having at least one error masking is Qfl. Also
for any e; in an m-digit error e, it will at most affect ng = m + 1
digits of the syndrome, out of which there can be at most m — 1 error
maskings since A = 1. Therefore, we have the probability Pcorsr of
no error masking for e; # 0 lower bounded by:

Peorr > (1—Q Hm™ 1, (14)

Given m, the larger the @ (or b = log Q) is, the greater the Peorr
is as shown in Fig. 2. It is expected that as m grows, the error cor-
recting probability decreases. However, if b is large enough, [Eq. 14]
can still provide a satisfying Peorr. Without loss of generality, we
examine the error correction probability under 1 < m < 10and b =
{4,8,16, 32,64} in GTB code (N, K, D)g = (625, 360, 22)q.

120.00%

100.00% ®

80.00%

60.00%

Pcorr

40.00%

20.00%

0.00%

—0—b=4 —&—Dp=8 e=—h=16

b=32 =—e=—h=64

Fig. 2: As b increases over 8, the error correction probability Peorr
always remains close to 1. The increase of m has little negative
impact when b > 16.

This means for a GTB codeword consisting of 16-bit bytes
or larger, it can always locate and correct up to m errors with
probability close to 100%.

Moreover, Peorr can be enhanced by increasing the redundancy
of the GTB code, as shown in the following algorithm.

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

Algorithm 3. Let Crg be a (ng, kq,dg)g = (m+1+ 2,2, m+
A)q Reed-Solomon code and M is the check matrix of a GTB code
Va of (N,K,D)g = (¢*,¢* —q(m+ 1+ A) + m+ A, 2(m +
A) + 2)(, then for Vo we have:

Peorr > (1= Q@ 1Hym=174, (15)
And:

Peorr — 1 when A — (m —1).

And so the error locating vector u = (uj,ug, -+, uy) can be

re-written as:

w=

{i|M;,;=1}

Ssup(i) >m—+1|21:0.

Ifuj =1, then 9; = v; @ e;, and e; # 0.

The proof of Algorithm 3 is given in Appendix F.

As an example, Algorithm 3 we can improve the error correcting
probability in Fig. 2 through increasing A. Taking m = 10 as an
example, if 0 < A <9, the updated P.orr are graphed in Fig. 3.

120.00%

100.00%

80.00%

60.00%

Pcorr

40.00%

20.00%

0.00%

b=32 ==@=h=64

—8—b=4 —A—D=8 ==——=b=16

Fig. 3: The probability of successfully correcting 10 errors in a
(N, K,D)q = (625, 360,22)g GTB code when A increases.

It can be found that under different b, the Peorr goes to 1 in dif-
ferent velocity. When A = m — 1, no matter what b is, the Peorr is
always 100%. At this point, the GTB code can be decoded by simple
majority voting through threshold gates, and Algorithm 3 becomes
1-step threshold decoding.

However, it is notable that as A increases, the code rate decreases.
For instance, when A =m — 1 =9 and Pcorr = 1, the original
(N, K, D)g = (625,360,22) code becomes (625, 144, 40) .

Example 4. By [Eq. 14],a (N, K, D)qg = (25,12,6)9s GTB code
Vb is able to correct double errors at a probability of 99.6%. The
columns of its check matrix are generated by all the codewords of a
(ng, kq,dq)q = (3,2,2)5 RS code:

coco
B —o
w o
v w o
—s o
N
W= =
R
—w =
SYEN
w o N
RSN
N BN
o w
I
vow
R
o w
B~ w w
Wk W
— o
(=N
INECHN
W W
[CRENN

To make it capable of correcting all double errors at a proba-
bility 1, we select A = m — 1 =1 and so the new matrix will be
generated from the codewords of a (ng, kq,dq)q = (4,2,3)5 RS
code:

0000 0;1 111 1;2 22223333 3/44444
1 234,01 234,01 234,01 234,012 34
0123412340 114012311 2342013 4012
03142'20314'42031'14203'31420

By substituting 0, 1, 2, 3, 4 with (10000), (01000), (00100),
(00010), (00001), the check matrix M can be constructed. And so

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

the parameters of the new GTB code V1 will be a (N, K, D)qg =
(25, 8,10)9s code and it can correct all double errors with probabil-
ity 100% by the 1-step threshold decoding introduced in Algorithm
3.

Remark 6. For 1-step threshold decoding, if m = 1, then by [Eq.
14] we always have Pcorr = 1. When m > 2, by increasing at
most m — 1 blocks the GTB codes can achieve P.orr = 1 at the
cost of decreasing the code rate. For this case, the code param-
eters will change from (N,K,D)g = (¢, ¢* — 3¢+ 2,6)q to
(¢°,¢* — 49+ 3,8)q.

In the following section, we will introduce a procedure to achieve
Peorr = 1 for m = 2 GTB codes without reducing the code rate.
And for the rest of the paper we always assume A = 0.

7 Single and Double-Byte Error Correcting GTB
Codes

Single and double-errors are most commonly seen in error correc-
tions. The GTB codes can always achieve 100% error correcting
probability in both cases.

7.1 Single-Byte Error Correction

According to Construction 1, single-byte error correcting GTB codes
can be generated from (ng,kq,dq)q = (2,2,1)q Reed-Solomon
codes, which will result in (N, K, D)g = (¢%,¢°> — 2+ 1,4)¢
GTB codes for m = 1 with A -1 = 2¢®> = 2N. A check matrix of
this code with ¢ = 3 is given in Example 2. For single errors, Algo-
rithms 1 and 2 always detects and corrects the errors with probability
of 1.

Another way to generate single-error correcting GTB codes is to
construct it based on a binary Hamming check matrix.

Definition 8. A Q-ary GTB code Y with following parameters
(N,K,D)g = (N,N — [loga(N +1)1,3)q is defined by y € Y
if y={y| M -y=0}, where M is a binary Hamming check
matrix. If a codeword y is distorted by a sing-error to §y = y & e and
the syndrome S = M - ¢, then the support of the syndrome Ssuyp is
the error location, and e = S(i), if S(¢) # 0.

From the above definition it is obvious that this Hamming based
GTB code Y has better code rate, namely smaller redundancy (R =
logy (N + 1)) than that of Reed-Solomon based GTB code V (R =
2V N —1).

However, code Y has larger syndrome computation complexity
by:

N+1
Al = V+1) logs (N + 1);
while for a regular GTB code V:
Al =2N.

7.2 Double-Byte Error Correction

Double-byte errors usually cost much more time and space to be
located and corrected than single-byte errors. However, for GTB
codes it is still very time and cost efficient to correct double errors.

An example of correcting double-error has been given in Exam-
ple 3. However, if there is an error masking, meaning es4 = es,
then us = us = 0. In this case the double-error cannot be guar-
anteed to be located and corrected. Therefore we propose the cus-
tomized algorithm below to achieve 100% double error correction
probability.

Algorithm 4. Let the columns of matrix M insize A x N be the set
of all non-zero codewords of a 2-superimposed code constructed by

Construction 1 from a (ng, kg, dg)q Reed-Solomon code Cy. Let
Ssup be the A-bit binary vector representing the support of syn-
drome S = M - = M - e, where e is a double-error and causes one
error masking in S. Let w = (w1, w3, ..., wy) be the error locating
vector for GTB codes such that:

w= ¥

{i|M;,;=1}

Ssup (). (16)

Ifw; =m+1=23,thene; #0.

If there is no w; = m + 1 = 3, there will be some j such that
w;j = m = 2 which indicate error location candidates.

Denote W = {w; | wj = m} as the set of error location candi-
dates. If there is a row M; 4 such that:

(wj =2) A (S() = 0) = 1, a7

then e; = 0, and the remaining items in set W are error locations.
The proof of Algorithm 4 is given in Appendix G.

Example 5. A GTB code V' with the same parameters and the same
legal codeword v as Example 3. It is now distorted by a double-error
at digit 4 and 5 that causes error masking:

e=(0,0,0,7,7,0,0,0,0).
Then:

S=M-5=10,0,0,7,7,0,0,7,7);
Ssup = (0,0,0, 1, 1,070, 17 1),
w=(1,2,1,2,2,1,2,1,1);

W = {U)Q, w4, W5, U)7}.

The sub-matrix of M consisting of columns indexed by W and
the syndrome vector are:

(1o 0 o [0]
01 1 0

00 o/[1] @
01 0 1 e
1010]|85=|7
0000 0
00 0 0 0
00 1 1 7
110 0 7

It is not hard to find out that for M «, (w2 = 2) A (S(1) =0) =
1, and for M3, (w7 =2) A (S(3) =0) = 1. Then ez = e7 = 0.

Therefore the double-erroris e = (0, 0,0, eq, €5, 0, 0,0, 0) where
eq = 7 and e5 = 7. Similarly to Example 3, they can be corrected
by Theorem 2.

8 Code Rate Comparison

Sections 8, 9, and 10 are evaluation sections. The GTB codes
are assessed by comparing with conventional popular ECCs such
as Reed-Solomon code known by its minimum redundancy, and
interleaved OLSC known by its low decoding complexity. The com-
parisons are made in the important aspect of ECCs: code rate, error
detection and correction capability, and hardware cost.

8.1 Code Rate Comparison with Reed-Solomon and
Interleaved OLSC Codes

Code rate, calculated by K /N, is a metric often used for evaluating
the transmission efficiency of an ECC.

By Theorem 1, given N and m, the redundancy of a GTB code
is:

acrs = VN;

(18)
Rgrp = (m+ Vggr —m.

With the same /N and m, for interleaved Orthogonal Latin Square
Codes (OLSCs) the redundancy is:

- VK,
doLscC (19)
Rorsc =2mqorsc-
And for Reed-Solomon codes:
Rprs =2m. (20

It is obvious that RS codes always achieve the best code rate. GTB
codes have better code rate than interleaved OLSCs. Without loss
of generality, we examine the code rates of the three ECCs under
1 > m < 11 with fixed codeword length N = 625, as shown in Fig.
4.

120.00%
100.00%

80.00%
Code 60.00%
Rate

40.00%

20.00%

0.00%

—4—OLSC -®-GTB RS

Fig. 4: Code rate comparison among Reed-Solomon, interleaved
OLSC, and GTB codes as m increases.

As expected, RS codes as MDS codes always have the best code
rate over all others. When m is relatively small, the code rate of
GTB and OLSCs codes are similar. As m grows larger, GTB codes
have increasingly better rate than OLSCs. When m = 1, both code
rates of GTB and OLSC are around 90%. When m = 11, GTB codes
is still able to have the rate at 53.8%, while OLSCs only in its ten
percent at 5.0%.

8.2 Code Rate Comparison with The Low Density Codes’
Lower Bound

The check matrix by Construction 1 indicates that the GTB code
also belongs to the family of low density codes. We now examine
its performance versus the theoretical code rate lower bound of low
density codes.

For a class of error locating) — ary codes with row density ¢~
in the binary check matrix (the faction of 1’s in a row), denote the
number of total error locations as L, the minimum number of bits in
Ssup as R, and the probability of one or more errors revealed in one
non-zero syndrome bit as 7. For example, form = 1, re =

1

i~
g*+1

2
— a0 =9)9 2 Then we have the

-1
,and for m =2, re = =,
q ¢ 1+q2+(q22) q+1

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

following lower bound for R for any low density @ — ary code:

[logaLe]
R> ——— 21
> 5 @1
where H () is the binary entropy function.
Fig. 5 shows the comparison made at m = 1 and m = 2 between
GTB code rate and the theoretical lower bound.

350
300
250

200

R
150

100
50

0
a 20 40 60 80 100 120

—— R R, Ry R,

Fig. 5: The comparison between the actual GTB code’s redundancy
R; and Ry for m = 1 and m = 2, and the theoretical lower bound
R A1 and Ra. Particularly, R; is very close to R 4.

9 Potentials of GTB Codes’ Error Detection and
Correction Capability

For any m-error correction ECC, it is able to correct up to m and
detect up to 2m random errors. However, it is also known that for
such an ECC, at some probability it has certain potential to correct
and detect errors beyond the m and 2m limitation. This potential
is determined by the weight distribution and uniqueness of the syn-
dromes. In this section we compare such potentials among the GTB
and interleaved OLSCs because of their similar weight distributions.

9.1 2m + 1 Error Detection Probability Comparison

Denoting p as the probability of a byte being distorted, the number
of codewords with Hamming weight ¢ as A;, the more precise error
detection probability using codeword weight distribution is [23]:

N

Prer=1-Y Ap'(1—(Q-1)p)V " 22)
i=1

Under the same m, it is fair to compare among codes of similar
length. If the code length differs largely, then the weight distribution
will also differ largely. Therefore under the same N, m, and p, we
select GTB and OLSCs for comparison. The error detection potential
of GTB codes over OLSCs is defined as follows:

Pore — Porsc 23)

Improvement =
Porsc

Fig. 6 shows the improvement between the error detection poten-
tial P g of GTB codes and Py 1,5 of OLSCs, when both of them

attepptto diteshherans paSHN Hrastically better than the OLSCs
in its detection beyond 2m errors, is because its larger codeword
distance under the same N and m. As explained in Remark 3 and
proven in Appendix C, an m-error correcting GTB code has distance
D = 2m + 2, while most conventional m-error correcting ECCs
only have D = 2m + 1.

As expected, the larger the bit distortion rate p is, the larger
the error detection improvement will be. When p = 1071, GTB

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

Improvement

i

S
i

=

30.00%

s

20.00%

i
e

10.00%

0.001 0.0001

= |

0.00% G
0.00001 0.000001

Fig. 6: Error detection improvement of GTB codes over OLSCs
under the same NN and m. For every p the three bars are respec-
tively @@ = 2,4, and 8. Both codes are attempting to detect 2m + 1
errors.

codes’ error detection probability is as much as over 80% more
than OLSCs. Even as p decreases to nearly 0, and both error detec-
tion probabilities increase to almost 100%, GTB codes still performs
better.

The following chart is a zoom-in of Fig. 6, indicating the larger Q)
is, the better improvement of error detection potential will be:

Improvement

L

Q=2 Q=4

Fig. 7: A zoom-in of Fig. 6, which shows the trend of improvement
with the increase of (Q under all p.

9.2 m+ 1 Error Correction Probability Comparison

For a code with distance D =2m 41 or D = 2m 4 2, it is able
to correct all m-byte errors. However, it usually is also capable of
correcting more than m errors with a certain probability. Particularly,
for an m-error correcting code, it is very likely to be able to correct
most m + 1 errors.

As long as the syndromes S = M - ¥ of different error patterns
are unique, it is possible to decode those errors, at least theoretically.

Taking the same parameters as in sub-section 9.1, when both
GTB and OLSC have the same N and m, the probability of cor-
recting m + 1 errors are all over 90%. To make the comparison
more obvious, we compare the error missing probability defined as
follows:

number of unique syndromes
number of total syndromes

(24)

Priss =

Fig. 8 compares the error mis-correction probability under the
same setting of Fig. 6.

It is also notable that OLSCs only provide error correction on
the information bytes, not redundant bytes. In contrary, GTB codes
correct errors on both.

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%
BGTB B80LSC

Fig. 8: Although this figure does not reveal any trend or error mis-
correction as (Q increases, it does show that GTB codes have less
missed errors in all cases.

10 Hardware Implementation and Complexity
Comparison

In section 5 the algorithms of error locating and correction are
introduced in Algorithms 1 and 2. The hardware decoder module
consists of five components: syndrome computation, support of syn-
drome conversion, error locating, finding the identity matrix for error
magnitude, and error correction. Since all the five components are
combinatorial networks, their latency altogether is negligible.

10.1 GTB Codes’ Decoding Complexity Estimation

In this subsection, the hardware cost of the decoder is estimated in
the number of equivalent 2-input gates.

1. Syndrome computation:
S=M-v=M e

Hardware cost:
bA(l—1)
2. Support of syndrome conversion:

. 0, S
SS“p(’):{1, S(i) # 0

Hardware cost:
Ab-1)

3. Error locating:

u=

{i|M;,;=1}

Ssup(i) =m+1|71:0;

Hardware cost:
mN

4. Finding the identity matrix for error magnitude:

Row(i) =

douy=171:0;

{JIM;,;=1}

Hardware cost:
A(2.51 4+ logl — 1)

10

5. Error correction:

b=\

{i|M;,;=1}

Row(1) - S(4),

where \/ is the bitwise OR for all elements in its subscript.
Hardware cost:

Nb(m + 1) + b(A + N)

Summing all the five hardware cost estimation together and
denoting the overall decoding complexity as L, we have:

L=bA(l—1)+ A(b—1) + mN+
A(2.51 +1ogl — 1) + Nb(m + 1) + b(A + N)
~ b(Al +mN)

Since Al ~ mN:
L =~ b(Al 4+ mN) ~ 2mNb. (25)

Thus from [Eq. 25] it follows that the decoding complexity of
GTB codes is linear to its codeword length N, byte size b = log @,
and the number of errors to be corrected m.

The schematics of this decoding system is shown in Fig. 9.

b

[— Support of
. Syndrome Syndrome Error
Computation Conversion Locating
Distorted
Codewords > >

>

P11

'
b

[

N b
mxm
Identity Error nj‘::>

Matrix Correction

> — :)D N Corrected
. Codewords
mb :
D [—

b

Fig. 9: The five-stage decoder of GTB codes. The bit width of each
bus is labeled.

All 5 components are simple circuits: bitwise XOR gates, bitwise
OR gates, ng-bit and m-bit adders. Comparing with other non-
binary error correcting codes which require finite field multipliers
or even inverters, it is of higher cost-efficiency.

Moreover, the circuit in Fig. 9 is a combinational network. It takes
almost no time in decoding. In contrast, many other popular ECCs
require decoders working in serial under a relatively large latency,
which is proportional to the codeword length N and number of errors
to be corrected m.

10.2 Hardware Decoder Module Comparison

In this subsection we verify the hardware cost of GTB codes by
FPGA implementation.

Since single and double errors are most common cases in hard-
ware distortions [24], the comparison is made among decoders of
m = 1, and m = 2, with codeword length b = 512 bits.

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

10.2.1 Single-Byte Error Decoder Comparison: The major
competitors of GTB codes when m =1 are non-binary Ham-
ming codes, Reed-Solomon (RS) codes [25] and interleaved/parallel
binary Hamming codes [26, 27].

For the experiment of protecting a 512-bit data vector, we select
the parameters m = 1, b = {4, 8,16,32,64}, K = % for GTB
codes. The decoders of four different codes are implemented for
comparison on a Xilinx Virtex4 XC4VFX60 FPGA board. The
decoding complexity is the sum of both decoder’s and redundancy’s
hardware costs in terms of CLBs on FPGA.

aGTB Interleaved-Hamming RS @Hamming

Fig. 10: Hardware cost comparison among four codes when m = 1.
As b increases, the GTB codes demonstrate more savings than the
non-binary Hamming and RS codes. Another cost-efficient choice
for m =1 is the interleaved/parallel Hamming codes. When b =
64, RS or non-binary Hamming decoders implementation becomes
impractical due to large finite field size.

From Fig. 10, the GTB decoding costs the least amount of FPGA
resources, and then the interleaved/parallel Hamming codes. Their
decoding complexity is almost the same. GTB codes achieves more
saving in syndrome computing by the optimal construction in section
3.2, and interleaved Hamming codes are better in redundancy. Other
decoders consume 70% — 150% more resources than them.

10.2.2 Double-Byte Error Decoding Complexity Compari-
son: The major competitors of GTB codes when m = 2 are
Reed-Solomon codes and interleaved Orthogonal Latin Square codes
(OLSC) [28].

Similar as the previous implementation, the codes’ parameters
arem =2,b={4,8,16,32,64}, K = 511)2. The decoders of three
different codes are implemented for comparison. Their decoding
complexity including both the redundancy and decoder hardware
costs are shown in Fig. 11.

Decoding Complexit
D
o
o
o

4 8 16 32 64
b

IGTB & lnterleaved-OLSC 7 RS

Fig. 11: Hardware cost of the three codes’ decoding procedure
for m = 2. When b = 64, RS or non-binary Hamming decoders
implementation becomes impractical due to large finite field size.

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

When m = 2, the interleaved OLSC decoder costs 5 times more
than GTB codes, and RS costs almost 50 times more. As b increases,
GTB codes achieves more savings from the RS codes, who need to
operate over larger finite fields.

11 Application Examples

In this section we introduce three possible applications of the GTB
codes. While reliable memory design is a natural area for GTB
codes, we also propose two novel applications that GTB codes may
contribute to.

11.1 GTB Codes for Memories

The use of GTB codes on error correction for memories is straight-
forward. As shown in subsection 10.2, it is able to achieve a lower
decoding complexity at the cost of redundancy (memory storage).
Therefore at the design stage, the redundancy equation [Eq. 18] and
decoding complexity estimation equation [Eq. 25] have to be eval-
vated and compared with the actual memory parameters plugged
in.

11.2 GTB Codes for Coded Computation

Another application for GTB codes is on coded computation which
aims to restore missing data or tolerate stragglers. The general
assumption is that part (one or a few bytes) of the information is
missing, instead of being faulty. Therefore data regeneration, rather
than error correction, becomes the goal. The situation is often seen in
a distributed system, where each node is carrying out a share of the
task. A few slower nodes (stragglers) can have negative impact on
the entire system by making all others wait for them to finish before
everyone can proceed [29]. Such a scenario is often seen in hetero-
geneous clusters [30], storage systems [31], and machine learning
acceleration [32] etc.

An ECC capable of data regeneration is called an erasure code.
Among most erasure codes, the Maximum Distance Separable
(MDS) codes such as Reed-Solomon codes are generally adopted
for their minimum redundancy. On the other hand, codes such as
OLSC cannot function as erasure codes because of their incapability
of error correction on redundant bytes. An erasure ECC with dis-
tance D is able to correct up to L%J errors, and regenerate up to
D — 1 missing bytes. Unlike error correction which uses the check
matrix to restore the codeword integrity, data regeneration usually
leverages the encoding matrix.

In this subsection we show by an example that the GTB codes
can also be used as for coded computation. In this application,
GTB codes will require more redundancy than MDS codes, but its
data regeneration procedure has considerably less complexity and
latency. Similar as other erasure codes, for a (N, K, D)qg GTB code
where D = 2m + 2, it is able to regenerateupto D — 1 =2m + 1
missing bytes.

Example 6. A distributed machine learning training system has 9
nodes for parallel matrix multiplication. Among the 9 nodes there
can be no more than 30%stragglers. A straggler-tolerance scheme
can be designed by the framework of GTB codes.

First, a (N, K, D)g = (16,9,4)g GTB code is selected, which
is able to regenerate up to D — 1 = 3 bytes of missing or strag-
gling data. Among the N = 16 nodes, 9 of them are the original
matrix multiplication nodes, and 7 the redundant nodes to support
data regeneration. The decoding matrix can be generated by Con-
struction 1, and its encoding matrix can be derived by Corollary

11

| 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16

1 00001 1 10 1 1 1 0 1 1 1
o100O0O1O0O0OO0OT1T O O O 1 0 O

M = o601 00010O0TO0O 1T O 0O 0 1 o0
00 01O0O0O0OT1TTO0O0 0 1 0o 0 0 1

o0 0011110 0 0 0 0 0 0 0
000 O0OO0OO0OO0OTO0T11 1 1 0 0 0 O

o0 0O0OO0OO0DOOOTU 0D O 0 1 1 1 1

For a codeword v encoded by M’ where v = {v1,v2, v,y

v16}, each v; stands for the output of a matrix multiplication node.
By M’ we have nodes {6,7,8,10, 11,12, 14, 15, 16} as the original
matrix multiplication nodes, and the rest can be coded as redundant.
Assume that nodes 14, 15, 16 are stragglers in a specific round of
computation, and so v = {vy,va,- -+, v13,7,7,7 }.

By M’ we can simply derive that:

v14 = v2 D ve D v10;
V15 = v3 D vy D v11;

v16 = v4 D v8 © v12-
Therefore the 3 bytes of missing data are regenerated.

Remark 7. For a similar straggler-tolerance system built by a Reed-
Solomon code, it will have (Ngs, Krs, Drs)g = (12,9,4)¢ as
the system parameters. Although its required redundant nodes will
be less than the GTB-based system (only 3 needed for the RS code,
while 7 for the GTB code), its data regeneration has to involve
matrix inversion and matrix multiplication in finite fields. As @
can be large in modern distributed systems (32-bit or 64-bit), those
operations will have to be carried out in a large field (GF(232) or
GF(2%%)), resulting in a non-negligible or even impractical com-
putation complexity and delay. As for the GTB codes, since its
encoding matrix is binary, only bitwise XOR operations are nec-
essary for data regeneration, making it more applicable to realistic
distributed systems.

11.3 GTB Codes for Group Testing with Neutralization

Section 2 introduced the check matrix for GTB codes originated
from group testing. A conventional group testing scheme is able to
identify up to m targeted objects with a m-disjunct matrix, whose
rows are the group test patterns. Each column indexes an object in
the group, where the 1’s in a column indicate which tests that object
is to participate. The OR of the m columns corresponding to the m
targeted objects, will form a syndrome vector. A 1 in the syndrome
vector is a positive test result (at least one targeted object has par-
ticipated in this test), and a 0 means negative (no targeted objects
in this test). By decoding the syndrome vector all targeted objects
can be identified. This technique is widely adopted in applications
such as locating the erroneous items in a system, or identifying the
poisonous solutions in a group of chemistry liquid.

However, such scheme is not applicable to the cases with object
neutralization. For example, high level of acid or alkali in solutions
can both be considered as harmful (poisonous) to humans. For a con-
ventional group testing designed to identify the harmful solutions in
a group, it will return syndrome O at the tests which both the acid
and alkali solutions participate, since their mix will be non-harmful
salt and water.

The conventional group testing techniques are not able to handle
such cases when some targeted objects can neutralize each other and
result in negative test syndromes. Essentially, this is because the con-
ventional group testing syndromes are computed by bitwise OR of
m columns, which has no equivalence to neutralization. However,
the syndrome computation of GTB codes are based on XOR of the
columns, enabling it to symbolize the neutralization phenomenon.
We show this new feature by the following example.

Example 7. There are 9 solutions indexed by {1,2,---,9} among
which 2 are harmful to humans. One of the two poisonous solutions

12

is hydrochloric acid (HCI), and another sodium hydroxide (NaOH).
However, the indexes of the two poisonous solutions are unknown.
A group testing matrix to identify the two harmful solutions is
constructed as:

1 2 3 45 6 7 8 9

all 1 1.0 0 0 0 0 O

b0 0OO1T 1.1 0 0 O

c/0O OO0 0O OO0 T1 11

M= dj1 0 01 00100

“e/0 1 0 01 0 O0 1 0

f10 01 0 01 0 0 1

g/l 0 0 0 O 1 0 1 O

h|{O 0O 1 0 1 0 1 0 O

i/0 1 0 1 0 0 0 0 1
where the column indexes of {1, 2, -, 9} correspond to the 9 solu-
tions. Each row indexed by {a,b,---,i} is a group test pattern,

where the 1’s in a row indicate which solutions are to be mixed for a
test.

Suppose after tests {a, b, - - -, i}, the syndrome vector is returned
as S =4{0,0,0,1,1,0,0,1,1}. Therefore we know that each of the
tests in {d, e, h, i} has involved at least one poisonous solution.

By the conventional group testing technique, it is not possible to
locate the two targeted solutions because there exist no %, j such that:

M*,i \ M*,j = S7

where V is the bitwise OR operator.
However, by GTB decoding Algorithm 4, it can be found that for
i =4,7 =5, we have:

M*,i 3] M*,j = 5'7

where @ is the bitwise XOR operator.

Therefore the two poisonous solutions are identified by their
indexes 4 and 5. It can also be deduced that their neutralization
has happened at test a, where the non-harmful salt and water are
produced.

Remark 8. For more complicated cases, such as multiple types
of neutralizations among multiple objects, non-binary GTB codes
can be leveraged to encode each neutralization type accordingly.
However, this is beyond the scope of this paper.

With the proposed scheme, group testing can be made more effi-
cient, that within one group of tests, objects of multiple types can be
identified, even if there are neutralizations or maskings among them.

12 Conclusion

As multi-byte errors become more probable with newer and faster
storage and compute systems, stronger protection against byte-level
distortions is highly demanded. Therefore we propose a new group
testing based multi-byte error correcting codes (GTB codes) to
address this issue. For codewords with large bytes in Galois field
GF(Q) where Q = 2° and b > 1, the proposed new code’s decod-
ing does not require any multiplications or inversions in Galois
fields. Instead, only bitwise XORs and integer additions are neces-
sary. The GTB codes achieve much lower encoding and decoding
complexity than other known codes such as Hamming and Reed-
Solomon codes. Comparing with the competitors of low decoding
complexity, such as bit-interleaved codes, GTB codes have the
advantage of better code rate.

The check matrices of GTB codes are generated from binary
superimposed codes, which enables low-complexity decoding with
mere binary or integer operations. The decoding complexity is as
low as O(mNb). And as Q = 2° increases, the complexity only
increases proportionally to b. In contrast, popular codes relying

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

on finite field operations have complexity proportional to at least
b2. These characters make GTB codes a promising low-cost and
high-reliability ECC for the design of reliable systems.

Based on the GTB codes’ fast and low complexity decoding,
we suggest that it can serve systems requiring high reliability, low
latency, and less demanding in redundancy [33].

13 Acknowledgments

This research is partially supported by the NSF grants (No. CNS-
1745808) and (No. CNS-1012910).

14 References

1 Z. Wang and M. Karpovsky, “Reliable and secure memories based on algebraic
manipulation detection codes and robust error correction,” Proc. Int. Depend Symp,
2013.

2 E. Fujiwara, Code design for dependable systems: theory and practical applica-
tions. John Wiley & Sons, pp. 264, 2006.

3 G. Umanesan and E. Fujiwara, “A class of codes for correcting single spotty byte
errors,” IEICE Transactions on Fundamentals of ElectronicsIEEE, vol. 86.3, pp.
704-714, 2003.

4 W. Zhen, M. Karpovsky, and K. J. Kulikowski, “Replacing linear hamming codes
by robust nonlinear codes results in a reliability improvement of memories,”
Dependable Systems & Networks, DSN’09. IEEE/IFIP International Conference,
2009.

5 Schifra. (2017) Schifra reed-solomon error correcting code library. [Online].

Available: http://www.schifra.com/index.html

Xilinx, Reed-Solomon Decoder v9.0, 2015.

7 Y. Wu, “New list decoding algorithms for reed-solomon and bch codes,” Informa-
tion Theory, 2007. ISIT 2007. IEEE International Symposium, 2007.

8 J.Jeng and T. Truong, “On decoding of both errors and erasures of a reed-solomon
code using an inverse-free berlekamp-massey algorithm,” IEEE Transactions on
Communications, no. 47.10, pp. 1488—-1494, 1999.

9 Xilinx, LogiCORE IP Reed-Solomon Decoder, v8.0, ds862 ed., October 19, 2011.

10 Y. Cui and X. Zhang, “Research and implemention of interleaving grouping ham-
ming code algorithm,” Communication and Computing (ICSPCC), 2013 IEEE
International Conference on Signal Processing, pp. 1-4, 2013.

11 S. Laendner and O. Milenkovic, “Ldpc codes based on latin squares: Cycle
structure, stopping set, and trapping set analysis,” IEEE Transactions on Commu-
nications, no. 55.2, pp. 303-312, 2007.

12 R. Datta and N. A. Touba, “Generating burst-error correcting codes from orthogo-
nal latin square codes—a graph theoretic approach,” in Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2011 IEEE International Symposium
on. IEEE, 2011, pp. 367-373.

13 A. G. D’yachkov, A. J. Macula, and V. V. Rykov, “On optimal parameters of
a class of superimposed codes and designs,” IEEE International Symposium on
Information Theory, 1998.

14 A. M. A. G. DaAZyachkov and V. Rykov, “New applications and results of
superimposed code theory arising from the potentialities of molecular biology,”
Numbers, Information and Complexity, pp. 265-282, 2000.

15 W. Kautz and R. Singleton, “Nonrandom binary superimposed codes,” IEEE
Transactions on Information Theory, no. 10.4, pp. 363-377, 1964.

16 A. G. D’yachkov and V. V. Rykov, “Bounds for the length of disjunctive codes,”
Problems of Information Transmission, vol. 18, no. 3, pp. 7-13, 1982.

17 P.Luo, A. Lin, W. Zhen, and M. Karpovsky, “Hardware implementation of secure
shamir’s secret sharing scheme,” High-Assurance Systems Engineering (HASE),
IEEE 15th International Symposium on., 2014.

18 A. G. D’yachkov and V. V. Rykov, “Optimal superimposed codes and designs for
renyi’s search model,” Journal of Statistical Planning and Inference, no. 100.2, pp.
281-302, 2002.

19 S. Ling and C. Xing, Coding theory: a first course. Cambridge University Press,
2004.

20 Z. Wang, M. G. Karpovsky, and L. Bu, “Design of reliable and secure devices
realizing shamirdAZs secret sharing.” IEEE Tansactions on on Computers, vol. PP,
Oct. 2015.

21 L. Bu, M. G. Karpovsky, and Z. Wang, “New byte error correcting codes with
simple decoding for reliable cache design,” 21st IEEE On-Line Testing Symposium
(IOLTS), 2015.

22 C.D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000.

23 J. C. Moreira and P. G. Farrell, Essentials of error-control coding. John Wiley &
Sons, 2006.

24 A. Fog, The microarchitecture of Intel, AMD and VIA CPUs — An optimization
guide for assembly programmers and compiler makers, Technical University of
Denmark, 2014.

25 S. Pontarelli, P. Reviriego, M. Ottavi, and J. A. Maestro, “Low delay single sym-
bol error correction codes based on reed solomon codes,” IEEE transactions on
computers, vol. 64, no. 5, pp. 1497-1501, 2015.

26 Y. Cui and X. Zhang, “Research and implemention of interleaving grouping
hamming code algorithm,” IEEE International Conference on Signal Processing,
Communication and Computing (ICSPCC), 2013.

[=)}

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

27 K.Namba and F. Lombardi, “High-speed parallel decodable nonbinary single-error
correcting (sec) codes,” IEEE Transactions on Device and Materials Reliability,
vol. 16, no. 1, pp. 30-37, 2016.

28 G. Yalcin and et al, “Exploiting a fast and simple ecc for scaling supply voltage in
level-1 caches,” IEEE On-Line Testing Symposium (IOLTS), 2014.

29 J.Deanand L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74-80, 2013.

30 A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computa-
tion over heterogeneous clusters,” arXiv preprint arXiv:1701.05973, 2017.

31 K. W.Lee, “Speeding up distributed storage and computing systems using codes,”
Ph.D. dissertation, UC Berkeley, 2016.

32 K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding
up distributed machine learning using codes,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1514-1529, 2018.

33 S.Ge, Z. Wang, P. Luo, and M. Karpovsky, “Secure memories resistant to both ran-
dom errors and fault injection attacks using nonlinear error correction codes,” ACM
Proceedings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy, 2013.

A Proof of the Reed-Solomon Code Parameters
to Construct the Check Matrix for GTB Codes

Proof 1. According to Construction 1 and [Eq. 2], we have:
A'l:‘I'nq'qu_l :”qqkq =ngN
Since NV is given, it comes down to find the minimal n4. For RS

codes, we have:
_|ng—1
=

When m is given, the problem comes down to find the minimal
kg, which is obviously kg = 2.
Then by substituting it to all other equations:

N =g
A=qg(m+1);
l=q.

And so:
A-l=(m+1)N.

B Proof of the Optimal q

Proof2. Since N = K + R=¢"1, R=A—m, and A = q - ng,
by substituting R and A into N, we have:

qkq—q-nq—K+m=0.

From Theorem 1 the optimal k4 and ng are given as:
kg =2;ng=m+1.

By solving the first quadratic equation, the optimal gop¢ Wwhen K
and m are given is [Eq. 12].

C Proof of the Parameters of GTB Codes

Proof 3. The redundancy R of a code is equal to the number of
linearly independent rows in its check matrix. By Construction 1 and
the definition of blocks, M has ng4 blocks and the sum of all rows in
each block is always a vector of all 1’s.

Therefore we only need to remove any one row each of ng — 1
blocks to make the rest of the rows all linearly independent. Also

13

from [Eq. 9], ng — 1 = m, so that:

R=A-(ng—1)=qng—m=q(m+1) —m;

K:N—R:qQ—q(m—i—l)—i—m.

If M is constructed from an m-superimposed code, in every col-
umn there are ng = m + 1 number of ones. In Section IIT A, A is
defined as the maximal number of ones in common between any
two columns. From Construction 1:

A =ng —dq.
Since for RS codes dq = r¢ + 1,
A=ng—rq—1=ks—1
From Theorem 1 the optimal kq = 2, thus:
A=1 (26)

For any two columns of M, since A = 1, the bitwise XOR of them
can generate at most one O from two 1’s in the same location of these
2 columns. We call this a cancellation. For columns, the maximal
number of cancellations is (3).

On the other hand, since each of these x columns has m + 1 1’s,
the maximal number of 1’s in all columns is z(m + 1). For each
block there needs to be at least 1 cancellation to make their bitwise
XOR equal to zero. Therefore the sum can have at most z(m + 1) —
(m+1) Is.

To make the number of cancellations greater than or equal to the
number of 1’s in the sum of z columns, we have:

(;U) > (m+ 1)z — (m+1);

=2 - 2m+3)z+2(m+1)>0.

Solving this quadratic equation we have x > 2m + 2.

This shows that for a matrix M constructed by an m-
superimposed code with the parameters from [Eq. 9], it takes at
least 2m + 2 columns to make their bitwise XOR sum a vector of
all zeros. Meaning for GTB codes:

D =2m+ 2.

Therefore given N and m, the parameters of the corresponding
optimal GTB code are:

(N,K,D)g = (¢*,¢> —q(m+1) +m,2m +2)g. M

D Proof of the GTB Code Error Locating
Algorithm

Proof 4. Construction 1 indicates that for any column j in M, there
are exactly ng = m + 1 ones in M, ;. Therefore if the error e;
affects all the nq bits of Ssyup where v; participates in computation,
then reversely the location of e; can be found by summing up all the
affected support of the syndromes and comparing it with m + 1. W

E Proof of the GTB Code Error Correction
Algorithm

Proof 5. According to Construction 1 , in a matrix M whose
columns are codewords of an m-superimposed code, within any
set T' of columns, |T'|< m + 1, for any column h, h € T, there
must exist a row k in M, where My j, =1 in column h, and

14

Mj, ; =0 for all j € T,j # h. Since this is true for all columns
in T, there exists an (m + 1) X (m + 1) identity sub-matrix in any
given m + 1 columns.

The column indexes of m errors are given by u as in Algorithm
1. And the rows M; , for the identity sub-matrix can be easily iden-
tified by checking if only one error participates in the computing of
S(1).

Meaning for any one out of m errors, where T' = {j | e; # 0} is
the set of error locations, there exits at least one row M; ., where
only M; ; = 1and M; j, = Oforallh € T, h # j.

This m X m identity sub-matrix will provide the indexes of the
digits in syndrome S which are affected by each single error digit ¢
only, such that:

S(l) = Mi,* S0 = ML* e = ej,

Therefore v; = 0; @ ej = ; ® S(1). []

F Proof of 1-step Decoding

Proof 6. If the number of digits in Crg codewords increases by A,
meaning the number of blocks in M increasing to nfl =ng+ A,
then the number of blocks without error masking will be increased
by A. So the number of digits without error masking in the syndrome
will increase by A. In this way the lower bound in (14) can be re-
written as:

P(:orT 2 (1 _ Q—l)'ln—l—A.

If A = 0, then [Eq. 15] is equivalent to [Eq. 14].

If A =m — 1, then Peorr = 1. Meaning for any €, among 2m
digits of the syndrome it affects, there are always at least ng =
m + 1 digits indicating that it is an error. This will be the same as
majority voting. Meaning all m errors can be located and corrected
with exactly the probability of 100%.

Since (37 Ssup(i) > m + 1) 71 : 0 can be simply represented as
a threshold gate, where m + 1 or more ones in the input produce a
binary 1 in the output, the procedure presented in Algorithm 3 can
be called 1-step threshold decoding. |

G Proof of Double Error Correction Algorithm

Proof 7. When m = 2, we have A = 1. So there can be at most one
error masking in syndrome .S. Therefore if:

wi= Y

{ilM; 5=1}

Then it is possible that e; # 0.

However, there can be more than two u; = 1. From Definition
2, the bitwise OR of any 2 columns cannot cover another column.
Therefore for any w; = m = 2, there must exit a Row M; . such

that:
Z wj =1.
{dIM; ;=1}
However, since for double error correcting GTB codes D =
2m + 2 = 6, any two syndromes of two different double errors must
be different. Therefore for this Row M; , if:

Then in v; there cannot be an error. Because if there is an error in
vj,and Y w; = 1, then S(i) = e; # 0. []

IET Research Journals, pp. 1-14
© The Institution of Engineering and Technology 2018

