Janus: An Uncertain Cache Architecture to Cope
with Side Channel Attacks

Hossein Hosseinzadeh, Mihailo Isakov, Mostafa Darabi, Ahmad Patooghy and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Boston University

Abstract—Side channel attacks are a major class of attacks
to crypto-systems. Attackers collect and analyze timing behavior,
I/0 data, or power consumption in these systems to undermine
their effectiveness in protecting sensitive information. In this
work, we propose a new cache architecture, called Janus, to
enable crypto-systems to introduce randomization and uncer-
tainty in their runtime timing behavior and power utilization
profile. In the proposed cache architecture, each data block is
equipped with an on-off flag to enable/disable the data block. The
Janus architecture has two special instructions in its instruction
set to support the on-off flag. Beside the analytical evaluation
of the proposed cache architecture, we deploy it in an ARM-7
processor core to study its feasibility and practicality. Results
show a significant variation in the timing behavior across all the
benchmarks. The new secure processor architecture has minimal
hardware overhead and significant improvement in protecting
against power analysis and timing behavior attacks.

I. INTRODUCTION

Computing and embedded systems have penetrated almost
every aspect of our daily lives, from mobile phones and
artificial pacemakers to thermostats and self-driving vehicles.
In fact, nowadays, most of the integrated circuits (ICs) in
use are found in embedded systems and processing sensitive
information. The need to improve the security of these systems
has never been greater because of the ongoing push to connect
them to the Internet. To meet some of the security challenges,
different crypto-systems have been proposed. However, one
of the common attacks on crypto-systems, and computing
systems in general, is side channel attacks (SCAs) in which
external indicators such as power consumption and electro-
magnetic emissions can be used to derive secret and sensitive
information. Power analysis attacks, fault injection attacks, and
timing attacks are among the most successful side channel
attacks. With power analysis attacks, the power expenditure
of a crypto-system is investigated by attackers in order to
reveal sensitive information such as cryptographic keys. The
most popular power analysis attacks are known as simple
power analysis (SPA) and differential power analysis (DPA)
attacks [1]. In SPA attacks, the power consumption graphs
related to the electrical activities of the IC modules are
interpreted visually. With DPA techniques, attackers collect
and analyze data from various cryptographic functions, and
use them to calculate the intermediate values of cryptographic
computations. Since power consumption monitoring is not
invasive, the crypto-system may not detect power analysis
attacks. To cope with power analysis attacks, the system’s
power consumption can be obfuscated. Randomization of
the IC runtime power variations is one such technique. By
randomizing the consuming power of a crypto-system, at-

tackers find it more difficult to extract secret information.
Memory operations and the memory hierarchy can be utilized
to randomize the power expenditure. Fault injection attacks are
another widely used class of side channel attacks [2]. Fault
injection attacks have two main phases. In the first phase,
the attacker maliciously injects some faults in order to affect
the input parameters, processing unit [3], storage unit [3], or
instructions [4] of the crypto-system. In the second phase,
an analysis is done to gathered information e.g., I/O data,
timing behaviors to reveal secret keys inside the crypto-system.
Fault injection attacks are often based on some well-defined
analysis vectors [5] performed on the gathered information
during attacks. Randomizing the timing and I/O data of a
crypto-system significantly improves security of the system,
especially, against fault injection attacks [5]. In this work,
we propose and evaluate a new cache design to cope with
power and fault injection attacks. In the proposed Janus cache
architecture, each cacheline has an additional “on-off flag”
(OOF) bit to enable and disable access to the data block.
By introducing instructions to turn on and off cachelines, the
runtime power utilization and the timing behavior of the cache
structure are efficiently obfuscated.
II. RELATED WORK

In [6], a hardware-software randomized instruction injection
scheme (RIJID) was proposed. In RIJID, the power utilization
is scrambled so that the segments of the encryption code can-
not be identified. The scheme has shown some efficacy against
both SPA and DPA attacks that use system power profile to
extract encryption code. Ambrose et al. in [7] proposed the use
of parallel capability in multi-modulo residue number systems
(RNS) architectures to scramble sensitive data. By using
RNS architectures, the operations can be divided into parallel
sections, and thus, the power consumption and complexity
are reduced. Yang er al. [8] introduced a scheme known as
random dynamic voltage and frequency scaling (RDVFS) to
decrease the correlation between the system power consump-
tion and input data by changing the frequency and voltage
randomly. However, RDVFS method cannot defeat SPA/DPA
power attacks [8]. In [9], authors developed a policy using
dynamic voltage and frequency scaling (DVFS) to overcome
the limitations of RDVFS by breaking correlations between
voltage and frequency of (V, f) pairs. In [10], the advanced
encryption standard (AES) algorithm is implemented using
techniques resistant to first order differential electromagnetic
and power analyses. With this approach, the Galois Field of the
AES is randomized and no additional operation is added to the
algorithm. Consequently, the working frequency remains the

same and the used algorithm is compatible to the published
standard. Fault attack tolerant methods generally fall under
one of two categories: fault avoidance and fault protection. In
both cases, extra hardware is often required to (a) check and
prevent fault injection or (b) rollback the crypto-system to
recover from the fault. Most of the proposed approaches dealt
with power attacks while ignoring fault attacks or vice versa.
In this work, we try to jointly address both fault injection and
power attacks in crypto-systems.
ITI. JANUS CACHE ARCHITECTURE

In both general-purpose and embedded computing, the over-
all system’s performance and power usage is highly dependent
on the cache’s performance. When the processor needs some
data, it goes to the cache. If the data is in the cache, there is
a hit. Otherwise, the processor has to wait for main memory
to supply the data. Since access time for the main memory is
orders of magnitude greater than the cache access time, cache
hits and cache misses have very different access times and
power profiles. From the power consumption view, a cache
hit consumes very little energy since no external lines of data
are moved through the memory subsystem hierarchy and no
main bus address or data activities are involved. Therefore,
the hit rate of the cache system plays a pivotal role in the
power consumption and timing behavior of a crypto-system.
The key insight is that by changing the miss and hit rates, one
can alter the power consumption and timing behavior of the
system leading to a more robust crypto-system.

The proposed cache architecture operates under fully asso-
ciative policy for substituting the data words. More specifi-
cally, new data words can be stored in any free locations of
the cache, and if the cache is full, data eviction and new data
words placement use the Least Recently Used (LRU) policy.
In the Janus cache design, for each block of data there is
one flag bit called “on-off flag” (0OOF). The OOF is used to
enable or disable access to a particular cacheline even when
the valid bit of the line is one and there is a match on the
tags. By introducing a small set of instructions for turning on
and off the OOF bits, we are effectively able to (a) obfuscate
the power utilization of system in a controlled manner and
(b) minimize the hardware modifications needed to support
the new security feature. All the fields in the conventional
cache structure and their functionalities remain the same. For
simplicity, we did not show the cache coherence bits field. The
OOF bit check happens after the valid bit check, therefore, in
the Janus architecture, there is one single gate delay in the
cache structure. To control the state of each OOF of the cache
structure, we introduce two ON-OFF instructions: ‘“‘cache-
block-on-i” and “‘cache-block-off-i”, for controlling the i-th
cacheline. By exploiting these two instructions, the amount of
effective hit and miss rates of the cache is controlled beyond
the normal miss and hit rates of the executing program. This
approach gives users a program level access for controlling the
desired amount of obfuscation. The random injection of this
instruction pair into the based code creates a runtime power
profile and timing behavior for the crypto-system that are more
resilient to power analysis and fault injection attacks.

A. Runtime ON-OFF Algorithm

Each memory request now has three possible outcomes: (1)
program miss, (2) program hit and OOF off, and finally (3)
program hit and OOF on. When the addressed block has not
been previously brought in the cache or has been evicted, a
cache miss occurs. However, if the block is found in the cache,
there is a cache hit. Since cachelines can be disabled through
the security policy, certain cache misses are intentional (IM) -
outcome (2). In the case of an IM, the crypto-system follows
the same data fetching process (either from lower caches or
main memory) as in the case of a genuine cache miss. To
make sure that an IM and an actual miss have the same power
and latency profiles, the fetched block is placed on top of the
old. Let us assume that the cache has n data blocks, from 0 to
n — 1, and the considered code to be run consists of m time
slots, from O to m — 1. Turning off each data block increases
the power utilization of the crypto-system. This execution time
overhead is based on the amount of IMs encountered during
program execution. This increase in power can be modeled
as a random variable, more specifically as a Poisson random
variable, since it depends on the number of ON-OFF instruction
pairs executed at runtime. Let P; denote the increase in power
in the crypto-system when the ¢-th cache data block is turned
off. Thus, for P;, we have:

P, = A; x C,)

A; is the number of active requests on the i-th data block
during execution and Cj is a constant value (the power
consumed by the crypto-system to bring in data from the RAM
- Random Access Memory - instead of the cache). With the
Janus caching scheme, the execution of ON-OFF instruction
pairs and their effects on the cache miss rate add uncertainty to
the power consumption of the crypto-system, and obfuscate the
actual program execution power usage profile. As a result, the
crypto-system is protected against the power analysis attacks.
The runtime power utilization uncertainty or the added noise is
a random process. In practical systems, the power consumption
is capped (i.e., the second moment of the noise is limited),
therefore, the highest uncertainty (i.e., entropy) in the power
consumption can be realized with a Gaussian noise model [11].
For this reason, the Janus caching scheme creates a Gaussian
noise in the power consumption through the random variable
P; and uses it to insert the appropriate number of ON-OFF
instruction pairs in the code. Let n(t) denote the amount of
Gaussian noise at the time slot ¢ which can be modeled by a
Gaussian random variable. Because of practical limitations, a
pure Gaussian random variable cannot be generated, thus, a
pseudo Gaussian random variable at the time slot ¢ is used.
For producing the n(t), at first, we choose two numbers U;
and Us in the range of [0, 1] arbitrarily. n(t) can be produced
using the following equations [11]:

V1:2U1—1 V2:2U2—1,
S =Vi?+ V2% (Such that S < 1),

n(t) = 8y, @

and

If S > 1, we select another U; and Us until S < 1 holds.
This is the amount of Gaussian noise at the time slot ¢ that
should be added to the power consumption of the system.
Algorithm 1 presents the procedure for achieving the value of
n(t) in Equation 2 to be added to the random variables P; in
Equation 1. The algorithm derives in n(t) by exploring the ON
and OFF states of the cache data blocks in the time slot ¢. It is

Algorithm 1 Janus ON-OFF Policy in the Time Slot ¢

1: Compute all the P; values via Equation 1.

2: Compute the power addition or minus for all the states of
data blocks.

3: Compute n(t) value via Equation 2.

4: Among the different states of data blocks for being turned
on and off, choose the state whose result is the closest to
the amount of n(t) computed in the previous step.

worth noting that, although we illustrate the Janus architecture
with a single level cache for presentation simplicity, it works
in multi-level cache systems as well.
IV. EVALUATIONS

A. Analytical Evaluation

The analytical assessment of the Janus cache architecture
focuses on (a) the number of available data blocks to turn
ON and OFF in the cache at any given time and (b) the error
probability of guessing the consumed power. Let us assume
that there are N data blocks available to turn ON and OFF, and
turning off each of them results in some P power increase.
During each time slot, there are /N 4 1 possible data block
states and % power difference between them. Based on [12]
noise quantization results, the variance of distance between the
Pseudo-Gaussian noise produced by turning ON and OFF the
data blocks and the Gaussian noise, i.e., 02, _,_ .., can be
calculated as

9 NP?
Odistance — /N L 172" 3)
3(N +1)2

By increasing the number of available data blocks in the cache
structure to be turned ON and OFF, one can decrease the
distance between the two noises. Another important metric
for evaluating the Janus architecture’s performance is its error
probability in estimating the crypto-system’s power usage to
the ON and OFF decisions. Since a Gaussian noise model is
used, one can model the error probability of the power estimate
as the error rate in an additive white Gaussian noise (AWGN)
channel using binary phase-shift keying (BPSK) modulation.
Using the same approach as in [12] for AWGN channel, the
error probability of the estimated power, i.e., Prey,or, Can be
written as

1
Prepror = §e7ﬁfc(\/ﬁ) “4)
Where er fc2 is the error function and equals to
sq?tﬂ' fmoo e de.

B. Simulation Results

Data blocks are turned on and off in the Janus cache
architecture using Algorithm 1. We compare the measured
consumed power of the system to the theoretical Gaussian

noise model to show that the proposed architecture effectively
randomizes the power consumption of the crypto-system.
Figure la shows the mean distance between the Gaussian
noise and the produced noise under Janus’ ON and OFF of
data block policy. By increasing the number of the data
blocks in the cache structure, the average distance between
the produced noise and the Gaussian noise is reduced. Figure
1b shows the error probability of the estimated power usage
as a function of the average power change introduced by
data blocks being turned ON or OFF. By increasing the
number of data blocks and the average change power of
each data block, the error probability of power consumption
estimate decreases. To fully evaluate the concrete and
practical implications of the Janus cache architecture on the
timing behavior of a crypto-system, we deploy the Janus
architecture in a gate-level synthesized version of the ARM-7
processor that is simulated using the XILINX ISIM simulator.
The timing behavior of the synthesized ARM-7 on three
benchmarks (1) Fibonacci sequence generator, (2) quick sort,
and (3) bubble sort is extracted and analyzed. The timing
behavior results are reported in Figure 2a. Depending on
the temporal locality of the program, turning off a single
data block in the cache can have a significant effect on the
runtime behavior of the system. A powerful resulting insight
from this analysis is the fact that even if an attacker identifies
the data block with the most effect on the system runtime
behavior under one program code, this information may not
be useful or effective in attacking the same crypto-system
running another program. Therefore moving target security
features are also present in the Janus design as a byproduct.

TABLE I: The mean and variance of the runtimes presented
in Figure 2a.

Mean execution Execution time

time (ns) variance
Bubble sort 325.8 547.951
Quick sort 237.26 313.49
Fibonacci 58.26 55.67

TABLE II: The mean and variance of the runtimes presented
in Figure 2b.

Mean execution Execution time Normal execution

time (ns) variance time (ns)
Bubble sort 311.86 122.11 290.220
Quick sort 238.12 88.65 223.660
Fibonacci 58.26 55.67 51.740

To investigate the effect of turning on and off the data
blocks on the program execution profile, we create 5 different
patterns, each pattern has 5 time intervals (the first four are
60 nanoseconds long and a last interval runs to the end of
the program). For each pattern, at each interval, different
cache block sets are turned on and off. Figure 2b shows the
results of these experiments. The mean and variance of the
runtimes for the benchmarks in Figure 2a are summarized in
Table I. Table II presents the mean and variance of runtimes for
benchmarks under the different ON-OFF patterns. The results

0.9F 4

0.8 1

0.7F 1

0.6 4

0.5F 1

0.4r . 4

8 10 12 14 16 18
Number of memory blocks

Mean distance between Gaussian noise and generated noise (dB)

(a) Mean distance between the Gaussian noise and the generated
noise versus the number of data blocks in the cache structure.

0.454 —p— 12 data blocks | |
—A— 10 data blocks
0.4 8 data blocks |

0.35F

0.3F

0.25

0.2

0.15F

Error probability of guessing the consumed power

0.1F

0.05 i i i i i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average power change of each data block for being on and off (dBm)

(b) Error probability of the power estimate versus the average
power change due to data blocks being turned ON or OFF.

Fig. 1: Results of the mean distance and error probability.

B Bubble Sort

@
]
I
)

OFibonacci @ Quick Sort

o
[}
3 ~
) g
o
N WN
> v
fi
5

4
Turned-off Block

=

N
)
A

334.62
307.22

226.62
I 0058

—353.22

N e 225014

—153.22

—3749
—356.2

Execution Time(ns)
—54.7

—634
o mmmm—— 234.06

OFibonacci @Quick Sort ™ Bubble Sort

*®
=
S
@
~
I
=
A
a
<
s)
4

3

231
3313 —
301
238.7
319.2

—1572
226.2
I 304

Execution Time(ns)
—156.6
1523
v I 228.1

w

Pattern Number

(a) Under random ON-OFF scheme.

(b) Under the five predetermined ON-OFF patterns.

Fig. 2: Runtimes for the benchmarks under different ON-OFF schemes.

show that even under this simple time slicing approach, the
Janus architecture scrambles the mean and variance of the
program runtime enough to provide strong protection against
fault injection attacks.

V. CONCLUSION

In this work, we propose a new caching architecture, called
Janus, to enable the randomization of the power consumption
in crypto-systems. By obfuscating the runtime power profile
the Janus architecture is able to effectively protect these
systems against power analysis and timing behavior attacks.
The Janus cache architecture is deployed in a synthesized
ARM-7 processor core running three different benchmarks
to evaluate (a) the feasibility of the architecture, and (b) its
efficacy against the mentioned attacks.

REFERENCES

[11 P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO *99. London, UK, UK:
Springer-Verlag, 1999, pp. 388-397.

[2] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a
new dimension in embedded system design,” in Proceedings of the 41st
Annual Design Automation Conference, ser. DAC 04. New York, NY,
USA: ACM, 2004, pp. 753-760, moderator-Ravi, Srivaths.

[3] D. Page and F. Vercauteren, “A fault attack on pairing-based cryptogra-
phy,” IEEE Transactions on Computers, vol. 55, pp. 1075-1080, 2006.

[4] S.-M. Yen, S. Kim, S. Lim, and S. Moon, “A countermeasure against
one physical cryptanalysis may benefit another attack,” in Proceedings
of the 4th International Conference Seoul on Information Security and
Cryptology, ser. ICISC "01. London, UK, UK: Springer-Verlag, 2002,
pp. 414-427.

[5] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in IFIP
International Workshop on Information Security Theory and Practices.
Springer, 2011, pp. 224-233.

[6] J. A. Ambrose, R. G. Ragel et al., “Rijid: random code injection to
mask power analysis based side channel attacks,” in Design Automation
Conference, 2007. DAC’07. 44th ACM/IEEE. 1EEE, 2007, pp. 489-492.

[7]1 J. A. Ambrose, H. Pettenghi, D. Jayasinghe, and L. Sousa, “Randomised
multi-modulo residue number system architecture for double-and-add to
prevent power analysis side channel attacks,” IET Circuits, Devices &
Systems, vol. 7, no. 5, pp. 283-293, 2013.

[8] S. Yang, W. Wolf, N. Vijaykrishnan, D. N. Serpanos, and Y. Xie,
“Power attack resistant cryptosystem design: A dynamic voltage and
frequency switching approach,” in Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 3, ser. DATE ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 64—69.

[9] N.D. P. Avirneni and A. K. Somani, “Countering power analysis attacks
usingreliable and aggressive designs,” IEEE Transactions on Computers,
vol. 63, no. 6, pp. 1408-1420, 2014.

[10] M. Masoumi and M. H. Rezayati, “Novel approach to protect advanced
encryption standard algorithm implementation against differential elec-
tromagnetic and power analysis,” IEEE Transactions on Information
Forensics and Security, vol. 10, no. 2, pp. 256-265, 2015.

[11] J. Proakis and M. Salehi, “Digital communications, (mcgrawhill, new
york, 2008),” Google Scholar.

[12] H. C.v. Tilborg, Encyclopedia of Cryptography and Security. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2005.

