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Abstract—Chaotic systems, such as Lorenz systems or logistic
functions, are known for their rapid divergence property. Even
the smallest change in the initial condition will lead to vastly
different outputs. This property renders the short-term behavior,
i.e., output values, of these systems very hard to predict. Because
of this divergence feature, lorenz systems are often used in cryp-
tographic applications, particularly in key agreement protocols
and encryptions. Yet, these chaotic systems do exhibit long-term
deterministic behaviors - i.e., fit into a known shape over time.
In this work, we propose a fast dynamic device authentication
scheme that leverages both the divergence and convergence
features of the Lorenz systems. In the scheme, a device proves its
legitimacy by showing authentication tags belonging to a pre-
determined trajectory of a given Lorenz chaotic system. The
security of the proposed technique resides in the fact that the
short-range function output values are hard for an attacker to
predict, but easy for a verifier to validate because the function
is deterministic. In addition, in a multi-verifier scenario such
as a mobile phone switching among base stations, the device
does not have to re-initiate a separate authentication procedure
each time. Instead, it just needs to prove the consistency of its
chaotic behavior in an iterative manner, making the procedure
very efficient in terms of execution time and computing resources.

Index terms — Lorenz System, Authentication, PUF.

I. INTRODUCTION

Chaotic systems (maps) are usually characterized by their
high input sensitivity. The smallest alterations or variations
in the initial condition will result in significant changes on
the output values. Therefore, collecting a large set of system
outputs may not — and in general does not — lead to a good
prediction of the chaotic system’s output values. For such a
map, the system parameters are central to the system chaotic
properties. The parameters need to be selected in a manner
which ensures that the system divergence is highly sensitive
to changes in the input values.

There are many types of chaotic systems. In this work,
we focus on the 3D Lorenz systems. The original Lorenz
system was introduced to describe and model fluid or air
applications that are uniformly heated from bottom and cooled
from above [1]. However, due to its divergence property, it has
also been used as a cryptographic primitive or component. Its
most common application is in encryption. Researchers have
suggested using the chaotic functions in block ciphers [2],
as well as image encryption [3]. Unlike conventional secret
key-based encryptions, which use one key to obfuscate the
entire piece of data, chaotic systems are able to spawn a new
key or random vector for each block, which can be precisely
re-generated during decryption. This block-based obfuscation
technique only requires one set of pre-shared system para-
meters. Another common use is to facilitate key agreements
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[4]. Other applications include image digest algorithms [5] and
random number generators [6].

However, two issues are often overlooked when developing
or implementing chaotic systems like Lorenz:

o Convergence: Besides their divergence property, Lorenz
systems do have a convergence property as well. Al-
though, this convergence property is rarely used. With
a given set of system parameters, all the output values
are centralized around two attractors on the function
trajectory. Although the outputs of the Lorenz system are
still highly unpredictable with varying initial conditions,
the trajectory is determined statistically according to the
system parameters.

o Static System Parameters: Unlike keyed cryptographic
schemes where the keys can be any vectors, the system
parameters of chaotic functions cannot be arbitrarily
chosen. They must be selected in a way that ensures
both convergence and divergence. Thus, they cannot be
arbitrarily updated as the public key systems.

To address these two issues, we propose a novel authentica-
tion scheme based on Lorenz systems. The major contributions
of the paper are:

1. We leverage both the convergence and divergence proper-
ties of the Lorenz systems in the authentication procedure.
The convergence property is used to provide a fast but
rough verification of the function output values. The
divergence of the function is used for slower but more
accurate authentication. We combine the two properties to
implement an adaptive verification scheme and improve
the efficiency of the procedure;

2. To enhance the security of the Lorenz system-based
scheme, we outline an approach for dynamically updating
the system parameters while still maintaining all the
chaotic nature of the system;

3. The proposed scheme works specially well for use-cases
when a device needs to be authenticated frequently by
multiple verifiers. An illustrative scenario is shown in Fig.
1. The device only needs to prove the consistency of its
chaotic behavior in an iterative manner, instead of re-
initiating a new authentication session each time.
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Fig. 1: While a phone is switching among the base stations (or a
vehicle being authenticated by other automobiles in the network), it
needs to be authenticated at every transition. All base stations rely
on an authentication center (AuC) for this process, which shares the
same secret with the device.




The rest of the paper is organized as follows: Section II
presents the relevant background on Lorenz chaotic functions.
Section IIT introduces the hardware primitive required by the
scheme. Section IV outlines the authentication protocol.

II. PRELIMINARIES OF THE LORENZ CHAOTIC SYSTEMS
In this section we will introduce the concept and property
of the Lorenz chaotic systems. To better facilitate the presen-
tation, we define the following notations:
e 0,3, p: the system parameters of Lorenz functions;
e Pn = (Tpn,Yn,2n): an output of a Lorenz system after
n iterations, which is a point on the trajectory with
coordinates (2, Yn, 2n);
o LF, 3 ,(po,n): a Lorenz function with system para-
meters o, 3, p. Where pq is the initial condition and p,,
the outputs after n iterations.

A. Lorenz Chaotic Systems

There exist many types of chaotic systems with different
dimensions. For example, there are one-dimensional (1D)
logistic map, two-dimensional (2D) Van der Pol system, and
three-dimensional (3D) Chua circuit. In this work, we focus
on the Lorenz system, which is a 3D chaotic map. The
Lorenz functions can be formulated by a system of differential
equations with three parameters as shown in the equation
below: dz
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where o, 3, and p are the system parameters. The Lorenz
system was introduced originally to model the consequent
bidirectional convection of air or fluid. And the three system
parameters were defined as follows:
o o = 10 as the Prandtl number, to denote the ratio of
thermal conductivity and viscosity of the studied material;
o p = 28 as the Rayleigh number, to represent the differ-
ence between the system’s top and bottom temperatures;
o 8 =2.6667 as the ratio of the area’s width and height in
which the air or fluid convection is formed.

Fig 2 shows the chaotic map of the Lorenz function with
the above parameters. Since then Lorenz systems have been
applied in many fields such as dynamos, lasers, chemical
reactions, and cryptography, these parameters can take on
other values as long as the convergence and divergence are
maintained.

Fig. 2: The trajectory of a 3D Lorenz system, which is usually in a
pattern of a butterfly or “8”.

For digital applications of Lorenz functions, the discrete
equations are given below:

Tn+1 = T + U(xn - yn)At
Yn+1 = Yn + (PTn — Tnzn — Yn) At 2
Zn+1 = %n + (xnyn - ﬂzn)At

where At determines the resolution of the map. In the pro-
posed design and its FPGA implementation, we adopt the
fixed-point multiplication version of [Eq. 2].

B. The Key Properties of Lorenz Chaotic Systems
1) Stationary points: In [Eq. 2], when p > 1, there are two
distinct stationary points:

CLC2=(H/Blp—1),H/8(p—1),p—1) ()

These two points are located at mirror symmetry with
respect to the vertical plane = + y = 0. Although C1
and C?2 are not physically on the trajectory, they serve
as the attractors that balance out and kill off the initial
transients, and evolve the system towards its typical be-
havior. It should be highlighted that o does not determine
the space location of the two attractors, but rather the size
of the map.

2) Convergence: The attractors bring in the convergence
property of a chaotic system. In other words, even if the
initial state py is not a point on the trajectory, it will
converge to the orbit in a finite number of iterations. In
addition, although the coordinates of individual Lorenz
system outputs are or seem highly unpredictable in the
short-range, over time they all conform to the butterfly
pattern.

Another straightforward representation of the convergence
property is the z-axis (x = y = 0). All trajectories which
start on the z-axis, will remain on it and tend to evolve
towards the origin (0,0, 0) in a clockwise direction.

The convergence attribution can be described by Haus-
dorff dimension dim g K [7] bounded by:
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3) Divergence: The divergence property has been adopted
in many cryptographic applications because of its high
unpredictability. With a tiny variation of the initial con-
dition pg, the output p,, will largely fluctuate. Lyapunov
exponent can be used to evaluate the divergence of a given
chaotic system:

dimgK <3 — “)
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where for a trajectory T'(p)’s nearby orbit T'(p) + d(p),
d(p) is a vector with infinitesimal initial length. The
maximal A is known to be approximately 0.9056 [8].

III. LORENZ SYSTEM-BASED AUTHENTICATION
PRIMITIVE (LAP)

Before introducing the proposed fast authentication tech-
nique, we will first present its core building block, termed
the Lorenz System-Based Authentication Primitive (LAP).
The LAP primitive (cf., Fig. 3) anchors the security of the
scheme in the uniqueness of the device hardware. It is used to
dynamically update the system parameters and generate unique
tokens for authentication.

A. The Three Basic Units of a LAP

As shown in Fig. 3, there are three major components
in a LAP: Ul, U2, and an input control unit (ICU). Ul
consists of a physical unclonable function (PUF) and a Lorenz
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Fig. 3: Here we use LF\ () = LF,, g,,p,()s LF2() = LFs, 85,0, ()
for simplicity. The PUF box contains a PUF sizing at least 16-bit.
Larger sized PUFs can be added to increase the system variation.
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function module LFj(). The purpose of Ul is to establish
the security of the LAP based on the device’s hardware
uniqueness. Particularly, the PUF reflects the LAP’s intrinsic
randomness and LF7() serves as the randomness magnifier.

A PUF [9] is a piece of hardware that produces unpre-
dictable responses upon challenges due to their manufacturing
variations. Each PUF’s output (response) is a non-linear func-
tion of the outside stimulation (challenge) and the PUF’s own
physical, intrinsic, and unique diversity. Even under exactly the
same circuit layout and manufacturing procedure, two pieces
of hardware will still have distinct behaviors.

Ideally, the “raw” responses of a PUF should be sufficient
to demonstrate its distinction from others. However, in real
implementations the responses need to be further randomized
due to the limited uniqueness of the PUF. In earlier designs,
one-way hash functions are used for the randomization process.
Recently, because of their lower implementation cost, chaotic
systems have been proposed as an efficient substitute for one-
way hash functions [10], [11]. This is the design logic behind
the U1 unit in the LAP. The U2 Lorenz system is in charge of
generating the final authentication tokens sent to the verifier.
It is the core unit in the LAP design. The authentication
procedure has three phases or modes. The mode switches in
the LAP is managed by the input control unit (ICU).

B. Mode 1: Dynamic Parameter Configuration

First, the challenge and response pairs (CRPs) of the PUF,
as well as the system parameters (o1, 31, p1) of LFi(), are
pre-stored at the verifier’s end. While Ul is only the magnifier
of the PUF, the actual system parameters of the LAP are then
U2’s (027 ﬁ?a p2)

Before a device is deployed for use, (o2, 32, p2) will be
dynamically configured. These three parameters are all 64-
bit vectors, where the first 8 bits represent the integer digits,
and the last 56 bits are decimal. As mentioned in Section I,
(02, B2, p2) cannot be arbitrarily chosen since they need to
provide to the Lorenz system an appropriate level of the chaotic
behavior [12]. However, through an extensive experimental
process, we have found that there does exist a certain (but
limited) degree of freedom in the parameter configuration as
shown in Fig. 4.

Fig. 5 shows three examples when only the 48 LSBs of
(p, B, 0) are modified respectively. New Lorenz chaotic maps
are generated, while they still preserve both their convergence
and divergence properties.

Protocol III.1. CHL; denotes the i*" challenge to the PUF

in the LAP. RSPF; is the corresponding response to C'H L;.

The iteration number of LF;() is fixed at m. The dynamic
configuration of the 48 LSBs of (o9, 32, p2) is as follows:

1) The verifier acquires k pairs of CRPs from the PUF

(Fig. 3). Before the device is released, the 16 MSBs of

(02, B2, p2) are fixed and stored as (X, B, P) at both the

Original 56 LSBs Configured

0 5
20 X Y 0 -10 x

All 64 bits Configured 48 LSBs Configured

-100

Fig. 4: For a given Lorenz map (upper left) with carefully-selected
three 64-bit system parameters, if all the 64-bits are arbitrarily
modified, then the new pattern will easily end up as a non-chaotic
trajectory (bottom left). Similar situation happens when the 56 least
significant bits (LSBs) are arbitrarily modified (upper right). Only
when the configuration is restricted to 48 LSBs (bottom right) or
lower, can the new generated Lorenz map remain chaotic.
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Fig. 5: As theoretically analyzed in [Eq. 3], the modification of p
and 8 will lead to the re-location of the attractors. As shown in (a)
and (b), the old (blue) and new (red) Lorenz maps do not share the
same C1,C2. On the other hand as presented in (c), modifying o
does not change the coordinates of the attractors, but the areas of the
old and new butterfly maps are different.

verifier and device ends. (X||©, B||©, P||O) are tested
and proved to be a set of proper chaotic parameters for
Lorenz systems, where © stands for a 48-bit vector of all
0’s and || the concatenation operator;

2) After selecting the last 48 bits of (o9, 82, p2), the verifier
selects three arbitrary responses RSP;,, RSP;,, RSP,
from the PUF and computes:

Oq = LFl(RSPiO,m)
Ba = LF1(RSP;,,m) (6)
pa = LF1(RSP;

3) For this round, the 3-tuple (o2, 82, p2) is calculated as:

o2 = (Zlloa), P2 = (BllBa), p2=(Pllpa)- (]

0 1

2> M)



4) To configure a device with the selected system para-
meters, the verifier sends the challenges CHL;,, CHL;,,
CHL;, to the device’s LAP.

5) The ICU switches from idle to Mode 1 and accepts the
three outputs from the Ul unit to set (o2, f2, p2) locally
in U2 using [Eq. 7].

It should be emphasized that the above procedure is secure
against eavesdropping since CHL; leaks no information of
RSP;. Furthermore, the Ul PUF could be made larger to
increase the system’s unpredictability as shown in Fig. 6.

PUF Size vs Randomness
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Fig. 6: As the size of the PUF increases from 16 to 128 bits, the
variation of LF ()’s inputs also enlarges. This leads to the increasing
randomness of Ul’s output. The randomness is evaluated by the p-
value of the National Institute of Standards and Technology (NIST)
SP 800-22 test [13].

C. Mode 2: Trajectory Landing

When the ICU is in this mode, the goal is to produce the
first point p; that lands on the trajectory. The verifier sends
two random numbers C'H L, and CH L, to the device as the
request. The PUF uses the request, i.e., challenge, to generate

two outputs: po = LF, (RSPRl,m)
n = LF(RSPg,,m)

The (po,n) is then fed into LF5() as the initial condition
by the ICU. The U2 unit can generate its first output:

b1 = LFQ(pO7 [’ﬂ]), (9)
where [n] is defined as:
[n] =n mod(v — u) + u, (10)
and u and v are the lower and upper bounds of n.

The derivation of p; in U2 using [Eq. 9] has to ensure that
p1 lands on the trajectory featured by (o2, 82, p2). Therefore,
the U2 operation may take multiple iterations to meet this
convergence requirement. The lower bound u of iterations is
determined by the resolution variable At in [Eq. 2]. Essen-
tially, it regulates how fast an arbitrary point can be attracted
to the trajectory, as shown in Fig 7.

In this work, we use a high resolution At = 0.00001,
which has the lower bound of u = 220 iterations for the
landing. On the other hand, v limits the maximum number

of iterations to save computation resources and time. Here we
choose the bounds to be 220 < [n] < 250.

®)

D. Mode 3: Authentication Token Generation

Once U2 in the LAP outputs the first point p; on the orbit,
the ICU switches the initial condition of U2 from pg to pj,
where j > 0. Thus the LAP’s outputs will be:

pj = LF>(pj-1,[n]), an
where the set {p;} will be used for fast authentication among
multiple verifiers.
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Fig. 7: The smaller At is, the more iterations are needed for an
arbitrary point to enter into the trajectory.

IV. FAST DYNAMIC AUTHENTICATION BASED ON
LORENZ CHAOTIC SYSTEMS
First, we briefly outline the protocol, then we describe in
the subsections in more detail each of the steps. The advantages
of the proposed technique are:

1) Unlike conventional authentication schemes that require
at least two messages to be communicated between every
verifier and device, the proposed scheme uses two mes-
sages for the first verifier, and only one message for each
of the consequent verifications;

2) The technique rests on the fact that it is hard for an
adversary to predict the correct responses to a challenge
because to the Lorenz function’s divergence and the
dynamic configuration of the system parameters, yet, it is
easy for a verifier to authenticate because of the function
does converge under the right criteria;

3) The proposed protocol only involves fixed-point multipli-
cation and addition (rather than exponential operations in
conventional approaches). Moreover, the authentication is
carried out in an adaptive manner for better efficiency.

The adaptive authentication protocol using the Lorenz
chaotic system is outlined in Protocol IV.1.

In the pre-configuration step, the verifier determines the
Lorenz system parameters of the device to be authenticated.
It then notifies the device in an eavesdrop-resistant manner
using the PUF’s CRP feature. The device switches to Mode
I to dynamically configure its (o3, 82, p2) accordingly. It is
worth noting that the pre-configuration does not have to be
run every time an authentication procedure is initiated. Once a
set of system parameters is determined, the PAL can generate
2483 unique authentication tokens under this set, which is
sufficient for most applications. The system parameters only
need to be re-set in the event of an information leakage, in
other words, when the verifier or the device suspects that the
current (o2, 82, p2) 3-tuple may have been compromised.

When the first verifier tries to authenticate the device, it
sends two arbitrary CH Lk, and CHLg, to the device. The
device transitions into Mode 2 to generate an on-trajectory
point pg, and then shifts to Mode 3 to generate p, based on
p1. At that moment, the two points are sent to the verifier for
their fast authentication.

When the device encounters another verifier, let us say
verifier j, it only needs to generate one point p;y; for
authentication, and does not need to wait for the verifier’s
request. p;11 can be authenticated based on the p; sent to
the previous verifier (j — 1). All verifiers share this correlated
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information and carry out the authentication by communicating
with the authentication center (AuC), as shown in Fig. 1.

We have presented the details of steps a and b of the
protocol IV.1 in Section III when we introduced the LAP
and its three modes. Steps ¢ and d deal with the adaptive
nature of the authentication and are described in the following
subsection.

A. Adaptive Authentication

According to the convergence property mentioned in Sec-
tion II-A, although the outputs of a Lorenz system are highly
unpredictable with a small variation in the initial condition, the
long-term statistic behavior is always a trajectory in butterfly
patterns. Representationally, there exist two stationary points
(attractors) C1 and C2 that center all the points located on the
two curved surfaces (the two wings of the “butterfly”) of the
function (c.f. [Eq. 3]). From the formulation [Eq. 2], one can
observe that starting from a certain point on the trajectory, the
output of the equation always ends up with another point on
the trajectory as well.

Therefore, we take advantage of this convergence property
to propose a fast authentication protocol. This protocol works
in an adaptive manner. It first verifies that p; roughly belongs
to the space covered by the curved surface. This is a fast
but coarse-grained testing of the fitness of p;. Next, it passes

it through a fine-grained verification step, which is to check
that p;;; can indeed be computed by the Lorenz functions
[Eq. 2] using p; as the initial state. This step is an accurate
authentication. If either verification step fails, the device is
identified as a counterfeit. Due to the lack of knowledge of the
system parameters, most counterfeits will be spotted quickly
at the coarse-grained check. Even if the adversaries are able
to make a very close estimation on (o2, 32, p2) to bypass the
coarse-grained verification, they will be detected at the fine-
grained stage.

1) Coarse-grained Verification: For a Lorenz system, once
a set of system parameters is given, the related trajectory is
confined within a certain space. The space occupied by the
two curved surfaces can be approximated by two cylinders
as shown in Fig. 8. The dimensions of the two cylinders can
be conveniently estimated by taking a relatively large At in
[Eq. 2], say At = 0.1 (cf., Fig. 9). The approximate range
of any in-orbit point’s coordinates (z,y,z) can be calculated
this way. The range is denoted as {[Z, z], [7, ], [Z, z]} where~
is the maximum value of the coordinate and _ the minimum.
The following equation estimates the fitness or authenticity of
a point:

Authentic = (z € [Z,z] & y € [7,y] & z € [2,2])?71: 0

12)
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Fig. 8: The two cylinders are an approximation of the space taken
by the two curved surfaces of the Lorenz system’s trajectory. Given
their diameters and heights, one can use [Eq. 12] to quickly evaluate
if a given point is within this space or not.
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Fig. 9: By adopting a a relatively large At, a low-resolution frame of
the chaotic map can be quickly sketched. (left) is a Lorenz map drawn
with 10° points under At = 0.00001, and (right) is its approximation
with 100 points under At = 0.1.

2) Fine-grained Authentication: Like other security cruxes,
there have been efforts to reverse engineer the system para-
meters [14], [15] with the observed outputs. In the proposed



protocol, if an adversary can have good enough estimates of
(02, P2, p2), they can generate a similar butterfly pattern, which
can produce p; and bypass the coarse-grained verification step.
Therefore, we propose the fine-grained verification stage to

check if: 2
p;j = LF>(pj-1,[n]). (13)

[Eq. 13] is derived from [Eq. 2] under the principle that
once a point is on the trajectory, if it is used as the initial
condition, all subsequent points will remain on the trajectory
regardless of the number of iterations. This is an accurate
and robust verification mechanism that can be derived from
the convergence property of the Lorenz systems. Unless an
adversary acquires the exact system parameters (o2, f2, p2), it
is nearly impossible to forge a p; satisfying [Eq. 13].

Fig. 10 is an example depicting the case where a device,
using p;_1 (green), submits p; (red) to a verifier (j — 1).
However, after [n] iterations in [Eq. 13] with p;_; being the
initial condition, the verifier reaches the blue point p;- # pjs
indicating that the device is a counterfeit.
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Fig. 10: The visual representation of [Eq. 13]’s verification. Without
the accurate knowledge of the dynamic (o2, B2, p2), it is infeasible

for an adversary to generate a legitimate p; for verifier (5 — 1).

B. Evaluation

We evaluate the hardware and timing costs of the proposed
scheme by comparing to the conventional secret key signature
based authentication, which requires exponential operations
in large finite fields. Theses comparisons are done using the
Xilinx Vertex 7 XC7VX330T FPGA board.
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Fig. 11: The proposed authentication scheme saves 67.1% of the
slices used on FPGA, and 77.9% on the timing cost over the
conventional approach. It is both fast and resource-efficient.

V. CONCLUSION
In this paper, we introduce our work on using Lorenz
chaotic functions for fast dynamic device authentication. The
major contributions of this scheme are 1) it is able to achieve
a time and resource-saving authentication procedure using

Lorenz systems’ properties; 2) unlike conventional chaotic
system applications with static system parameters, the pro-
posed scheme configures these secrets in a dynamic manner to
enhance the security of the scheme; 3) it is able to accomplish
authentication with one message rather than a two step request-
response procedure, making the scheme perfect for frequent
device authentication by multiple verifiers.
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