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Abstract—Due to the rapid advances in the development of quantum
computers and their susceptibility to errors, there is a renewed interest in
error correction algorithms. In particular, error correcting code-based
cryptosystems have reemerged as a highly desirable coding technique.
This is due to the fact that most classical asymmetric cryptosystems will
fail in the quantum computing era. However, code-based cryptosystems
are still secure against quantum computers, since the decoding of linear
codes remains NP-hard even on these computing systems. One such code-
based cryptosystem was proposed by McEliece. The classic McEliece
cryptosystem uses binary Goppa code, which is known for its good code
rate and error correction capability. However, its key generation and
decoding procedures have a high computation complexity. In this work,
we propose the design of a public-key encryption and decryption co-
processor based on a new variant of the McEliece cryptosystem. This
co-processor takes advantage of non-binary Orthogonal Latin Square
Code to achieve much smaller computation complexity and key size.
We also propose a hardware-cost efficient, fully-parameterized FPGA-
based implementation of the co-processor to perform fast encoding and
decoding operations. When compared to an existing classic McEliece
cryptosystem, we observe a speed up of about 3.3×.

Index Terms—Code-based post-quantum cryptosystem, McEliece
public-key encryption, Orthogonal Latin Square Codes.

I. INTRODUCTION

Since the possibility of using quantum effects in computation

was brought up by Feynman in 1959, numerous efforts have been

dedicated to realize and even commercialize quantum computers.

In the past three years, a number of significant milestones have

been reached in this area. From late 2017 to early 2018, technology

companies such as IBM [1], Intel [2], and Google [3], announced

their construction and testing of 50-, 49-, and 72-qubit computers,

respectively. In July 2018, for the first time, researchers at the Uni-

versity of Sydney successfully realized a multi-qubit computation on

a system of trapped ions, which is believed to be the leading platform

for building general quantum computers [4]. In December 2018, IonQ

claimed to have built a quantum computer with 160 qubits. Besides

these advances in the physical implementation of quantum computers,

key breakthroughs in the verification of quantum computation were

also achieved [5], and more efficient error correction schemes were

recently proposed as well.

These efforts are rooted in the fact that quantum computers promise

greater computational power. But these developments also bring

with them burning security concerns. For example, Shor’s algorithm

[6], leveraging quantum Fourier transforms, is able to solve the

integer factorization problem efficiently. Therefore, current popular

cryptographic algorithms such as RSA, ElGamal, Diffie-Hellman,

and ECC, which rely on the hardness of integer factorization and

discrete logarithm (the two are also closely related), are vulnerable

to quantum computer-based algorithms [7]–[9]. Moreover, for sym-

metric cryptography, Grover’s algorithm [10] applies fast search in the

key space, so that the security level of symmetric encryptions can be

reduced to half of its original - e.g., the 128-AES now provides only

64-bit security, failing to meet the 112-bit minimum security level

recommended by the National Institute of Standards and Technology

(NIST).

In response to the aforementioned security challenges associated

with quantum computers, a number of new cryptosystems have been

proposed for the post-quantum era. In early 2017, NIST launched

a campaign for a post-quantum cryptography standard. In February

2019, totally 27 out of 69 candidates for this new standard made

it to the second round of competition [11]. Among the 27, the

two most likely contenders are the lattice-based cryptosystems (12

candidates), and the code-based cryptosystems (8 candidates). Both of

them are able to construct public-key cryptosystems and key exchange

mechanisms. Compared to the popular lattice-based ring-learning

with error (Ring-LWE) cryptosystem, error-correcting code (ECC)-

based schemes have a much larger key size, which is considered a

drawback. However, they do boast the advantage of withstanding the

test of time. For example, since its formulation by Robert McEliece

in 1978 [12], the McEliece code-based technique has so far proven

to be cryptanalysis resistant (although sometimes increasing the key

size is necessary to meet a desired security level).

The conventional McEliece cryptosystem uses binary Goppa code,

which has good code rate and error correction capability. However,

compared to other binary codes, the encoding and decoding (error-

correction) of binary Goppa codes have relatively high complexity.

This is because they involve intensive computations over finite fields,

including modulo polynomial operations. Moreover, the key size

of McEliece systems is usually large. For a binary Goppa code

with a k × n generating matrix, the key size is kn with k, n in

thousands of bits. Therefore, to address these issues, we propose

the design of a new variant of the McEliece cryptosystem and its

encryption-decryption co-processor. The proposed system is based on

the generalized non-binary Orthogonal Latin Square Code (OLSC),

which is known for its simple encoding and decoding algorithms,

leading to an efficient hardware implementation. In addition, the non-

binary OLSC is able to work with non-binary messages through

binary matrices. Hence, a long message can be processed using

relatively small matrices, reducing the key size significantly. Major

contributions of this work are two-fold:

1. Design: McEliece cryptosystem encryption-decryption co-

processor design based on non-binary Orthogonal Latin

Square Code.
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2. Implementation: A fully optimized and parameterized

FPGA-based implementation of the proposed co-processor

design to perform fast operations.

To the best of our knowledge, this work is the first proposal of

McEliece cryptosystem based on Orthogonal Latin Square Codes,

and so is its hardware implementation.

Rest of the paper is organized as follows. In Section II, we dis-

cuss the existing hardware implementations of the classic McEliece

variant. Section III provides a brief background of the McEliece

cryptosystem and OLSC. In Section IV, we discuss the proposed ar-

chitecture design along with its implementation. And then, in Sections

V, VI, and VII, we discuss the complexity, evaluate the performance,

and present a brief security analysis of our implementation.

II. RELATED WORK

While there are no existing implementations for an OLSC-based

McEliece public-key encryption scheme, there exist a few imple-

mentations for the classic variant. Eisenbarth et al. [13] presented

MicroEliece, a McEliece encryption scheme implementation on a

Xilinx Spartan-3AN FPGA and on a low-cost 8-bit AVR micro-

processor. The parameters chosen in their implementation provide

80 bits mid-term security with a public key size of 3,502 Kb.

Their implementation is not parameterized and consists of only the

encryption and decryption modules, leaving out the key generation

operation. Moreover, the authors implement only the polynomial

arithmetic operations that were necessary for solving main equations.

Ghosh et al. [14] present an embedded co-processor for the

McEliece cryptosystem. The proposed design is implemented using

the GEZEL hardware description language. Their implementation is

based on a software-hardware co-design approach, in which crucial

parts of the algorithm are implemented on a Spartan-3AN FPGA,

while a PicoBlace microcontroller is programmed to carry out the

required vector and matrix arithmetic operations. The authors claim

to accelerate both the encryption and decryption operations using this

embedded co-processor; however, they only describe the hardware

cost and latency associated with the decryption module.

Massolino et al. [15] also present a hardware implementation on

Spartan-3AN for the binary Goppa code based McEliece cryptosys-

tem. In their work, the authors discuss only the decryption unit’s

hardware design implementation along with its hardware cost and

latency. Shoufan et al. [16] present a full CCA2 secure design

implementation of the McEliece cryptosystem based on binary Goppa

code. Their parameters provide 103 bit security, which is still lower

than the minimum security level of 112-bits required by NIST.

Even though the authors provide a very detailed description of their

hardware design, they do not discuss the results in detail. Moreover,

the authors do not provide a break down of the hardware cost for

the key generation, encryption, and decryption modules. Another

drawback in their design is its non-constant time implementation,

making it susceptible to side-channel attacks and other potential

security flaws. We compare the performance and hardware cost of

the proposed co-processor to these implementations in Section VI.

III. THE OLSC-BASED CRYPTOSYSTEM

In this section, we will briefly introduce the McEliece cryptosystem

algorithms followed by a preliminary view of the OLSC that replace

the binary Goppa code.

A. The McEliece Algorithm

The detailed protocol of the public-key cryptosystem (PKC) can

be found in [12]. Here, we provide a brief introduction to aid the

presentation of the co-processor.

Key generation(KeyGen): Alice picks a binary (n, k, t) ECC code

C with k information (plaintext) bits, n total codeword length, and

the capability of correcting up to t random errors. The k×n encoding

matrix of C is denoted by G. Alice also picks a k × k binary non-

singular matrix S and a n × n permutation matrix P . Then Alice

computes the public key G′ as:

G′ = SGP (1)

Alice keeps S,G, P as the private key.

Encryption(Enc): Bob converts his message (plaintext) into a k-

bit binary vector m, and generates the n-bit cipher {c} as:

c = mG′ + e, (2)

where e is a binary vector weight t.
Decryption(Dec): Alice decrypts the cipher by performing:

m = (Decode(cP−1))S−1
(3)

where Decode() stands for the error correction function of C, and

P−1, S−1 are the inverse matrices of P, S respectively.

B. The Orthogonal Latin Square Code (OLSC):

The binary Goppa code used in the classic McEliece cryptosystem

has an algebraic structure that increases the decoding complexity and

leads to slow decoding in the cryptosystems based on these codes.

This is the reason for replacing the binary Goppa code with the

OLSC, which has no algebraic structure and exhibits simple com-

binatorial properties. The OLS-based code, a new class of multiple-

error correcting code, was introduced by Hsiao et al. [17]. The

codes are obtained from a set of mutually orthogonal Latin squares

by systematically adding high redundancy to the decoding matrix.

High speed and simple decoding is achieved through this additional

redundancy.

The OLSC technique is a t-error-correcting binary code with a

decoding matrix:

H =
[
M | I2tq

]

where M consists of submatrices M1, · · · ,M2t, and I is an identity

matrix of order 2tq. The submatrix M1 is a diagonal matrix, with q
1s in the diagonal:

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

11 · · · 1 0
11 · · · 1

·
·
·

0 11 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

q×q2

The submatrix M2 consists of q Iq×q identity matrices in the form:

M2 =
[
Iq Iq · · · Iq

]
q×q2

and M3, · · · ,M2t consists of 2(t−1) orthogonal Latin squares sized

q×q. The set of Latin squares can be denoted by L ∈ {1, 2, · · · , q−
1}. Of the total q − 1 orthogonal Latin squares, only 2t − 2 Latin

squares are to be chosen at random to be a part of the matrix M .

The set of these Latin squares can be denoted as

L1 =
[
l1ij

]
q×q

L2 =
[
l2ij

]
q×q

...

L2t−2 =
[
l2t−2
ij

]
q×q
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Fig. 1. McEliece Cryptosystem Co-Processor Architecture.

The encoding matrix for OLS codes is G = [I|M�], where �

stands for transpose. While constructing the encoding matrix, the

way orthogonal Latin squares are placed in the encoding matrix can

be permuted to create different OLSCs with the same parameters.

The t-error-correcting codes thus generated will have q2 data bits

and 2tq check bits per word.

The decryption along with the decoding procedure of OLSC is

presented in Algorithm 1, which consists of mostly binary linear

operations. Thus, it can be carried out quickly and very efficiently

in hardware. By replacing the binary Goppa code with the non-

binary OLSC, the decoding stage only requires (i) binary vector-

matrix multiplication and (ii) k parallel majority votings among q
non-binary vectors. This feature enables much faster decryption time

than the Goppa-code based scheme, as shown in Table I.

Algorithm 1. Decryption in OLSC-based McEliece Cryptosystem

1 Let G′ = SGP and t be the public key, and
{G,S, P} the private key, where G is a
k × n OLSC encoding matrix with random
permutation of columns, and H as its
corresponding decoding matrix. Let each
Latin square be of size q × q, m be the
plaintext, and c the encrypted cipher.

2

3 Precompute: S−1, P−1 as the inverse to S, P.
4

5 c′ ← cP−1

6 u← Hc′ ×H
7 for i=0 to n
8 m′i ← (ui > q/2)? ∼ c′i : c

′
i

9 m← m′S−1

10 return m

TABLE I
COMPLEXITY ANALYSIS OF DECODING

Finite Field Ops Latency (cycles)

Binary Goppa Code-based O(n2) O(n)

OLSC-based 0 O(1)

Thanks to this much simpler decoding mechanism, in the OLSC-

based McEliece cryptosystem co-processor, we are able to design

a single-cycle (one-step) decoding unit. This design is much faster

than an equivalent binary Goppa code-based system. The non-binary

OLSC is able to encode a kb-bit plaintext with a k × n generating

matrix G (b being the size of each non-binary symbol), while binary

Goppa code can only deal with k-bit plaintexts with such a matrix.

To summarize, given the same size of plaintext, the key size of the

non-binary OLSC-based McEliece cryptosystem is 1/b that of the

Goppa code-based version. Given a proper verification on the security

level of the OLSC-based scheme with various decoding techniques,

it could serve as an efficient and high speed variant of the McEliece

cryptosystem. Such a proof is outside the scope of this paper, and

thus we leave it for future work.

IV. CRYPTOSYSTEM CO-PROCESSOR ARCHITECTURE

The McEliece public key encryption cryptosystem co-processor

has three major modules as shown in Fig 1: Key Generation,

Encryption and Decryption. Of the three modules, the KeyGen unit

has the highest complexity and, therefore, most existing hardware

implementations perform KeyGen in software. The decryption unit

has the second highest complexity, and it consumes the most hard-

ware resources, especially its Decode stage. Hence, our efficient

implementation primarily targets the Decode sub-module.

A. FPGA-based Implementation

As discussed in Section III, the implementation of the co-processor

requires large matrix-multiplication and matrix-vector operations.

Thus, the challenge is to optimize the implementation so as to

maximize the performance and accuracy, while keeping the hardware

cost as low as possible. The architecture consists of three core

building blocks. Each of these building blocks represents an equation

in the main algorithm. Figure 1 shows the overall system architecture

of the co-processor using the commonly-shared hardware modules.

The KeyGen module computes Eq. (1), which breaks down to two

matrix multiplication operations. The Enc module computes Eq.

(2) and consists of matrix-vector multiplication and vector addition

operations. Similarly, the Dec module computes Eq. (3) and consists

of two matrix-vector multiplication operations along with a decoding

operation. So, the implementation of the McEliece cryptosystem co-

processor reduces to constructing modules for performing these basic

operations.

The main advantage of the proposed design scheme becomes

visible via the hardware implementation. Encoding and decoding, for

Goppa codes, involve long polynomial division and solving equations
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over finite fields, which can be expensive to implement in hardware.

For orthogonal Latin square codes, we just need to perform the

binary matrix and vector operations, which leads to an inexpensive

hardware implementation. Furthermore, we precompute and store the

non-singular matrix S and its inverse, the permutation matrix P and its

inverse, and the encoding matrix G which reduces the hardware cost

significantly. We would like to highlight, though, that if a different

key needs to be generated, then all these matrices will have to be

regenerated as well. The amount of memory required to store the

matrices will depend on the chosen parameters for the co-processor.

B. Modules and Design Choices

The basic operations in our algorithm are matrix-vector multiplica-

tion, matrix multiplication, vector addition, and error correction. We

will discuss the design implementation for each of these submodules

next.

1) Matrix-vector Multiplication: Matrix-vector multiplication is

the most frequently used submodule as it is required in both the

encryption and decryption modules. However, matrix-vector multi-

plication will be required in two variants i.e. binary and non-binary

versions. The encryption module requires only the binary version,

whereas the decryption module requires both versions. Figure 2

shows that in matrix-vector multiplication (binary) the elements of the

matrix are accessed in column-major order and the message vector is

treated as a row. So we have access to all the elements of a column

from a matrix at once and also all the elements of the vector. Next, we

perform element-wise multiplication using the AND operation, and

the summation of the multiplication is performed using unary XOR

operation on the result of the multiplication. This is possible because

both the matrix and the vector are binary and the resultant vector

elements are required to be binary. Thus, we reduce the hardware cost

significantly by performing multiplication and addition operations

without using any multipliers and adders.

Matrix-vector multiplication (non-binary) also shown in Figure 2,

differs from the binary variant in the summation stage. As we will

need to compare integer values in majority voting, the non-binary

variant of matrix-vector multiplication is required specifically for

one-step majority voting in decoding step. We perform actual addition

instead of using the XOR operation to generate the resultant u vector.

It is worth noting that the multiplications will still be performed using

AND operators, as we need a binary result after the multiplication

operation. Moreover, if we perform a non-binary multiplication

instead, we will be required to perform a modular reduction by 2
to convert each element into binary after multiplication.

Note: Matrices are accessed in row-major or column-major order and

vectors are treated as row or column depending on the order of the

matrix and the dimension of the vector.

2) Vector Addition: Vector addition, as shown in Figure 2, is

required only while performing the encryption operation. Its function

is to add a random error vector to the encoded message for further

obfuscation. The codeword and error vector are both binary and we

further lower the hardware cost by performing additions without using

adders. We leverage XOR to implement the required bit-wise vector

addition operation.

3) Matrix Multiplication: The key generation module will need to

perform two matrix multiplication operations. We extend the matrix-

vector multiplication (binary version) module to perform matrix-

matrix multiplication instead. As shown in Figure 2, the encoding

matrix G will be accessed row-wise and the permutation matrix P

will be accessed column-wise. Unlike in matrix-vector multiplication,

where a vector loaded once for multiplication will be retained

throughout, in matrix multiplication we will need to load rows as

many times as number of columns instead.

u
q/2

m'

>

c'

Fig. 3. Error correction using one-step majority voting.

4) Error Correction: We leverage the conditional operator, mux

to perform error correction through one-step majority voting. The

hardware circuit is shown in Figure 3. Error correction is performed

by comparing the non-binary elements in vector u to a scalar with

value � q
2
�. Here, q is the prime number chosen while setting up the

OLS codes for the cryptosystem. If an element in the ith position

in u is greater than � q
2
�, then the corresponding ith element in the

codeword is erroneous. Error-correction is performed on this element

by flipping it. Likewise, if the ith element in u is less than � q
2
� then

the corresponding ith element in the codeword is correct and needs

to be accepted as is. Error-correction performed this way is known

as error correction through one-step majority voting.

V. COMPLEXITY ASSESSMENT

We present a brief evaluation of the proposed cryptosystem’s

complexity based on a similar approach as proposed by Baldi et al.
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[18]. Multiplication of the scrambling matrix, S, the generator matrix

G, and the permutation matrix, P contributes to the key generation

complexity. KeyGen’s complexity can be expressed as:

CKeyGen = Cmul(SG) + Cmul(G
′′P ) (4)

Here, Cmul(SG) represents the number of operations needed for

computing the product of S and G, and G′′ denotes the result

after multiplying S and G. Encryption complexity is due to the

multiplication of the message by the public key, G′, and then addition

of a k-bit error vector to the computed product. This addition

operation will incur k binary operations. Encryption complexity,

CEnc, can be expressed as:

CEnc = Cmul(mG′) + k (5)

The decryption complexity needs to be divided into three parts,

which can be expressed as follows:

CDec = Cmul(cP
−1) + Cmv + Cmul(m

′S−1) (6)

Here, Cmul(cP
−1) is the number of operations required to com-

pute cP−1. Cmul(m
′S−1) is the number of operations required to

compute m′S−1, and Cmv is the number of operations required for

decoding through majority voting, which can be further expressed as:

Cmv = Cmul(c
′H) + Cmul(uH) + n (7)

Here, Cmul(c
′H) is the number of operations required to compute

c′H . Cmul(uH) is the number of operations required to compute

uH , where u denotes the result of multiplying c′H and n binary

operations are required to perform a check on the bits for error and

perform error-correction if required.

VI. PERFORMANCE EVALUATION

For evaluating the performance of the proposed McEliece cryp-

tosystem, we implemented our design in Verilog and carried out

synthesis using Xilinx Vivado 2018.2 design suite on a Xilinx

CLG400ACX1341 Zynq-7000 FPGA board.

TABLE II
CORRELATION BETWEEN k & n AND LATENCY & AREA FOR KEYGEN,

ENC AND DEC MODULES

Operation Hardware Cost(LUTs) Latency

KeyGen k + n 2kn

Enc k + n 2n

Dec k + 2n k + 3n

In Table II, we present an empirical analysis of the chosen param-

eters {k, n} and the hardware cost and latency for all three modules

of the McEliece cryptosystem co-processor. Both hardware cost and

latency can be computed as functions of the code parameters k and n.

Observing the hardware cost and latency trends not only provide key

insights but also help strategizing the new design implementations.

Table III presents the hardware cost and latency, in clock cycles,

for the entire co-processor with varying k and n values. The choice

of these parameters will define the size of registers, muxes, gates,

and datapath in the co-processor. As k and n values increase, LUT

and register utilization increase accordingly. It is worth noting that

our implementation has zero DSP cost, because we did not perform
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TABLE III
HARDWARE COST AND LATENCY(CYCLES) FOR THE PROPOSED

CO-PROCESSOR WITH DIFFERENT k AND n

Parameters Hardware Cost Latency

k n LUTs Registers KeyGen Enc Dec

361 741 4,764 2,626 28,158 1,482 2,584

1681 3321 24,174 11,745 272,322 6,642 11,644

3481 7021 57,492 24,646 828,478 14,042 24,544

6241 12561 77,981 44,017 1,984,638 25,122 43,924

10201 20301 125,787 71,182 4,100,802 40,602 71,104

16129 31369 194,470 110,356 7,967,726 62,738 110,236

22201 43061 287,752 151,459 12,832,178 86,122 151,384

26569 52649 350,981 184,609 17,163,574 105,298 184,516

36481 70861 473,240 249,185 27,068,902 141,722 249,064

39601 79401 528,567 277,921 31,601,598 158,802 277,804

any actual multiplication operations throughout our implementation.

The implementation is not optimized using BRAMs, we plan to do it

as future work. Latency is also dependent on k and n, as the number

of operations to be performed is defined by the size of the encoding

and decoding matrices which are of the order k and n. Figure 4

and 5 show the increasing hardware cost and latency trend for our

co-processor with various error correction t capabilities.

Next, we compare the key length of our proposed OLSC-based

scheme to a conventional binary Goppa code-based scheme. The

claim made in Section III about a shorter key length using orthogonal

Latin square codes is further confirmed by Figure 6. Finally, we

compare the performance of our implementation with some of the

existing hardware implementations of the classic McEliece cryptosys-

tem. The purpose of this comparison is to highlight the advantages of

replacing the binary Goppa code with the OLS codes. Tables IV, V,

and VI summarize our comparisons with related work. Most of the

implementations provide 80-bit security; only one implementation
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provides 103-bit security. Hardware implementations with higher

security levels for the classic McEliece cryptosystem are not available

because of high complexity, large key sizes and limited memory

availability.

TABLE IV
COMPARISON OF SECURITY, PARAMETERS AND PUBLIC-KEY SIZE

Work Security Parameters(n, k,
t)

Public-key
Size (Kb)

Configurable
parameters

[13] 80-bit 2048, 1751, 27 3502 No

[14] 80-bit 2048, 1751, 27 3502 No

[15] 80-bit 2048, 1751, 27 520 Yes

[16] 103-bit 2048, 1498, 50 824 No

Ours 112-bit 20301, 10201, 50 2564 Yes

Table V and VI present the hardware cost and latency of [13], [14],

[15], and [16]. We compare these with our architecture, generating

results using similar parameters. We observe that our implementation

provides higher security at a much lower hardware cost than the other

implementations.

TABLE V
COMPARISON OF HARDWARE COST(LUTS)

Work Platform Hardware Cost

KeyGen Enc Dec Total

[13] Spartan-3 - 668 11,218 -

[14] Spartan-3 - - 2,979 -

[15] Spartan-3 - - 785 -

Ours Spartan-3 12439 762 12786 25987

[16] Virtex-5 - - - 14,537

Ours Virtex-5 11900 584 12290 24774

TABLE VI
COMPARISON OF LATENCY(IN CLOCK CYCLES)

Work Latency

KeyGen Enc Dec

[13] - 7,889,200 891,736

[14] - - 94,249

[15] - - 87,363

[16] 14,670,000 81,500 210,280

Ours 4,100,802 40,602 71,104

Latency depends completely on the number and complexity of

the operations being performed. Our decryption operation is about

12×, 1.5× and 1.2× faster than the decryption in [13], [14], and

[15] respectively. Moreover, our key generation, encryption, and

decryption operation is about 3.7×, 2×, and 3× faster respectively

than the respective operations in [16]. The faster decryption module

is the result of the one-step majority decoding technique of OLS

code.

VII. SECURITY ANALYSIS

The security of the proposed variant of the McEliece cryptosystem

co-processor depends on how difficult it will be for an adversary,

who knows the public key G′ and can intercept the ciphertext, to

determine the plaintext message m. To determine m, an adversary

can try two different types of attacks. First, he/she can try to recover

the generator matrix G from G′ using the key recovery brute-force

attack. Second, he/she can perform a message recovery attack in an

attempt to recover m from the intercepted ciphertext without learning

anything about G. Additionally, an attacker can perform an attack by

trying to find a codeword with minimum hamming distance from all

the possible codewords.

Key Recovery Attack: A Key recovery attack or a structural attack is

the first category of attack that may seem promising as an adversary

can try the brute-force method to recover G. Hence, if we can prove

that the key space is large enough for the chosen parameter values so

that it is practically impossible to recover G, then we can justify the

security of the proposed scheme. Therefore, in this section, we will

explore the key space with an illustrative example code parameter set.

Hsiao et al. proved an important theorem in their work [17] on OLSC.

According to this theorem, for an existing set of λq q× q orthogonal

Latin squares (λq ≤ q - 1), there exists a t-error correcting code,

where

t = �λq

2
�+ 1 (8)

Equation 8 can also be interpreted in a way to predict the number

of orthogonal Latin squares that will be used in the encoding matrix

by rewriting it as follows:

λq = 2t− 2 (9)

Knowing equation 9, we can discuss the illustrative example with

q = 11. λq will be 10 with q = 11 and maximum bits that can

be error corrected is t = 6. Table VII shows the number of ways

orthogonal Latin squares can be picked to form the encoding matrix

G. It is evident from the table that for even a small value of q, G
can be formed in approximately 3 million different ways. It is worth

noting that we have completely ignored the different possibilities that

exist for generating the non-singular matrix S as well as permutation

matrix P for the given parameters.

TABLE VII
KEY SPACE EXPLORATION ILLUSTRATION

No. of bits to be
error-corrected, t

No. of Orthogonal
Latin Squares, 2t− 2

No. of ways to pick
orthogonal Latin

squares

1 0 0

2 2 90

3 4 5040

4 6 151,200

5 8 1,814,400

6 10 3,628,800
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In a practical scenario, the selected error-correction code will be

required to correct up to 100 bits of errors. A suitable q is 199,

as we will need at least 198 orthogonal Latin squares to perform

error correction on 100-bits. And, if we use all 198 orthogonal Latin

squares to compute the generator matrix, the key space is as large

as 198!, again ignoring the possibilities for the S and P matrices.

Hence, if q and t are large enough, there are so many possible ways of

constructing G that there is no chance of a one-to-one mapping from

G to G′. Therefore, the idea of recovering G by brute-forcing seems

impossible to an adversary. Hence, a structural attack that recreates

a private key against a cryptosystem based on the orthogonal Latin

squares codes is infeasible.

Message Recovery Attack: As learning the secret key G from the

public key is impractical, an attempt to recover m from the ciphertext

without learning G may prove a more promising approach for an

adversary. But deciphering m without G requires solving the basic

problem of decoding an arbitrary (n, k) linear code in the presence of

t errors. As discussed earlier in Section I, the decoding problem for

linear codes is, in general, NP-hard [19] and so if the code parameters

are large enough, then this attack, too, will be infeasible.

Codeword Finding Attack: The idea behind this attack is to

compare the hamming distance of the received word with all possible

codewords for the given code. The attacker starts by enumerating

through all possible codewords and simultaneously computes the

hamming distance, dH , between the received word and the codeword.

The attacker returns the codeword with the minimum dH as success.

The attacker, while trying to compare the received word with each

possible codeword in the code, requires 2k attempts as there will

be 2k possible codewords. Hence, the complexity of this attack will

be O(n2k). Considering k = 361, an adversary would require at

least 2361 ≈ 10109 attempts. Typical values for k are much larger in

practice, making the attack impossible.

Based on this discussion, we can conclude that any brute-force

approach against the proposed variant of McEliece cryptosystem is

too complex to be successful. We would also like to highlight here

that we choose q as a prime number to avoid attacks exploiting non-

prime numbers.

VIII. CONCLUSION

In this paper, we presented the design of a new variant of the

McEliece cryptosystem using OLS codes. The proposed scheme is

much faster than an equivalent binary Goppa code-based system

due to one-step decoding. Moreover, an efficient and lightweight

FPGA-based implementation of the proposed co-processor was also

presented. Design choices in the implementation of the sub-modules

within the cryptosystem’s co-processor led to optimal hardware cost

and latency for a wide range of parameter set. When compared to

other existing classic McEliece cryptosystems, our implementation

was found to be 3.3× faster on an average. As a future work, we

would like to further optimize our current implementation. We would

also like to perform a formal verification of the security provided

by the OLSC-based variant to confirm that the proposed McEliece

cryptosystem can serve as an efficient and high speed variant of the

original McEliece cryptosystem.
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