A Post-Quantum Secure Discrete Gaussian Noise
Sampler

Rashmi Agrawal, Lake Buf, Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory, ECE Department, Boston University
{rashmi23, mkinsy} @bu.edu
TThe Charles Stark Draper Laboratory, Inc., Cambridge, MA
{Ibu} @draper.com

Abstract—While the notion of achieving “quantum supremacy”
may be debatable, rapid developments in the field of quantum
computing are heading towards more realistic quantum com-
puters. As practical quantum computers start becoming more
feasible, the requirement to have quantum secure cryptosystems
becomes more compelling. Due to its many advantages, lattice-
based cryptography has become one of the key candidates for
designing secure systems for the post-quantum era. The security
of lattice-based cryptography is governed by the small error sam-
ples generated from a Gaussian distribution. Hence, the Gaussian
distribution lies at the core of these cryptosystems. In this paper,
we present the hardware design implementation of three different
sampling algorithms including rejection, Box-Muller, and the
Ziggurat method for the Gaussian Sampler. Our goal is to provide
concrete recommendations for future use and adoption in various
cryptosystems based on sampling efficiency, hardware cost and
throughput. The key feature of our design implementation is
that it performs high-precision sampling to meet the NIST’s
recommended security level of 112-bits or higher for the post-
quantum era, which most existing hardware implementations
fail to do. Furthermore, our design implementation is highly
optimized for FPGA-based implementation and is also generic
so that it can be seamlessly integrated into most cryptosystems.
Synthesis results are obtained using Vivado design suite for a
Xilinx Zynq-7010 CLG400ACX1341 FPGA board.

Index Terms—Gaussian Noise Sampler, Lattice-based, R-LWE,
Ziggurat, Rejection, Box-Muller

I. INTRODUCTION

Recent breakthroughs in the field of quantum computing
have led to two key milestone achievements. IBM launched a
53-qubit quantum computer [1] showcasing its advances in
the field, and then Google pushed further toward quantum
supremacy [2], by successfully programming its 53-qubit
Sycamore quantum computer to generate random numbers.
Although everyday use of quantum computers may seem
distant, it is no longer regarded as a farfetched idea.

Quantum supremacy is defined as the point at which quan-
tum computers can solve problems that are essentially unsolv-
able by classical computers within a reasonable time frame.
Hence, with quantum supremacy, quantum computers will
have the capability to break many existing encryption schemes
whose security reductions are based on integer factorization
and discrete logarithm problems. While these problems cannot
be solved by existing classical computers in polynomial time,
quantum computers will possess the computation power to do
SO.

With efforts from the National Institute of Standards
and Technology (NIST) [3] to standardize new encryption

schemes for the post-quantum era, lattice-based cryptogra-
phy has gained popularity. This is because many classical
cryptographic primitives can be realized very efficiently us-
ing lattices, providing strong security guarantees, including
conjectured security against quantum computers. Furthermore,
lattices allow the building of advanced schemes that go beyond
classical public key encryption [4], like digital signatures [5],
identity-based encryption [6], and even fully homomorphic
encryption [7]-[9]. Lattice-based cryptography is also very
alluring from an implementation standpoint, requiring only
simple arithmetic operations on integers. Thus, it lends itself
very well to implementations using reconfigurable hardware,
such as field-programmable gate arrays (FPGAs), offering
ample opportunity for optimizations and parallel designs.

At the heart of lattice-based cryptography is noise sampling,
generally from discrete Gaussian distributions. These small
noise samples play a crucial role in hiding information during
both the key generation and encryption phases in lattice-based
cryptosystems. Moreover, it has been shown that the bounded
distance decoding problem underlying the Gaussian Sampling
can be reduced to the Shortest Vector Problem (SVP) or
Closest Vector Problem (CVP) [10]. The security reductions
from these problems, i.e., SVP and CVP, form the theoretical
foundation of lattice-based cryptography.

Although noise sampling could be performed using sim-
pler distributions, e.g., uniform or binomial distributions, this
would require increasing the noise levels significantly. Higher
noise levels increase the complexity and lower the perfor-
mance of these cryptosystems. Furthermore, many simpler
distributions suffer from information leakage and weaker se-
curity guarantees. Hence, the Gaussian distribution represents
a highly desirable choice for noise sampling with optimal
performance and security trade-offs.

Obtaining discrete Gaussian samples with high precision
is challenging and non-trivial. It represents one of the main
hurdles in the effort to implement a secure scheme and poses
a serious bottleneck to achieving good performance in prac-
tice. High-precision floating-point arithmetic operations are
required to perform a high-precision Gaussian sampling with
negligible statistical distance. Furthermore, achieving security
against side-channel attacks [11], [12] has been recognized as
an important problem. This is because developing a constant-
time implementation of Gaussian sampling without incurring
major performance penalties is still largely an unsolved prob-
lem. Moreover, an efficient implementation of a Gaussian

noise sampler without security losses remains elusive. It
requires careful timing analysis of the underlying sampling
algorithm so that the resulting implementation is constant-time
and resistant to side-channel attacks.

Several algorithms exist for sampling from a discrete
Gaussian distribution. Well-known algorithms include inver-
sion sampling, rejection sampling, Knuth-Yao sampling [13],
the Ziggurat method [14], Box-Muller [15] sampling, and
Bernoulli sampling among others. Making an appropriate
choice for the algorithm requires weighing the pros and cons of
each algorithm, which can be overwhelming given the choices
available. Two important parameters to consider are sampling
efficiency and throughput.

Although a few hardware implementations of Gaussian
distribution sampling exist, they are either low precision imple-
mentations that do not provide enough security or hardware-
resource intensive. In this work, we present an FPGA-based
efficient implementation with three different sampling al-
gorithms and make usage recommendations based on the
hardware cost, sampling efficiency and throughput. The key
contributions of this work are:

1) Implementation: Highly-optimized FPGA-based imple-
mentation of Box-Muller, rejection, and Ziggurat sam-
pling algorithms over a Gaussian probability distribu-
tion.

2) High-Precision and Security: The use of Max-log
distance [16] along with statistical distance provides
128-bits of security, as recommended by NIST, with
64-bit floating-point precision. Moreover, all three im-
plementations generate samples in constant-time and,
hence, are resistant to side-channel attacks.

3) Recommendation: Evaluation of hardware utilization,
sampling efficiency, and throughput to provide useful
insights on the performance and make recommendations
on which sampling algorithm is best to use for practical
purposes.

4) Parameterization: A generic design implementation of
all three sampling algorithms to enable easy plug in to
a current or future cryptosystem’s implementation.

The rest of the paper is organized as follows. Section II
discusses some of the relevant related work. Section IIT will
provide the required mathematical background. Sections IV,
V, and VI will describe each of the three sampling algorithms
along with their implementation details. Section VII will eval-
uate performance, Section VIII will discuss recommendations
and future directions, and we then conclude the paper in
Section IX.

II. RELATED WORK

The inversion sampling method samples a random number
from any probability distribution given its cumulative dis-
tribution function. Hence, inversion sampling requires pre-
computing and storing the values from a given probability
distribution function and then computing the cumulative dis-
tribution function (CDF) for the given sample point. These
CDF computations are often expensive to perform. One of

the optimized inversion sampling implementations has been
done by Du and Bai [17]. Although their sampler has good
efficiency, it does not generate samples in constant time.

Other implementations of inversion sampling have been
done by Poppelmann et al. [18] and Howe et al. [19]. While
the latter implementation is a constant time implementation,
both of these implementations are costly as they incur a high
resource utilization and generate samples at a very low rate.

Another popular choice for Gaussian sampling has been the
Knuth-Yao sampling algorithm. This algorithm was introduced
by Knuth and Yao [13] who used a tree-based approach to
sample non-uniform distributions by using a minimal number
of random bits, close to the entropy of the probability distri-
bution. A non-constant time Gaussian sampler based on the
Knuth-Yao algorithm was proposed in [20]. It takes 17 clock
cycles on average to generate a sample, which is order of
magnitude slower than any other existing implementations.

A constant time optimized implementation was done
by Howe et al. [19]. Even though the implementation is
light-weight compared to the previous implementations, the
throughput is still insufficient as it takes about 10 clock cycles
to generate a sample. Based on these existing implementations,
it is safe to conclude that the Knuth-Yao sampling algorithm
is inherently slow and costly when implemented in hardware.

Another alternative explored by Lee et al. [21], is the Box-
Muller sampling algorithm. Their implementation consists of
sine, cosine, and square root computation units which results
in, the hardware-cost being approximately 3x higher than
any other existing implementations. However, the sampling
efficiency is quite high with a throughput of 466 million
samples per second.

Use of rejection sampling algorithm for Gaussian noise
sampling was initially proposed by Gentry et al. [6]. There
exists at least one hardware and software implementation
of rejection sampling algorithm, both of which are done by
Gottert et al. [22]. In contrast to their implementation approach
applied in the software variant, which would require floating
point arithmetic, the Gaussian sampler in hardware has been
implemented by means of a look-up table. They present limited
details on their hardware-based implementation and also do
not present the associated hardware cost or the performance
data for the Gaussian Noise sampler in the paper.

To the best of our knowledge other hardware implementa-
tions of rejection sampling algorithm do not exist. This can be
attributed to the fact that the computation of the probability
density function for a sampled integer value = can be complex
and expensive in hardware. Furthermore, rejection sampling is
not considered a very efficient sampling method due to its high
rejection rate and low sampling efficiency.

The Ziggurat method is one of the more efficient sampling
methods. Hence, it has been a popular choice for random
number generation. Therefore, quite a few software and hard-
ware implementations based on Ziggurat method exist. One
of the early software implementations was done by Marsaglia
et al. [14]. Another efficient and optimized C++ based imple-
mentation using the NTL [23] library was done by Buchman

et al. [24]. Although the software-based implementation is
efficient if the Ziggurat setup is done offline, the hardware
implementation is highly efficient, cost effective and generates
samples in constant time at high rate.

One of the first hardware implementations of this method
was done by Zhang et al. [25]. In their implementation,
computation of the rectangular region is heavily pipelined. Fur-
thermore, a buffering scheme is used to allow the processing
of rectangular regions to continue operations in parallel with
the evaluation of the wedge and tail computation. Yet another
hardware implementation of Ziggurat sampling was done by
Edrees et al. [26]. They suggested a modified Ziggurat with
trapezoids partitioning the distribution rather than rectangles.
This is better than the rectangular setup but does not improve
the efficiency since rejection sampling still needs to be per-
formed in the wedge area of the trapezoid.

Although these two hardware implementations are good
candidates for comparing efficiency and hardware cost, we
will refrain from doing so because they were not implemented
specifically for lattice-based cryptography, and the authors do
not present any details on the sampling precision. Hence,
we do not know with certainty the level of security these
implementations provide.

A more recent implementation for lattice-based crypto-
graphic applications was presented by Howe et al. [19]. Their
implementation is not very hardware-cost effective and takes
about 9 clock cycles to generate a sample. Another drawback
of this implementation is that it is based on the security proof
from [27] and thus uses 32-bits of precision for sampling.
Shortcomings of the security proof made in [27] were shown
in [16]. Therefore, an implementation based on this security
proof cannot guarantee enough security for the post-quantum
era.

To summarize, there is still scope for optimization, both
in terms of reducing the hardware cost and increasing the
sampling efficiency using various sampling methods. As a
result, in this work, we further optimize and implement three
different sampling algorithms and present a detailed evaluation
of these with respect to hardware cost and sampling efficiency.

III. DISCRETE GAUSSIAN DISTRIBUTION

The Gaussian distribution with standard deviation o € R
and center ¢ € R evaluated at = € R is defined by

1 —(z—0)?
e 202 (D

Pe,o(T) oo
Here, ﬁ is the normalizing factor. It does not impact
the sampling process, as the samples from a non-normalized
Gaussian distribution are equally good and it is safe to ignore
the normalizing factor. Also, while sampling, the mean or the
center ¢ of the Gaussian distribution will be considered as
zero and we will omit it. Hence, the probability distribution
function equation (1) reduces to following equation:

.2

po () = €202 ()

A discrete Gaussian distribution over Z centered at 0 is
defined by D,(x) = p,(x)/ps(Z) [28]. We also require a
lattice parameter known as smoothing parameter that defines
the width of the discrete Gaussian distribution beyond which
the discrete Gaussian distribution acts like a continuous distri-
bution. For an n-dimensional lattice L and positive real € > 0,
the smoothing parameter is denoted as 7.(L). The two upper
bounds on the smoothing parameter are defined in [29]. We
do not list them here due to space constraints.

Another important factor to consider is the tail cut parameter
7. The tail cut parameter administers how much of the less-
heavy tails can be excluded in the practical implementation, for
a given security level. By tail-cutting the Gaussian distribution
curve, we ignore the large values present in the infinitely
long tail of a given Gaussian probability distribution. For a
one-dimensional Gaussian, tfail cut parameter is computed as
follows to tail cut less than 27:

T~ \/A2log, 2 3)

Here,) is the security parameter and for A = 128, 7 = 9.
Figure 1 shows an example of Gaussian Distribution curve
with center ¢ = 0 and standard deviation o = 1.

0.4 —r=

7N
AN
0.35 / : \‘
/ i \
/ H A
0.3 / : \
/ o\
0.25 / ; \
Px) / :
02 / H
/ :
/
0.15 / H
/ H
/ H \
01 / : \
/ i N\
/ :
0.05 Vs : \
e i |
-3 2 1 o€ 1 2 3T

Fig. 1. Illustrative Gaussian Distribution Plot

A. Sampling Precision and Security

As we tail-cut the Gaussian distribution, a finite tail-bound
introduces a statistical difference with the true Gaussian dis-
tribution. The tail-bound depends on the maximum statistical
distance allowed by the security parameters. This is what
is represented by equation 3, which includes the security
parameter.

Statistical distance also determines the precision of sam-
pling. This is true because secure applications require sampling
with high precision to maintain a negligible statistical distance
from the actual distribution. If p, is the true probability of
sampling z € Z according to the distribution Dy , then our
sampler will select z with a probability p, where |p, —p.| < €
for some error-constant € > 0. For finite precision probabilities
p., we can denote the approximate discrete Gaussian distri-
bution with 152,[,. In order to preserve A bits of security, the
statistical distance A between the actual distribution Dy , and
the approximate distribution DZJ is defined as follows:

A(Dz,e, Dz,q) = sum|p(x) — p(x)| < 27 (4)

Hence to keep the statistical distance negligible, estimating
the true probabilities will require either A-bit fixed point
or floating point approximations. So to achieve 128-bits of
security, 128-bits of precision will be required, which means
that using statistical distance is not cryptographically efficient.

To obtain sharper security bounds with lower precision,
a new measure of closeness metric, max-log distance [16],
between the probability distributions is more useful. The max-
log distance Aj;y between the two distributions DZ,a and
Dy, is defined as follows:

Anir(Dz.o, Dz.o) = maz|in p(z) —In p(z)] < 272 (5)

Using max-log distance, it is possible to achieve more than
128 bits of security using just 64-bits of precision. This is
not only cryptographically efficient but also leads to a highly
optimized hardware implementation.

While statistical distance is convenient and easy to use,
64-bit security offered by 64-bit floating-point precision is
not sufficient. Hence, in our implementations, we will first
use statistical distance to perform tail-cut on the Gaussian
distribution and then use max-log distance metric to define
sampling precision so as to achieve 128-bits security with 64-
bit floating-point precision.

IV. BOX-MULLER SAMPLING

The Box-Muller sampling method is based on the Box-
Muller transform proposed by Box and Muller [15]. A basic
form of Box-Muller transform takes two samples from the
uniform distribution on the interval [0,1] and maps them
to two standard Gaussian distributed samples. Algorithm 1
shows how the Box-Muller sampling works. Input to the
algorithm is the standard deviation ¢ for desired probability
distribution. Steps 1 and 2 generate two samples uniformly at
random from the interval [0, 1]. In step 4 and 5, the required
computations are performed to map the samples from the
uniform distribution to the required Gaussian distribution. At
every iteration, the algorithm generates two samples x and y
as an output.

A. Hardware Implementation

To the best of our knowledge, there is just one existing hard-
ware implementation of Box-Muller sampling in the literature.
Due to the fact that it is expensive to compute cos, sin and
square-root values on the fly in hardware. We faced similar
challenge and thus, we precompute the cos, sin and square-
root values. The precomputation stage is carried out offline
and accordingly, the modified Box-Muller algorithm for the
hardware implementation is as shown in algorithm 2.

Using the modified Box-Muller algorithm for hardware
implementation simplifies the circuit as shown in Figure 2.
We need three storage elements to store the precomputed
values of ulgiore, U2st0re, ANd USgiore. Here, ulgiore 1S the
precomputation of square-root component, U2, 1S the cos

component’s precomputation, and u3s;.re 1S the precomputa-
tion os sin component. We utilize Block RAMs(BRAMs) on
the FPGA board for this storage purpose.

Algorithm 1 Box-Muller Sampling Algorithm

Input: o
Output: =z, y
Repeat
1: choose u; + R =R N0, 1] uniformly at random
2: choose ug <~ R =R N[0, 1] uniformly at random
3: if u; # 0 then
4: compute z = ov/—21Inu; cos (2musz)
5. compute y = o+/—2Inwuy sin (2mus)
6: return x, y
7: end if

Algorithm 2 Modified Box-Muller Sampling Algorithm for
Hardware Implementation

Input: o
Output: =z, y
1: Precompute:
2: choose u; <~ R =R N[0, 1] uniformly at random
3: choose ug <~ R =R N[0, 1] uniformly at random
4: if uy # 0 then
5: compute ulgiore = vV —2Inwuy
6: compute u2store = COS (27U2)
7: compute u3siore = sin (27wus)
8: end if
Repeat

9: compute x = o X Ulgpore X U2store
10: compute y = o X Ulstore X Ustore
11: return x, y

¢0

BRAM

—>
Random Bit ut store \ X i
Generator ul (I) T
X
X —>
_j »| BRAM u2(j) __A
u2 store
=
y
X —>
k BRAM u3(k) A
7] u3 store L |

Fig. 2. Box-Muller Sampling Circuit

To generate the addresses for these storage elements so as to
randomly access one value from each BRAM per iteration, we
use a random bit generator. This random bit generator follows
the design implementation proposed by Majzoobi et al. [30].
But we will not get into the design implementation details for

the random bit generator as it is out of scope for this work.
Moreover, it can be replaced by any other random bit generator
implementation as desired.

We store only 16 values for ul, u2, and u3 each. Using
these 16 values we will be able to generate 4096 samples
with different permutations. There are two advantages of doing
this. First, the random bit generator needs to generate only
4 random bits in each iteration to index into the BRAMs.
Second, the BRAM size will be small as it needs to store
only limited number of values. Each value will be a standard
double-precision float requiring 64-bits. Hence, for storing 16
such values in BRAM, we need only 1024-bits of storage space
within each BRAM.

The remaining circuit is fairly straight forward, requiring
only three multipliers to obtain the final samples. It is worth
noting that we perform an additional multiplication operation
to multiply ul with o. This trade-off is to provide generic
implementation of the algorithm. Thus, different values of o
can be plugged-in to obtain the samples from any desired
Gaussian distribution curve. Each iteration of the algorithm
generates two samples and therefore, we will need only, say,
500 iterations to generate 1000 samples. Hence, the Box-
Muller sampling algorithm is a very efficient constant-time
sampling algorithm.

V. REJECTION SAMPLING

Rejection sampling is a basic technique used to generate
samples from a given probability distribution. It is also called
an “acceptance-rejection” method or “accept-reject algorithm”.
The principle behind rejection sampling is based on the
observation that to sample a random variable in one dimension,
a uniformly random sampling from the interval [0, 1] can be
performed and the samples that fall under the required density
function graph can be retained. Rejection sampling algorithm
works as shown in algorithm 3.

Algorithm 3 Rejection Sampling Algorithm
Input: o, 7
Qutput: x

Repeat
1: choose x <— Z = Z N [0, 7] uniformly at random
2: choose y < R =R N[0, 1] uniformly at random
3. if y < p(z) then
4: return x
5
6
7

: else
reject x
: end if

The rejection sampling algorithm starts by generating an
integer value x in the specified range. As lattice-based cryp-
tography mostly requires positive samples only, so we sample
in the range 0 to 7 where 7 is the tail cut parameter. If an
application requires negative samples as well, then the range
can be extended from —7 to +7. The algorithm then generates
a real number y in the interval [0, 1]. The next step in the
algorithm is to check if y lies under the curve of the required

Gaussian distribution. For this purpose, we need to compute
the value of probability density function of x and then compare
y against p(z). If y is smaller then the sample z is accepted.
Otherwise, « has to be rejected as it does not lie within the
required Gaussian distribution curve.

A. Hardware Implementation

The hardware implementation for rejection sampling is
straight forward and its circuit is as shown in figure 3.

Random Bit
Generator

Fig. 3. Rejection Sampling Circuit

We again leverage the same random bit generator as in the
Box-Muller sampling algorithm. Here, we will use it first to
generate a random number x between a given range, and then
we will use it to generate another random number y in the
interval [0,1]. We will precompute and store corresponding
log(p(x)) values in the BRAM. Computing the p(z) values is
expensive due to the exponentiation operation and so, we do
not want to do it in hardware. The memory required to store
the precomputed probability density function values will be
O(7). we need to store 9 values as value of 7 approximately
equals 9 for 128-bit security, with each value requiring only 64
bits. Therefore, storing these values do not add to the hardware
cost as much.

The value of x will require only logs(7) bits and is also
used to index into the BRAM. This substantially reduces the
hardware cost as we do not need additional address generation
logic to index into BRAM. Once both the p(z) and y values
are available, a 64-bit comparator is used to compare the
values. If the comparator generates a one after the comparison
operation then the value of x is accepted as a sample under the
desired Gaussian distribution. Otherwise, the algorithm needs
to perform another iteration to generate more samples.

This hardware implementation is generic and can be reused
to generate samples from any Gaussian distribution. To do so
what needs to be modified is just the probability density func-
tion values stored in BRAM, corresponding to another desired
Gaussian distribution having a different standard deviation o.
Additionally, the value of tail cut parameter 7 is parameterized
to generate samples from a different range as per the security
requirements of a given cryptographic application.

The hardware implementation of rejection sampling is sim-
ple and inexpensive. The efficiency of rejection sampling

algorithm is given by 27/+/2m. The poor efficiency can be a
real bottleneck and slow down the entire cryptographic system.
Thus, to achieve a better sampling efficiency, we discuss an
improved version of rejection sampling in the next section.

VI. ZIGGURAT SAMPLING

Marsaglia and Tsang developed the Ziggurat transform
method [14] for sampling from decreasing densities. The
method is based on covering the target density with a set of
horizontal equal-area rectangles, a cap and a tail. The Ziggurat
title came from the appearance of the layered rectangles.
Ziggurats are ancient Mesopotamian terraced temple mounds
that, mathematically, are two-dimensional step functions. A
one-dimensional ziggurat underlies Marsaglia’s algorithm.

A. Ziggurat Setup

Figure 4 shows the Ziggurat formation over a Gaussian
distribution curve. The Ziggurat algorithm covers the area
under the probability density function by a slightly larger
area with n — 1 sections. To sample z’s from our desired
normal distribution, we need to generate random points (x, y),
uniformly distributed in the plane, and retain those that fall
under the curve while rejecting points that do not fall under
this curve. The Figure 4 has n = 8; a practical implementation
of Ziggurat algorithm will typically take values for n between
128 and 512. The choice of n affects the speed, but does not
affect the accuracy of the algorithm.

Yo

Ry

Y1

R2

y2

R3
y3

PRL R’y
:RA: R4

Ya

R
Ys s

v R | Re
Ve I ——— —— Ry
7 Xo X4 X; X3 Xy X5)'(6 X7

Fig. 4. Ziggurat(with n = 8) over a Gaussian Distribution Curve

The n — 1 sections of the ziggurat are represented using
rectangles. The bottom section is a rectangle along with a
bounded tail under the curve of p(x). The right-hand edges
of the rectangles are at the point’s x; shown with the points
where dotted lines intersect the distribution curve on the figure
4. With p(x¢) = 1 and p(z,41) = 0, the height of the k"
section is given by p(z) — p(zk+1)- It is important to choose
the xx’s so that all n — 1 sections, including the one on the
bottom with a tail-cut, have the same area. This is the key
distinguishing feature of Marsaglia’s algorithm; the rectangles
are horizontal and have equal areas.

For a specified number, n, of sections, it is possible to solve
a transcendental equation to find corresponding x,,. This will
be the point where the infinite tail meets the last rectangular
section. The following equation can be used to compute the
next x value:

Tp—1 = —\/202109(;)(96;@71)0\/%) (6)

Hence, once x,, is known, it is easy to compute the common
area of the sections and the other right-hand endpoints xy. It is
also possible to compute py = x_;/xy, which is the fraction
of each section that lies underneath the section above it. These
fractional sections form the core of the Ziggurat. The right-
hand edge of the core is the dotted line in the figure. The
remaining portions of the rectangles, to the right of the dotted
lines in the area covered by the graph of p(z), are the tips. The
computation of the x;’s and pg’s is done only once, and the
values can be precomputed and stored. In table I, we present
the z,, and v i.e. the area of the rectangles corresponding to
various n values. The table is crucial to ziggurat setup and
serves as a quick starting point.

TABLE I
ZTyn AND RECTANGLE AREAS CORRESPONDING TO DIFFERENT 1 VALUES

n Tn

8 2.3383716982472524
16 | 2.6755367657376135
32 | 2.9613001212640193
64 | 3.2136576271588955
128 | 3.4426198558966519
256 | 3.6541528853610088
512 | 3.8520461503683916

v (area of rectangles)
1.761736401187775%-1
8.3989463747827300e-2
4.0758744432219871e-2
2.0024457157351700e-2
9.9125630353364726e-3
4.9286732339746571e-3
2.4567663515413529¢-3

B. Ziggurat Sampling Algorithm

After the Ziggurat setup is done, Gaussian distributed ran-
dom numbers can be computed very quickly. The key portion
of the code computes a single random integer, j, between
0 and n and a single uniformly distributed random number,
u, between 0 and 1. Then, we compute z = u - x;. After
computing z, first we check to see if z falls in the tail area of
the curve. If it does, then we return z from the tail. If not, a
check is made to see if z falls in the core of the j** section.
If it does, then we know that z is the z-coordinate of a point
under the probability distribution function, and this value can
be returned as one sample from the normal distribution. If
this is also not the case, then the point z lies in the smaller
rectangular area. This small rectangular area is shown by the
green rectangle marked as R} in the figure 4. If 2 is in this
region, we need to check if it lies under or above the curve.
For this check, we can perform rejection sampling and if z
lies under the curve it is accepted otherwise, it is rejected.
The Ziggurat algorithm’s formal description is as shown in
algorithm 4.

Algorithm 4 Ziggurat Sampling Algorithm
Input: o, core, n, x

Qutput: =
Repeat
1: choose j <+ Z = Z N [0, n] uniformly at random
2: choose u < R =R N[0, 1] uniformly at random
3: compute z = u * T;
4: if j = O then
5: return z from tail
6: else if z < core; then
7. return z
8: else
9: perform rejection sampling on z
10: end if

The efficiency of the rejection procedure in this algorithm
is given by the equation 7. As the value of n increases, the
efficiency of the sampling improves.

C. Hardware Implementation

For an optimized and efficient hardware implementation, we
propose a modified Ziggurat sampling algorithm. Before we
introduce the modified algorithm, we present a quick analysis
on why the modification is feasible. We were interested in
learning what percent of the area of the rectangles will fall
into the core area. The core area for a sample rectangle is
highlighted in pink in Figure 4. For this purpose, we performed
the Ziggurat setup with various n values ranging from n = 8
to n = 512 rectangles and computed the average core area for
each setup.

TABLE II
AVERAGE CORE AREA(IN PERCENT) FOR DIFFERENT n VALUES
n Avg. core area
8 71.5
16 81.2
32 84.7
64 89.8
128 91.3
256 94.8
512 96.9

An interesting observation is that as we divide the Gaussian
distribution curve using a larger number of rectangles while
setting up the Ziggurat, the core area increases as well.
Table II affirms this fact furthermore. The advantage is that
this leads to increasing the probability of a sample lying in
the core area and hence we can either just accept or reject
the sample. This will, in turn, save us from performing the
additional rejection sampling check for the remaining part of
the rectangle. Moreover, as mentioned earlier, the Ziggurat

setup can be done offline and x values precomputed and
stored. So, the only added overhead will be in terms of the
memory required to store large number of x values. For our
implementation, we will use an optimal value of n = 64 so
that we do not increase the memory requirements significantly
and at the same time we still have almost 90% of the core area
covered.

1) Modified Ziggurat Sampling Algorithm: The modified
Ziggurat algorithm is given in algorithm 5. We get rid of
sampling from the tail as we have a tail cut parameter in
place. Thus, in step 1 on the modified algorithm, we sample
j from the interval [1,n]. Also, we get rid of step 9 of the
original algorithm, because we just reject the sample if it
is not in the core area. This also has the added advantage
that the implementation generates samples in constant-time
as it does not need to spend extra time performing rejection
sampling. Constant-time sampling provides resistance to side-
channel attacks. The steps to check if the sample lies in the
core area are similar to those of the original algorithm. We
will discuss and evaluate the impact on sampling efficiency
for the modified Ziggurat algorithm in Section VII.

Algorithm § Modified Ziggurat Sampling Algorithm for Hard-
ware Implementation

Input: o, core, n, x
Output: 2
Repeat

1: choose j <— Z = Z N [1,n] uniformly at random
2: choose u « R =R N[0, 1] uniformly at random
3: compute z = u * I
4: if z < core; then
5: return j
6: else

7: reject j

8: end if

Figure 5 shows our design implementation circuit for the
Ziggurat sampling algorithm. We again leverage the same
random bit generator to generate two random samples i.e. j
in the range [1,n] and u in the interval [0, 1]. To represent
j, we will require logs(n) bits. In our implementation, we
used n = 64 and hence j will require log(64) = 6 bits. The
implementation considers n as a parameter and it is possible
to replace it by a different value. But, as the value of n will
change, the corresponding values stored for core area and
x must also be updated in the BRAM. Each value, in both
the BRAMSs, will be 64 bits, and we will need to store 64
such values. Therefore, each BRAM will require 4096-bits of
storage. If memory is a constraint, then a smaller value of n
can be chosen while trading off the sampling efficiency.

To perform a multiplication between v and z; we will
need a 64-bit multiplier. Additionally, a 64-bit comparator
will be required for performing the comparison between z
and corresponding core; values. To get the required integer
sample, we store the value of j if it satisfies the comparison
results. Thus, the resulting implementation is compact, fast and

BRAM
(core store)

> core(j

Random Bit j_) BRAM
Generator (x store)
u .
lX(J)
\ 4

Fig. 5. Ziggurat Sampling Circuit

generates high quality Gaussian random numbers with correct
distribution in constant time.

VII. PERFORMANCE EVALUATION

In this section, we present the hardware resource utilization
for each of our sampler implementations. We will compare
and evaluate the efficiency of these samplers as well. All of
our implementations are done using Verilog, with Xilinx Zync-
7010 CLG400ACX1341 FPGA board as the target device for
synthesis.

TABLE III
HARDWARE COST FOR DIFFERENT SAMPLERS

Sampling Algorithm Slice LUTs | BRAM | DSP | Freq. (MHz)

Box-Muller Sampling 146 1 11 204.6
Rejection Sampling 89 1 0 76.4
Ziggurat Sampling 114 1.5 103.5

In table III, we present the synthesis results for generating
samples from the Gaussian distribution with 0 = 3.33, 7 =9,
and a sampling precision of 64-bits. We observe that the
hardware resource utilization for rejection sampling is the
lowest, while the hardware cost of the Box-Muller sampling
method is the highest. The hardware cost for the random bit
generator is not included in the hardware resource utilization
of the samplers because it can be seamlessly replaced by any
efficient random bit generator implementation that meets the
application’s requirement.

TABLE IV
HARDWARE COST COMPARISON FOR BOX-MULLER SAMPLING

Implementation | Precision | LUT | BRAM | DSP | Freq. (MHz)
[21] 16-bit 1528 12 3 233
Our work 64-bit 717 6 18 270.9

Table IV presents the comparison of hardware cost for Box-
Muller sampling. The data represent the synthesis results of

implementation done by Lee et al. [21] for o = 8.2. The target
device used by the authors is a Xilinx Virtex-4 XC4VLX100-
12 FPGA board. We synthesized our implementation on the
same FPGA board using similar parameters but still main-
taining a sampling precision of 64 bits. The results thus
obtained are also presented in the table IV. When comparing
the hardware resource utilization for both the implementations,
we found that LUT and BRAM utilization is about 2x higher
in [21] whereas our implementation has 6 x more DSP utiliza-
tion. However, the achieved operating frequencies in both the
implementations are almost comparable. Also we would like
to highlight that the security provided by the implementation
in [21] is not clearly defined.

Next, we compare the hardware cost associated with our
Ziggurat sampling implementation to that in [19]. Again,
to keep the comparison fair, we synthesized our Ziggurat
sampling implementation using the Xilinx ISE design tool
on a XC6SLX25-3 Spartan-6 FPGA board, as this is the
target device used in [19]. Table V presents the result of this
comparison for ¢ = 3.33.

TABLE V
HARDWARE COST COMPARISON FOR ZIGGURAT SAMPLING
Implementation A LUT | BRAM | DSP | Freq. (MHz)
[19] 64 785 0 26 60.3
Our work 128 143 1.5 16 114.1

For similar sampling parameters with double the precision,
our implementation utilizes approximately 5x fewer LUTs and
2x fewer DSPs than the implementation in [19]. In addition,
we achieved almost twice the operating frequency as compared
to the other implementation. It is worth noting that their Zig-
gurat setup involves dividing the Gaussian distribution curve
by only n = 8 rectangles, while our Ziggurat setup involves
dividing the curve into n = 64 rectangles. Hence, we have a
1.5 BRAM utilization while the other implementation has 0
BRAM utilization. To summarize, using the implementation
in [19] one will have to spend about 3 times the hardware
resources to obtain lower precision samples.

We do not compare the hardware cost for rejection sam-
pling. Rejection sampling has been implemented in hardware
by Gottert et al. [22], along with their public key encryption
scheme. However, the authors do not present the hardware cost
details explicitly for the Gaussian sampler in the paper.

TABLE VI
APPROXIMATE LATENCY(IN CLOCK CYCLES) OF DIFFERENT SAMPLERS
TO GENERATE 1 SAMPLES

Sampling Algorithm | Latency

Box-Muller Sampling 0.61n
Rejection Sampling 7.30n
Ziggurat Sampling 3.13n

In Table VI, we present the generic latency computation
equations for each of sampling methods. The lower latency

(@ (b)

() (d)

1200 1200

1000 o 1000 H O

800

800

600

600

400 400

Frequency of Samples
Frequency of Samples

200 200

1200

H
3

= = 1000 i

2
3

8

800

3

600

3

400

Frequency of Samples
w s g 2 3
3
Frequency of Samples

3

8
8

200

8

Samples Samples

o

Samples Samples

Fig. 6. Samples generated from the three samplers: (a) and (b) Box-Muller Sampling, (c) Rejection Sampling, and (d) Ziggurat Sampling.

in Box-Muller sampling can be attributed to the fact that the
algorithm generates about two samples every clock cycle. With
Ziggurat sampling, we observe a sub-optimal latency of close
to three clock cycles per sample. And rejection sampling has
poor latency, with a requirement of about 7 clock cycles per
sample. This is expected for rejection sampling, as the area
under the curve in figure 1 is less than the area outside the
curve.

We generated about 10,000 samples from each of the
samplers. In figure 6, we present the histogram plots for
o = 3.33. The plots show the quality of samples obtained from
all the three samplers. It is worth recalling that the Box-Muller
sampler generates two samples at any given point of time,
which yields two different plots for the Box-Muller sampling
method.

The final parameters to be evaluated are the sampling
efficiency and the throughput. The results are presented in the
table VII. Box-Muller’s sampling efficiency is almost 100%,
with a throughput close to 408M samples per second. The
efficiency of rejection sampling is governed by the equation
27/ \/27. After evaluation of our implementation, we observed
that rejection sampling’s efficiency closely follows this equa-
tion and exhibits an efficiency as low as 15%. Additionally, the
throughput for rejection sampling is about 152M samples per
second. For Ziggurat sampling, the efficiency is close to 90%,
as the Ziggurat setup has been done with n = 64. However,
we observed that the Ziggurat sampler is capable of generating
about 205M samples per second.

TABLE VII
APPROXIMATE EFFICIENCY(IN PERCENTAGE) AND
THROUGHPUT(SAMPLES/SEC) OF DIFFERENT SAMPLERS

Sampling Algorithm | Efficiency | Throughput

Box-Muller Sampling 100 408M
Rejection Sampling 15 152M
Ziggurat Sampling 90 205M

Finally, we compare the latency and throughput of our
work, [21] and [19]. The results shown in table VIII are
obtained while running the implementations for similar FPGA
boards. Our implementation of Ziggurat sampling is almost 3x
faster than the implementation in [19]. Their implementation is

slower, because their algorithm is not optimized for hardware
implementation and the authors perform rejection sampling to
check if the sample lies in the smaller rectangular area near
the curve. The operating frequency in our implementation is
almost twice that of their implementation.

When we compare the latency and throughput of our Box-
Muller implementation with the implementation in [21], we
observe a speedup of about 1.15x. Thus, our implementation
is capable of generating about 80M more samples per second.
It is worth noting that the sampling precision in their imple-
mentation is just 16 bits, which is not sufficient to provide
enough post-quantum security.

TABLE VIII
LATENCY(IN CLOCK CYCLES) AND THROUGHPUT(SAMPLES/SEC)
COMPARISON FOR ZIGGURAT AND BOX-MULLER SAMPLING METHOD

Implementation Sampling Freq.(MHz) | Latency | Throughput
[19] Ziggurat 60.3 9n 67M
Our work Ziggurat 114.1 3.13n 115M
[21] Box-Muller 233 0.5n 466M
Our work Box-Muller 270.9 0.61n 540M
Efficiency of Rejection Sampling
90
& 80
g0 ,,
5 a0 N
2 50 =
£ 40
> 30
S 20
S 10
@ oo
10 1000 2000 4000 8000 10000

Number of Samples

Fig. 7. Effect of increasing number of samples on efficiency in rejection
sampling

Another interesting trend we observed with rejection sam-
pling is that as the number of samples to be generated
increases, the efficiency starts to drop. We generated between
10 to 10,000 samples multiple times to confirm the trend.
Figure 7 shows the plot of decrease in efficiency with the
increase in the number of samples.

VIII. FUTURE DIRECTIONS AND RECOMMENDATIONS

Based on the evaluations and observations made in the
previous section, we make the following recommendations:

1) Box-Muller sampling has the highest sampling effi-
ciency and throughput but also has the highest resource
utilization. Thus, use of Box-Muller sampling is the best
choice when there is no resource constraint and sampling
efficiency is the main criterion for an application.

2) Rejection sampling has the lowest resource utilization
and can be used in applications where resource (mem-
ory/area) is a constraint and only a few samples need to
generated. Although, a trade off on sampling efficiency
and throughput will have to be made if large number of
samples are required.

3) The Ziggurat sampling method is optimal in terms of
both the resource utilization and sampling efficiency.
The choice of using Ziggurat sampling can be made
irrespective of the resource utilization or sampling effi-
ciency trade-offs.

The research community, at large, can benefit from these
useful insights and in turn will be able to make an appropriate
choice of Gaussian Noise Sample for their own applications.

IX. CONCLUSION

In this paper, we presented a highly optimized and efficient
FPGA-based implementation of Box-Muller, rejection, and
Ziggurat sampling algorithms over a Gaussian probability
distribution. The design implementation is constant-time with
high-precision sampling making it post-quantum secure and
resistant to side-channel attacks. A parameterized design im-
plementation of all three sampling algorithms provides an
opportunity to plug them in easily to any existing or future
cryptosystems. Evaluation of hardware cost, sampling effi-
ciency, and throughput provided useful insights on the best
sampling algorithm to use for practical purposes.

REFERENCES

[1] IBM Quantum Computing, “On quantum supremacy,”
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/,
2019.

[2] Google Quantum Supremacy, “Computing takes a quantum leap
forward,” https://www.blog.google/technology/ai/computing-takes-
quantum-leap-forward/, 2019.

[3] NIST. (2018) Post-quantum cryptography. [Online]. Available:
csre.nist.gov/projects/post-quantum-cryptography/round- 1 -submissions

[4] R. Agrawal, L. Bu, A. Ehret, and M. Kinsy, “Open-source fpga im-
plementation of post-quantum cryptographic hardware primitives,” in
2019 29th International Conference on Field Programmable Logic and
Applications (FPL). 1EEE, 2019, pp. 211-217.

[5] V. Lyubashevsky and D. Micciancio, “Asymptotically efficient lattice-
based digital signatures,” in Theory of Cryptography Conference.
Springer, 2008, pp. 37-54.

[6] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
fortieth annual ACM symposium on Theory of computing. ACM, 2008,
pp. 197-206.

[7]1 C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”
in Stoc, vol. 9, no. 2009, 2009, pp. 169-178.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in Annual
cryptology conference. Springer, 2011, pp. 505-524.

N. Stephens-Davidowitz, “Discrete gaussian sampling
to cvp and svp,” in SODA, 2016. [Online].
http://arxiv.org/abs/1506.07490

J. Bootle, C. Delaplace, T. Espitau, P.-A. Fouque, and M. Tibouchi, “Lwe
without modular reduction and improved side-channel attacks against
bliss,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2018, pp. 494-524.
L. G. Bruinderink, A. Hiilsing, T. Lange, and Y. Yarom, “Flush, gauss,
and reload—a cache attack on the bliss lattice-based signature scheme,”
in International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2016, pp. 323-345.

D. Knuth, “The complexity of nonuniform random number generation,”
Algorithm and Complexity, New Directions and Results, pp. 357428,
1976.

G. Marsaglia, W. W. Tsang et al., “The ziggurat method for generating
random variables,” Journal of statistical software, vol. 5, no. 8, pp. 1-7,
2000.

G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610-611, 06
1958. [Online]. Available: https://doi.org/10.1214/aoms/1177706645

D. Micciancio and M. Walter, “Gaussian sampling over the integers:
Efficient, generic, constant-time,” in Annual International Cryptology
Conference. Springer, 2017, pp. 455-485.

C. Du and G. Bai, “Towards efficient discrete gaussian sampling for
lattice-based cryptography,” in 2015 25th International Conference on
Field Programmable Logic and Applications (FPL). 1EEE, 2015, pp.
1-6.

T. Poppelmann, L. Ducas, and T. Giineysu, “Enhanced lattice-based
signatures on reconfigurable hardware,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2014, pp.
353-370.

J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill, “On
practical discrete gaussian samplers for lattice-based cryptography,”
IEEE Transactions on Computers, vol. 67, no. 3, pp. 322-334, 2016.
S. S. Roy, F. Vercauteren, and I. Verbauwhede, “High precision discrete
gaussian sampling on fpgas,” in International Conference on Selected
Areas in Cryptography. Springer, 2013, pp. 383-401.

D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. W. Leong, “A hardware
gaussian noise generator using the box-muller method and its error
analysis,” IEEE Transactions on Computers, vol. 55, no. 6, pp. 659—
671, 2006.

N. Gottert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the
design of hardware building blocks for modern lattice-based encryption
schemes,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2012, pp. 512-529.

NTL: A Library for doing Number Theory, https://www.shoup.net/ntl/.
J. Buchmann, D. Cabarcas, F. Gopfert, A. Hiilsing, and P. Weiden,
“Discrete ziggurat: A time-memory trade-off for sampling from a
gaussian distribution over the integers,” in International Conference on
Selected Areas in Cryptography. Springer, 2013, pp. 402-417.
Guanglie Zhang, P. H. W. Leong, Dong-U Lee, J. D. Villasenor, R. C. C.
Cheung, and W. Luk, “Ziggurat-based hardware gaussian random num-
ber generator,” in International Conference on Field Programmable
Logic and Applications, 2005., Aug 2005, pp. 275-280.

H. Edrees, B. Cheung, M. Sandora, D. B. Nummey, and D. Stefan,
“Hardware-optimized ziggurat algorithm for high-speed gaussian ran-
dom number generators.” in ERSA, 2009, pp. 254-260.

M.-J. O. Saarinen, “Gaussian sampling precision and information leak-
age in lattice cryptography.” JACR Cryptology ePrint Archive, vol. 2015,
p. 953, 2015.

L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal gaussians,” in Annual Cryptology Conference.
Springer, 2013, pp. 40-56.

D. Micciancio and O. Regev, “Worst-case to average-case reductions
based on gaussian measures,” SIAM Journal on Computing, vol. 37,
no. 1, pp. 267-302, 2007.

M. Majzoobi, F. Koushanfar, and S. Devadas, “Fpga-based true random
number generation using circuit metastability with adaptive feedback
control,” in Cryptographic Hardware and Embedded Systems — CHES
2011, B. Preneel and T. Takagi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 17-32.

reduces
Available:

