PreNoc: Neural Network based Predictive Routing for
Network-on-Chip Architectures

Michel A. Kinsy, Shreeya Khadka and Mihailo Isakov
Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering
Boston University

ABSTRACT

In this paper, we introduce a neural network based predic-
tive routing algorithm for on-chip networks which uses an-
ticipated global network state and congestion information to
efficiently route network traffic. The core of the algorithm
is a multi-layer neural network machine learning approach
where the inputs are level of occupancy of virtual channels,
average latency for a particular router to be selected for
route computation, the probability of virtual channel allo-
cation, and the probability of winning switch arbitration at
the crossbar. The algorithm lends itself to both node rout-
ing and source routing. To evaluate the PreNoc routing
algorithm, we simulate both synthetic traffic and real appli-
cation traces using a cycle-accurate simulator. In most test
cases, the proposed approach outperforms current determin-
istic and adaptive routing techniques in terms of latency and
throughput. The hardware overhead for supporting the new
routing algorithm is minimal.

CCS Concepts

eHardware — Interconnect; Network on chip;

Keywords

Network on chip; NoC; Adaptive Routing; Artificial Neural
Network; Predictive Routing

1. INTRODUCTION

The exponential growth in transistor count has led to the
integration of more processors onto a single chip. Computer
systems with several distinct CPU cores on a single die are
now standard with commercially available multicore designs
containing 64 or more cores. Multicore and many-core sys-
tems raise new sets of design challenges, one of them being
the communication infrastructure between the cores. Ini-
tially, buses were used in establishing communication be-
tween the cores and system components, but bus-based com-
munication techniques do not scale well beyond 16 cores.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GLSVLSI ’17, May 10 - 12, 2017, Banff, AB, Canada

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4972-7/17/05. .. $15.00

DOI: http://dx.doi.org/10.1145/3060403.3060406

65

As an alternative, network-on-chip (NoC) architectures have
been proposed.

Routing algorithms for NoC architectures can be gener-
ally classified into oblivious and adaptive. With oblivious
routing, which includes deterministic routing algorithms as
a subset, the path followed by a packet is statically deter-
mined. This method allows each node in the network to
make its routing decisions independently from the others.
By virtue of this distributed aspect, oblivious routing, such
as dimension order routing, enables simple and fast router
designs, and is widely adopted in early NoC-based systems.

However, oblivious algorithms perform poorly if the net-
work state changes, as in the case of transient or perma-
nent faults, or if the application has certain communication
patterns, such as bursty data transfers. The performance
reduction occurs because application and network state in-
formation are not used for computing routes. Alternatively,
an adaptive routing algorithm can use state information, for
example network congestion, to adjust to application phases
and network changes when making routing decisions. With
its dynamic load balancing, adaptive routing theoretically
outperforms oblivious routing. However, in the past, adap-
tive routing schemes have faced the difficult challenge of
balancing adaptiveness with router complexity. The vast
majority of these algorithms have never been implemented
because of the complexity of the router hardware that they
require.

The challenge of designing adaptive routing algorithms
which achieve good network load balancing, relatively short
paths for packets, and modest router architecture complex-
ity, is still relevant. Furthermore, in current multicore and
many-core designs large portions of silicon are effectively
“dark”- either idle for long periods of time or significantly
underclocked at the nominal operating voltage. This has
made adaptive routing more relevant, since oblivious rout-
ing is inadequate for dealing with the network state changes.
Esmaeilzadeh et al. [4] predict that over 50% of chips will not
use the ITRS scaling at 8nm technology node. Taylor [12]
estimates that in few years, designs may be 93.75% dark.

In this work, we present a predictive network-on-chip rout-
ing algorithm, named PreNoc, that uses a neural network
based learning technique to route packets for better per-
formance and power efficiency. To achieve the best perfor-
mance, adaptive routing algorithms generally need global
knowledge of the current network status. However, dynam-
ically obtaining a global and instantaneous view of the net-
work is often impractical due to changing propagation de-
lays. As a result, adaptive routing algorithms in practice

have relied on local knowledge, which limits their effective-
ness. The proposed algorithm mitigates this problem by first
learning the congestion and arbitration delays in the net-
work, then predicting the future network states and making
routing decisions without requiring real-time network state
information.

2. RELATED WORK

Ma et al. [10] introduced DBAR - Destination-Based
Adaptive Routing. The algorithm uses both local and global
network information in estimating network congestion lev-
els. In [3], Ebrahimi et al. presented an adaptive routing
algorithm based on minimal and non-minimal paths. Us-
ing local and global congestion information, the algorithm
is able to estimate the latency associated with each output
channel on the routing path to the destination switch. To
avoid some the pitfalls associated with global network load
balancing, Gratz et al. [6] proposed RCA - Regional Con-
gestion Awareness: a lightweight adaptive routing scheme
that makes path selection decisions based on the aggregated
congestion information from adjacent routers. The PreNoc
algorithm can be applied effectively to routing techniques by
utilizing regional and global congestion information. Cai et
al. [1] proposed a congestion prediction algorithm. It uses
a hamming network to compute the link buffer congestion,
finds the worst congested nodes, and then adapts to avoid
congested nodes. With DyXY routing [9], packets are sent
to either X or Y direction depending on the congestion con-
ditions. It uses local information, such as the current queue
length of the corresponding input port of neighboring routers
to decide on the next hop. Nilsson et al [2] proposed a prox-
imity congestion awareness technique which can be used for
uniform load distribution. Information from the neighboring
routers is sent from one router to its neighbors in all direc-
tions. Ramakrishna et al. [11] in their Global Congestion
Awareness (GCA) scheme used global link state and con-
gestion information to adapt routing to the network state.
Farahnakian et al. [5] introduced a congestion aware dual-
reinforcement routing algorithm where a two-way learning
approach allows the source node to learn the best way to get
to the destination node and from the destination node back
to source node. These works have informed and influenced
the design of PreNoc algorithm but with a key difference
in path selection. In the proposed routing algorithm, path
selection is done in a predictive manner as opposed to the
general reactive way.

3. PREDICTIVE ROUTING ALGORITHM

To support the adaptive routing algorithms, NoC-based
systems need to implement mechanisms to monitor and col-
lect the network state data. Adaptive routing algorithms
analyze this state information, for example network conges-
tion, to make their routing decisions. In this work, we use
neural networks to make routing decisions. Due to the devel-
opment of more sophisticated and efficient machine learning
techniques, practical neural network based adaptive routing
algorithms have become more feasible.

To present PreNoc algorithm, the following standard def-
initions of network graphs are used.

DEFINITION 1. Given a network graph G(V, E), where a
directed edge (u,v) € E has capacity c(u,v) and buffer space
b(u,v). The capacities c(u,v) are the available bandwidths

66

on the edge and buffer spaces b(u,v) are available buffer
spaces associated with input port (u,v).

There is a set of N(N —1) source and destination pairs in
the network. The set of possible flows is F'= {f1, f2, ..., fn}.
fi = (s, ti,d;), where s; and t; are the source and destina-
tion, respectively, for pair i, and d; is the demand. In this
work the assumption is s; # t; The flow f; is the set of all
data transfers from source s; to destination t;.

DEFINITION 2. The amount of flow f; along edge (u,v)
is fi(u,v). A route is a path p; from s; to t; for a flow i.
Edges along this path will have f;(u,v) > 0, other edges will
have fi(u,v) = 0. If fi(u,v) > 0, then route p; will use both
bandwidth and buffer space on the edge (u,v).

The objective function of the routing algorithm is to (1)
minimize the maximum channel load (MCL) across all net-
work links to avoid premature network saturation, and (2)
control the average path length to maximize network through-
put and minimize power usage.

3.1 Network State Estimation

The PreNoc algorithm is a hybrid approach that uses
both node routing and source routing. The network state
estimation is performed in a distributed fashion using local
and global information. Resource sharing conflicts are at the
root of network congestion, premature saturation and lower
network throughput. In wormhole routers, the routing oper-
ation takes four steps or phases; namely, D routing (RC), @
virtual channel allocation (VA), @ switch allocation (SA),
and @ switch traversal (ST). Resource sharing conflict may
arise in three of those four steps: at the buffer read and
route computation level, at the virtual-channel allocation
level, and at the switch arbitration level. Figure 1 shows the
conventional router architecture and the three contention

points, 1 through 3.
@ ve
llocation

Q Route

Tomputatlon P
\ [11] \
VC :
[[TTTIT1

Figure 1: Conventional wormhole router and resource shar-
ing conflict points [1-3].

Switch
Allocation

Input ports
putp | Output ports

Crossbar

@

Mj@‘r}
\>

Figure 2: Cost computation protocols: local (a) and global

(b).

5o o
@\1@ »

|H4| >

(b) Global scheme

b 0]

(a) Local scheme

Node Tables

awl| JaAQ sajepdn a|qeL
8 H

Figure 3: Routing cost tables for nodes A, B, and C and

local cost updates scheme.

Each router node executes its own version of the PreNoc
algorithm and stores the “best” learned routing costs to the
other nodes in the network in its routing cost table, shown in
Figure 3. The table entries are flow ids, source node, desti-
nation node, cost estimates per direction and the “best” cost
to reach destination. Having the flow ids and source node in
the table allows assigning different costs to the same direc-
tion depending on the flow id or source node. This schema
represents the upper-bound size requirement for routing cost
table. Tt takes into account the effects of head-off-line block-
ing. The table can be substantially reduced by (1) removing
the source node and flow id distinctions — leading to n — 1
entries per table, (2) limiting the learning range to some k
hops and finally (3) applying routing constraints to the table
size — for example XY-routing.

In the node routing mode, a node only directly calculates

the routing cost to reach its adjacent neighbors, then uses
the estimated costs of those neighbors to make its global pre-
diction. The computation propagates forward to the desti-
nation then backward to the source node. Figure 2 (a) shows
the different phases and Figure 3 shows the corresponding
routing cost table updates. Initially, costs in all the tables
for all the valid directions are set to zero. Although, they
could be configured to some predetermined values learned
off-line. To route a packet from A to I, in phase 1, node A
selects to go through its east link to B. In this illustrative
example, the actual cost for routing the packet from A to
its neighbor B is 4.0 which is sent from B to A as part of
the routing credit message. Node A updates its routing cost
through the east link (E) from 0.0 to 4.0 in phase 2. In the
following phases, node B forwards the packet to node C at
a cost of 5.0 and updates its routing cost table. When node
A later computes its eastbound cost, it will be 9.0.
For the source routing, routing cost table updates happen in
the reverse order initiated at the destination node. It uses
the global cost computation approach where the true rout-
ing cost of the packet does not arrive at node A until phase
8, shown in Figure 2 (b). Although the global cost can be
viewed as being less-adaptive, its routing cost estimates are
exact in the beginning of the learning process.

3.2 Cost Computation

The cost computation, denoted by C;(f(s:,ti,ds)), is a
weighted sum of the degree of goodness of considered paths
from node j to destination ¢; with nearest neighbors more

67

Initialization
Temporary calculated cost Tiost = 0 ;
Best routing cost Beost = 00 ;
Select direction dir = NULL ;
fOI‘j S ineighbors do

Teost = Cj(f(sk, L, di));

if Tcost < Bcost then

cost — Tcost;
dir = (i,);

end

end
Algorithm 1: Local Routing Cost Estimation - v

heavily weighted than distant neighbors. The one hop cost
calculation is shown in Equation 1 and has four key vari-
ables: (1) auv, is the average route computation latency for
VC q at the input port, puv, (2) puv, the probability of get-
ting through VC allocation without stall, (3) puv, is the
probability of winning arbitration at the crossbar without
stall and (4) b(u,v) represents the level of occupancy of vir-
tual channels associated with the link (u,v). The weight
parameters wq, wg, wx and w, measure the degree of im-
pact of contentions 1 to 3 and amount of free buffer space
at the input port. The parameters are also dynamic as they
are learned at runtime via the neural network, and provide
the predictive part of the algorithm. When the destination
node is more than one hop away, Equation 2 is used to
get the aggregated cost to the destination. In the equation
below k represents the number of hops away from j.

Ci(f(sistisdi)) = wa * aij, + wq * + wy * b(i,)

Pij,

(1)

+wx *
Pijx
Cliry (f (s, ti, di)) = w1 * Cia(f (50,10, di))
Fwz * Ci2(f(si, ti, di))
o Fwi * Cipr(f(s0, L3, di))
Where wi through wy are weights
And wy < wsz < ... < wg.

(2)

Algorithm 1 calculates the local routing cost and Algo-
rithm 2 performs the global recursive computation. These
two algorithms are integrated to derive the hybrid local and
global routing cost estimation.

3.3 Deadlock Freedom

Since the the algorithm can be used for both minimal and
non-minimal routing, it is not deadlock-free by default. For
deadlock freedom, the network channel dependency graph
can be made acyclic by prohibiting certain turns [8]. The
process of making the CDG acyclic essentially consists of re-
moving certain routes from all possible routes in the on-chip
network to guarantee deadlock-free routing. For the network
performance, the routing algorithm still needs to select a
route (or an optimal route) from all the allowed routes un-
der a given Acyclic CDG (ACDG). Routing table entries at
each router could be set to (1) the maximum number of edges
that a packet could take in the ACDG (for example, 2-entry
tables for 2-D mesh networks using dimension-order routing
like XY or YX) or (2) the maximum number of edges that
a packet could take in the original CDG with some default
table entry value for the restricted routes generated by the

Initialization
Source node $rcpode;
Destination node dstyode;
Temporary calculated cost Tecost = 0
Best direction cost Decost = 00;
Best path cost P.ost = 0;
Select path = (;
Current node curpode = SrCnode;
while (curnoge != dstnoqe) do
1 = CUTnode;
nextpop, = NULL;
for] S ineighbors do

Teost = Cj (f(5k7 L, dk))7

if Tcost < Dcost then

Dcost = Tcost;
nexthop = J;

end
end
path = path U (i, nexthop);
Pcost += Dcost;

Dcost = 005
CUTnode = NEXThop;
end

Algorithm 2: Global Routing Cost Estimation - 1)

ACDG (for example 4-entry tables for 2-D mesh networks
using dimension-order routing like XY or YX).

3.4 Predictive Model Using Neural Network

The PreNoc algorithm is based on the conventional hid-
den layers artificial neural network (ANN). Backpropaga-
tion is used to train the ANN in predicting the optimal path
for a given flow. The process involves feed-forward compu-
tation and backpropagation from the output layer to the
input layer with weight adjustments. Although, the ANN is
configured to output a routing direction, its main function
is to train the weight parameters wq, wq, wx and wy for the
cost computation.

The input parameters to the input layer are b(u,v), @, ,
where z is a VC at port (u,v)), puv, and pusy. For a 2D-
Mesh network, there are four nodes on the output layer.
Each node represents the direction for the next hop; and its
output value is the routing cost associated with that direc-
tion. The weights between the layers are randomly initial-
ized. In our experimental setup, weights are set to small
values in the range of [—0.5,0.5]; the learning rate and the
momentum are set to 0.15 and 0.9, respectively, and the de-
fault Sigmoid function is f(z) = H»e(%h)y where [; is the
layer node j. In active training, after each route selection
(rs), a preferred route (r,) decision is fed back into the ANN.
On the output layer the total prediction error is calculated

m o (rp, —Ts. 2
based the mean square error (MSE): E = %,

where m is 4 for the 2D-Mesh. We use standard backprop-
agation with partial derivatives.

3.5 Predictive Routing Approach

The PreNoc approach is a predictive scheme and defers
from previous adaptive routing techniques. The routing is
done in phases and in a iterative fashion. First, there is
a learning phase where routers collect network state infor-
mation, learn and forecast communication patterns. Sec-
ond, there is a monitoring phase to validate the information
learned in the first phase. In the final phase, routing tables
are updated. For a user-defined period of time or number of

68

system cycles, no learning or modification of routing paths
is done. Routing during this period, named called Oblivi-
ous Routing Phase (ORP), is done based on the previously
learned best routes and oblivious to current transient net-
work conditions. A the end of the ORP, a new validation
phase is initiated to test the robustness of routes under cur-
rent network conditions. If routing performance is above the
permissible threshold, the system goes into another ORP
without any change to the routing tables. In the case of a
degrading performance, the system performs a new learning
phase, followed by a validation phase and an ORP. Figure 4
shows an illustrative view of the phases.

] Learning Phase

Application route computation phases over time

Validation Phase [_| Oblivious Routing Phase

Figure 4: Phase-based hybrid adaptive-oblivious routing ap-
proach.

This intermittent aspect of the system allows for (1) the
learning phase to not ping pong, (2) the learning logic to
converge and stop when no learning is needed, and (3) to
disable or power-gate the learning logic. In general, train-
ing of the neural networks can take a fair amount of time.
Therefore, the initial training and calibration of weights can
be performed offline in software to alleviate some of the la-
tency. The online training is ongoing with user-defined break
periods or ORPs.

4. MICRO-ARCHITECTURE DETAILS

The conventional wormhole router micro-architecture is
modified to include three additional functional units: (1)
Router States Monitor unit that keeps track of flits, nodes,
etc. (2) a hardware engine for executing the ANN algo-
rithm, and (3) modification of the credit message to trans-
port router state information. Figure 5 shows the architec-
ture of the new router.

Rout Neural gworg)module Routing Co:
i outer . £ o = [o]sele]
R_?:;'I';g States 8@ O P A
Monit 2ROTHD S|
onitor eg'S 2S) +
L] L]
Route vc Switch
Computation Allocation Allocation
» | VC : > >
Input ports
putp i| Output ports
» | VC : I >
Crossbar

Figure 5: PreNoc Micro-Architecture.

Figure 6 highlights the information pieces added to the
credit message. In the PreNoc architecture, the credit mes-
sage carries: (1) the conventional credit information (CR)
and then (2) the number of free buffer spaces (FB) at the
port loga (bv X pv)-bit where bv is the number of buffer spaces
per VC and pv is the number of VCs per port, (3) the ar-
rival time (AT) of each header flit at the particular node

in terms of cycle time is recorded and stored, (4) Latencies
are calculated based on the arrival time, route computation,
virtual channel allocation and switch allocation. The num-
ber of bits used for each of these message components is
architecture dependent. In the prototype, 32 bits are used.
Instead of sharing the network link bandwidth with program
data, a secondary bufferless network is created to route the
augmented credit messages. This credit network sends two
types of messages: one contains the credit information when
the header and the body flits are passing through the router
and the second has the routing state information when the
tail flit passes through the router. Tables shown in Figure 6
are stored in the Router States Table. Learning module in-
cluding the ANN function is power-gated and can be power-
down when not learning.

{CR, FB, ID, RC,VA, SA}

NEEEN NN

SA ST CR FB

ST | AT

02 |1004| 08 | oc | 04 | 01 veo | 02 06

vCl 04

04 |100C| 04 | 08 | 06 | o1

Figure 6: Augmented credit message: state table (ST),
credit (CR), free buffer spaces (FB), (ST), header flit arrival
time (AT), route computation latency (RC), virtual channel
allocation latency (VA), and switch allocation latency (SA).

4.1 Hardware Implementation

To accurately estimate the hardware overhead and com-
plexity of the PreNoc router architecture, an FPGA imple-
mentation on a Xilinx Virtex7-XC7VX980T FPGA device
was performed. The router has 4 virtual channels and 8
slots per virtual channel. Table 1 shows the FPGA synthe-
sis results. The per router register and look-up table (LUT)
usage overheads are 9.2% and 9.1%, respectively.

Resource | Conventional PreNoc Router %
Regs 370829 404945 9.2
LUT 321582 350845 9.1

Table 1: FPGA implementation resource utilization.

There is no change to the critical path in the proposed
modification to the router architecture. As in the conven-
tional router, the arbitration logic controls the clock fre-
quency. In both architectures, the clocking speed is 111.83
MHz.

S. EVALUATION

The experimental setup uses BookSim, a C++ based cycle-
accurate on-chip network simulator [7], to implement and
8x8 2D-Mesh NoC with 4 VC per input ports, 6 buffer spaces
in each VC and 8 flits per packet with an exponential dis-
tribution. To test the efficiency of our design, flows from
both synthetic benchmarks and real applications are used.
The synthetic benchmarks, TRANSPOSE, BIT REVERSE, and
TORNADO are useful for evaluating specific communication
patterns. The real application H2.64 allows us to test for
more general and uneven traffic patterns. For the H.264
application, flow bandwidths are derived from profiling re-
sults. Several video streams are run and profiled in deriving

69

the flow demands. The injection rate variations for H.264
workload correspond to frame rates of 4 frames/second to
30 frames/second. For the comparative study, deterministic
and other adaptive routing algorithms are implemented: (1)
DOR routes packets first in x-direction to the correct col-
umn, then in y- direction to the destination node, (2) xy_yx:
paths are switched randomly between xy and yx routes to
split the traffic, and (3) Adaptive (Adap): it selects between
xy and yx routes based on the least congested X or Y neigh-
bor at the source. Simulation runs for 10000 cycles for a
warm-up and executes for 100000 cycles for 10 runs. The
neural network training takes on average one third of the
execution cycles across all benchmarks.

Figures 7a and 7b show the throughput and average la-
tency performance results for the different routing algorithms
under the TRANSPOSE benchmark application. The PreNoc
algorithm outperforms the DOR routing algorithm by 2.25x%,
the xy_yx algorithm by 1.5x and the adaptive routing by
1.2x in terms of throughput. Figures 7c and 8a present
the performance results for the BiT REVERSE benchmark.
The performance gab between the PreNoc algorithm and
the other routing algorithms is smaller. The PreNoc algo-
rithm outperforms the adaptive routing algorithm by 8.7%
at high injection rates. Even for the less predictable TOR-
NADO benchmark where the routing algorithms have compa-
rable throughput performance, the PreNoc approach shows
a better saturation point. This performance trend is vali-
dated by the H.264 Encoder application, shown in Figures 9a
and 9b . The PreNoc approach shows a greater aptitude to
create routing path diversity and avoid premature network
saturation. The PreNoc’s performance is very stable and
consistently outperforms all the other routing approaches
both deterministic and adaptive in terms of both through-
put and latency.

6. CONCLUSIONS

Using different network state information, the PreNoc
algorithm is able to estimate routing costs and perform low-
latency routing of traffic. A router architecture is created
to support the algorithm. The hardware overhead for new
router is 9.2% when compared to a conventional wormhole
design. Overall the PreNoc algorithm generally outper-
forms deterministic and other adaptive routing algorithms in
terms of both average packet latency and network through-
put. The proposed technique performs especially well at
high injection rates.

7. REFERENCES

[1] H. Cai, Y. Y. Yang, F. Qu, J. Wu, and B. Wang.
Congestion Prediction Algorithm for Network on Chip.
Telkomnika, Vol. 11, No. 12, pp. 7392-7398, 2013.

[2] J. O. E. Nilsson, M. Millberg and A. Jantsch. Load
Distribution with the Prozimity Congestion Awareness
in a Network-on-Chip. In Proceedings of the Design
Automation and Test in Europe Conference, pp.
1126-1127, December 2003.

[3] M. Ebrahimi, M. Daneshtalab, F. Farahnakian,

J. Plosila, P. Liljeberg, M. Palesi, and H. Tenhunen.
Haraq: Congestion-aware learning model for highly
adaptive routing algorithm in on-chip networks. In

NOCS, pages 19-26. IEEE, 2012.

1000 ¥

o
n

—%-DOR

Throughput (flits/node/cycle)

L 900F
045 —=xy_yx
= 800} |0~ Adap
0.4r E —*— PreNoc
S 700+
0.35F 3
. 600f
>
0.3F g
o 5001
0.251]
o 400F
0.21 3 g a00
0.15 =¥ DOR << 2001
——xy_yx
0.1 _e_ Adap 100}
—»— PreNoc A o

o
v
)

o 0.24r

o
S
[N

018
0.16

hroughput (flits/node/cycle

0.14
0.12 4
0.1 —%-DOR |
= —=xy_yx
0.08- S-Adap |1
0.06

—— PreNoc| |

=3
o

01 02 03 04 0.5).
Injection rates (flits/node/cycle)

(a) Throughput results for TRANSPOSE.

o1 o2
Injection rates

03 0.4
(flits/node/cycle)

(b) Latency results for TRANSPOSE.

L L
0.5 0.05 0.1 0.35 0.4

0.15 .2 0.25 0‘.3
Injection rates (flits/node/cycle)

(¢) Throughput results for BIT REVERSE.

Figure 7: TRANSPOSE and BIT REVERSE synthetic benchmarks results.

Average latency (cycles)

1000 T T T * T 4r 0.35 1000 T T T T T &
| [-%DoR 00l [DOR
900/ | —— XY_yX - b —+=xy_yx
gool |0~ Adap 2 03 & 800 | O~ Adap
— PreNoc B, o) — PreNoc
700F 2 S 700"
8 o25- §
600 2 . 600F
2 2
500 = o2r & 5001
ot ©
400F 5 © 400F
% 018 & 309
300 3 E>3
200F z —¥—DOR < 200+
= o —=xy_yx
100- - Adap 100-
& I ‘ 00 ‘ ‘ ‘ ‘ Lo PrefNoc 7S 4 7y ‘
.05 01 0.35 0.4 : 0.1 0.15 0.2 0.25 0.3 0.35 0.4 .05 01 015 0.2 0.25 03 0.35 0.4

015 02 025 03
Injection rates (flits/node/cycle)

(a) Latency results for BIT REVERSE.

Injection rates (flits/node/cycle)

(b) Throughput results for TORNADO.

Injection rates (flits/node/cycle)

(c) Latency results for TORNADO.

Figure 8: BiT REVERSE and TORNADO synthetic benchmarks results.

1000
o4r 00l | ¥~ DOR

—_ —=xy_yx
(4] L
2035 & 800 [0~ Adap
3 o —¥— PreNoc
© oaf S 700p
3 o
2 . 600F
B 025 2
S & 500
= o2 g
S 02r 400-
3 o 00
= & 300
S 0.15¢ 5]
o >
= —¥-DOR < 200t
= ooafb ——xy_yx

-Q-Adap 100

L L L L L L L PreNoc 7. & &4
%% o1 o1 o0z o2 3 0. 04 045 05 05 01 015 02 025 03 035 04 045 05

5 03 035
Injection rates (flits/node/cycle)

(a) Throughput results for H2.64 ENCODER.
Figure 9: H2.64 ENCODER benchmark results

[4] H. Esmaeilzadeh, E. Blem, R. St Amant,
K. Sankaralingam, and D. Burger. Dark silicon and

the end of multicore scaling. In Computer Architecture

(ISCA), 2011 38th Annual International Symposium

on, pages 365-376. IEEE, 2011.

F. Farahnakian, M. Ebrahimi, M. Daneshtalab,

J. Plosila, and P. Liljeberg. Adaptive reinforcement

learning method for networks-on-chip. In Embedded

Computer Systems (SAMOS), 2012 International

Conference on, pages 236—243, July 2012.

(6]
awareness for load balance in networks-on-chip. In
High Performance Computer Architecture, 2008.

HPCA 2008. IEEE 14th International Symposium on,

pages 203-214, Feb 2008.
N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J.
Dally, G. Michelogiannakis, and J. Kim. A detailed

and flexible cycle-accurate network-on-chip simulator,

2013.

P. Gratz, B. Grot, and S. Keckler. Regional congestion

70

Injection rates (flits/node/cycle)

(b) Latency results for H2.64 ENCODER.

[8] M. Kinsy, M. H. Cho, K. S. Shim, M. Lis, G. Suh, and

[9]

(10]

(11]

(12]

S. Devadas. Optimal and heuristic application-aware
oblivious routing. Computers, IEEE Transactions on,
62(1):59-73, Jan 2013.

Q. Z. M. Li and W. B. Jone. DyXY - A Prozimity
Congestion-Aware Deadlock-Free Dynamic Routing
Method for Network on Chip. DAC pp. 849-852, 2006.
S. Ma, N. Enright Jerger, and Z. Wang. Dbar: An
efficient routing algorithm to support multiple
concurrent applications in networks-on-chip.
SIGARCH Comput. Archit. News, 39(3):413-424,
June 2011.

M. Ramakrishna, P. V. Gratz, and A. Sprintson. Gca:
Global congestion awareness for load balance in
networks-on-chip. In 2018 Seventh IEEE/ACM
International Symposium on Networks-on-Chip
(NoCS), pages 1-8, April 2013.

M. B. Taylor. A landscape of the new dark silicon
design regime. Micro, IEEE, 33(5):8-19, 2013.

