
Open-Source FPGA Implementation of
Post-Quantum Cryptographic Hardware Primitives

Rashmi Agrawal, Lake Bu, Alan Ehret, and Michel Kinsy
Adaptive and Secure Computing Systems Laboratory

Department of Electrical and Computer Engineering, Boston University
Email: {rashmi23, bulake, ehretaj, mkinsy}@bu.edu

Abstract—The development and implementation of post-
quantum cryptosystems have become pressing issues in the design
of secure computing systems, as general quantum computers
have become more feasible in recent years. In this paper, we
introduce a set of FPGA-based post-quantum cryptographic
primitives (PQCPs) consisting of four frequently used security
components, i.e., public key cryptosystem (PKC), key exchange
(KEX), oblivious transfer (OT), and zero-knowledge proof (ZKP).
The three main contributions of this work are: (1) FPGA-tailored
implementation of the hardware primitives with novel algorith-
mic proposals of the OT and ZKP; (2) algorithmic optimizations
to reduce area and latency costs without compromising security;
and (3) open-sourcing the synthesizable and fully verifiable code
for the community at large. The RTL code base is fully parame-
terizable with an efficient, n-point Number-Theoretic Transform
(NTT) module for fast polynomial multiplications. These primi-
tives will aid researchers and designers in constructing quantum-
proof secure computing systems to prepare for the post-quantum
era. Implementation results, on an Zynq-7000 FPGA, show vari-
ous design trade-offs and correlations between system parameters
and the associated hardware cost and latency. The source code
for this project is available on the ASCS Lab website at the
following URL: http://ascslab.org/research/pqcp/index.html.

Index Terms—Post-quantum cryptography, FPGA-based pro-
totyping, public-key cryptosystem, key exchange, oblivious trans-
fer, zero-knowledge proof.

I. INTRODUCTION

The recent development trend [1] [2] [3] [4] [5] in the field
of quantum computers has confirmed that it is only a matter
of time before these computer systems become functional and
readily available. Quantum computers hold the promise of
a significant computational power increase. These computer
systems will be able to compute efficiently solutions for many
computational problems that are NP-hard on conventional
machines. While this development presents many compute
opportunities, it also deepens our current cyber-security crisis
by making many of the classical cryptosystems non-secure or
critically weakened. For instance, with quantum algorithms
capable of efficiently solving the integer factorization and
discrete logarithm problems, RSA, ECC and ElGamal will
all need to be re-examined or even replaced, since these
computational problems form the core of their security. In
fact, research efforts to develop a new class of post-quantum
algorithms and cryptosystems are now underway.

In early 2017, the National Institute of Standards and
Technology (NIST) launched a campaign [6] to standardize the

post-quantum cryptography. In the first round of submissions,
69 candidate algorithms were put forth, with 27 advancing
to the second round. The most commonly used algorithmic
approach across these submissions is the Ring-Learning with
Errors (Ring-LWE) [7] method. In fact, Ring-LWE is used in
12 out of 27 second round candidate submissions. Ring-LWE
cryptosystems have a number of key advantages: (1) its lattice-
based security reduction – modified shortest vector problems
– remains NP-hard even on quantum computers, (2) it has
a much smaller key size compared with other techniques of
comparable security guarantees, (3) it supports homomorphic
encryption, and (4) it could lend itself to efficient hardware
implementations.

In this work, we leverage these capabilities and develop
efficient hardware implementations. Although there are myriad
works exploring different implementations of the Ring-LWE
algorithm in software, hardware level design space exploration
efforts have been very tentitave. Moreover, out of the existing
hardware implementations, very few focus on scalability and
efficiency. One technical reason for this is that large poly-
nomial operations over finite rings – which form the core
computational kernel of Ring-LWE algorithms – remain a
key challenge for many hardware designers. To address this
issue, we introduce a set of highly-optimized, parameterizable
hardware modules to serve as primitives for faster design
space exploration of post-quantum cryptosystems, especially
the systems using Ring-LWE algorithms.

The post-quantum hardware primitive set consists of four
frequently used security components: the public key cryp-
tosystem (PKC) [8] [9], key exchange (KEX) [10] [11] [12],
oblivious transfer (OT), and zero-knowledge proof (ZKP). The
PKC and KEX form the basis of most modern cryptographic
systems. The OT is used in many privacy-preserving applica-
tions, e.g., DNA database query and private machine learning
[13]. Similarly, ZKP is used in a number of applications, such
as a potential candidate for the next generation of blockchain
[14] algorithms. The major contributions of our work are:

1) Implementation: FPGA-tailored implementation of the
primitives with novel algorithmic proposals of the OT
and ZKP primitives.

2) Optimization: Judicious algorithmic optimizations to
reduce the area and power cost without compromising
security.



3) Open Source: Release of the synthesizable and fully
verifiable Verilog code for the community at large. The
code base provides unique advantages including:

a) Parameterization: A parameterizable design to gener-
ate variably-sized primitives to enable their deployment
in small devices (e.g., IoTs) as well as large platforms
(e.g., homomorphic encryption engines).

b) Fast Polynomial Multiplier: An efficient FPGA im-
plementation of a n-point Numeric-Theoretic Transfer
(NTT) based high speed polynomial multiplier to be
used in all primitives.

These primitives will serve as the fundamental building
blocks to aid hardware designers in constructing quantum-
proof secure systems to prepare for the post-quantum era.

II. THE ALGORITHMS OF THE POST-QUANTUM
PRIMITIVES

This section briefly introduces the four post-quantum primi-
tives through their corresponding algorithms. It is worth noting
that the algorithms for PKC [7] and KEX [11] are from widely
accepted works, and the algorithms for OT and ZKP are part
of our novel proposal.

First, all the algorithms are based on the same setup of a
polynomial ring as follows:

Definition 2.1: Let the ring Rq be Rq = R/〈q〉 =
Zq[x]/〈f(x)〉, where f(x) = xn +1 is an irreducible polyno-
mial with n a power of 2, and q ≡ 1 mod 2n is a large prime
number. Thus Rq is a ring of integer polynomials modulo
both f(x) and q, and it has qn elements. Let X be a discrete
Gaussian distribution of small errors/noise centered around
zero with standard deviation αp, where α <

√
log n/n.

A. The Public-Key Cryptosystem (PKC)
The Public-Key cryptosystem is an asymmetric encryption

scheme involving a non-identical key pair, i.e., a public key
and a private key. The public key is used for encryption and
the private key is used for decryption. The main advantage of
PKC is that anyone with the public key can encrypt messages,
but only the key distributor is able to decrypt the cipher.
Digital signature is one of the most prevalent application of
this cryptosystem. The PKC algorithm works as follows:
B. The Key Exchange (KEX)

The PKC can be expensive for encrypting long plaintexts,
due to asymmetric encryption’s complexity. Hence, a key
exchange mechanism that facilitates the key establishments for
symmetric cryptosystems, is a proper choice. The New Hope
algorithm [15], a Ring-LWE based key exchange mechanism,
is a widely adopted post-quantum KEX algorithm that ensures
uniform distribution of the agreed key. Since it can be con-
structed using the same sub-modules as the PKC, we skip its
algorithm introduction for brevity. The detailed algorithm can
be found in [10].

C. The Oblivious Transfer (OT) Primitive
We propose a simple OT algorithm on the foundation of

the PKC primitive. The OT mechanism enables a receiver
to choose and receive a certain piece of information out of

Algorithm 1: R-LWE Public Key Cryptosystem
Setup: Let t = b q

2
c, a, b ∈ Rq and s, e, r0, r1, r2 ← X , then the

public key encryption protocol between Alice and Bob:
1 Key Generation: Alice picks a random a ∈ Rq and samples

s, e← X to generate the public key pk = {a, b} and the private
key sk = {s} by:

b = a · s+ e (1)

where · is polynomial multiplication over the ring. Alice sends
{a, b} to Bob and keeps s to herself.

2 Encryption: Bob samples r0, r1, r2 ← X . He then converts his
message into a binary vector (plaintext) m of length n, and
generates the cipher {c0, c1} as:{

c0 = b · r0 + r2 + tm,

c1 = a · r0 + r1.
(2)

3 Decryption: Alice decrypts the cipher by:

m = d(c0 − c1 · s)/tc, (3)

where d c stands for taking the nearest binary integer.

many pieces from the sender, while remaining oblivious to
the other pieces. The sender is also oblivious to the exact
piece selected. The OT is a widely used protocol in privacy-
preserving computations between two or more parties.

We denote KeyGen() as the Key Generation module,
Encpk() as the Encryption function, and Decsk() as the
Decryption module as seen in Algorithm 1. The proposed OT
algorithm over ring Rq is as follows:

Algorithm 2: Oblivious Transfer Based on R-LWE
Public Key Encryption

Setup: Let KeyGen() be the Key Generation function of the sender
Alice, Enc() the encryption function of the receiver Bob, and Dec()
the decryption function of Alice as in Algorithm 1. Alice has N
n-bit binary messages {m1, · · · ,mN} that Bob can choose from,
and N n-byte random vectors {r1, · · · , rN} where ri ∈ Rq .
Then the oblivious transfer between Alice the sender and Bob the
receiver is as follows:

1 Alice sends {r1, · · · , rN} to Bob. Bob chooses the cth vector rc in
order to acquire mc. Then Bob generates a random binary vector
K ∈ Rn

2 and computes v to send to Alice:

v = rc + Encpk(K), (4)

where rc is added to both ciphertexts {c0, c1} (ref. [Eq.2])
2 For all i ∈ {1, 2, · · · , N}, Alice computes the set {m′i} and sends

it back to Bob:

m′i = Decsk(v − ri)⊕mi (5)

where ri is subtracted from both ciphertexts {c0, c1} (ref. [Eq.2])
and ⊕ is bitwise XOR.

3 Bob computes his desired mc while remaining oblivious to other
mi, where i 6= c:

mc = m′c ⊕K. (6)

D. The Zero-Knowledge Proof (ZKP) Primitive
We propose a simple two-round ZKP algorithm in this sub-

section. The ZKP enables an entity to prove to a verifier that
it knows a secret value s, without revealing any information
(including the value of s) apart from the fact that it knows the
value. Next generation blockchain applications leverage ZKP
protocol to maintain security. Like the OT primitive, the ZKP
primitive can be designed using the building blocks of the



PKC algorithm. The proposed ZKP over ring Rq is given in
Algorithm 3.

Algorithm 3: Zero-Knowledge Proof Based on R-
LWE

Setup: Let t = b q
2
c, a, b, s ∈ Rq and e, r, e′, u← X .

Suppose Alice has a secret s and needs to prove her ownership of it
to Bob. It is notable that unlike the PKC scheme where s← X , in
this ZKP scheme s can be any arbitrary value as s ∈ Rq .

1 Alice picks a random a ∈ Rq and samples e, e′, r ← X . Alice also
selects an arbitrary binary vector m to compute:{

b = a · s+ e,

c = a · r +mt+ e′
(7)

where · is polynomial multiplication over the ring. Alice sends
{a, b, c,m} to Bob without revealing s. Bob samples u← X , and
interactively sends it to Alice.

2 Alice responds with x to Bob:

x = r + s · u. (8)

3 Bob verifies if:

d(c− a · x+ b · u)/tc ?
= m, (9)

where d c stands for taking the nearest binary integer. If the
equality of [Eq. 9] stands, then Alice has successfully proven her
ownership of s to Bob.

III. FPGA-BASED IMPLEMENTATION

The development of a hardware module for the Ring-LWE
based PKC remains complicated for designers due to the
complexity and quantity of arithmetic operations involved.
The challenge is thus to find an architecture that minimizes
hardware costs while maximizing performance, accuracy, and
parameterization. In this section, we introduce the design of
one such architecture for the Ring-LWE based PKC. The
design of various sub-modules will be elaborated next, along
with the motivations behind the design choices for each of
these sub-modules. While the bulk of the description here
focuses on the PKC, the core modules are shared among all
of the PQCP hardware primitives described earlier. Finally,
we discuss various design trade-offs, parameterization, and the
opportunities for optimization.
A. Main Algorithm

Our FPGA implementation of the PKC is based on the
original Ring-LWE PKC algorithm proposed by Lyubashevsky
et al. [7] as introduced in Algorithm 1.

B. Overall Architecture of The PKC
The architecture consists of three core building blocks. Each

building block represents an equation in the main algorithm.
Figure 1 shows the overall system architecture of the PKC
using the commonly shared hardware modules.

The KeyGen module computes Eq. (1), which breaks down
to vector multiplication and vector addition. The Encryption
module computes Eq. (2) and consists of vector multiplica-
tion, vector addition and scalar multiplication. Similarly, the
Decryption module computes Eq. (3) and consists of vector
multiplication, vector subtraction and scalar division to the
nearest binary integer. Hence, building the Ring-LWE based

PKC comes down to constructing these basic vector operation
modules.

Each n-digit vector a = [a0, a1, ..., an−1] can also be
written as: a = a0 + a1 · α1 + · · · + an−1 · αn−1, where
α is the primitive root of the ring. Therefore, the operations
between two vectors in a ring can also be treated as operations
between two polynomials whose coefficients are the elements
of the vectors.

C. Sub-modules and Design Choices
As discussed above, the basic operations of the algo-

rithms are polynomial addition, polynomial subtraction, scalar
multiplication, scalar division to the nearest binary integer,
and polynomial multiplication. Most of the operations are
component-wise, or can be reduced to conditional assign-
ments. The polynomial multiplication operation has the highest
hardware implementation complexity. An efficient multiplica-
tion module will substantially improve the hardware imple-
mentation efficiency of the entire hardware crypto-primitive
suite.

It is also notable that all of the sub-modules involve the
modulo operation, which is not cheap in hardware (a few
hundred LUTs). Thus, in the following implementations, we
will aim to use as few modulo operations as possible.

1) Polynomial Addition and Subtraction: Polynomial addi-
tion and subtraction are the two most frequently used modules.
Both can be implemented as component-wise operations on
two polynomials’ coefficients, with each result being wrapped
within mod q. We implement a hardware circuit for polynomial
addition and polynomial subtraction as shown in Figure 2.
Our implementation uses a conditional assignment to avoid
using the expensive modulo operation, saving a great number
of LUTs.

2) Scalar Multiplication: We again leveraged conditional
assignment to implement the scalar multiplication hardware
circuit shown in Figure 2. This is possible because m, the
plaintext message, is an n-bit vector. Thus, computing tm
is essentially choosing t or 0 according to each bit of m.
Hardware cost is saved here as well by using muxes rather
than performing actual multiplication operations.

3) Scalar Division to the Nearest Binary Integer: We
implement the scalar division hardware circuit shown in Figure
2, without using any hardware division circuit.

We leverage the fact that the dividend and divisor are both
within q and the quotient is rounded to the nearest binary
integer. From Eq. (3) in the main algorithm, we denote u =
(c0 − s · c1) and we know that t = b q2c; hence, what we need
to compute is m = dut c. The nearest binary integer equivalent
of dut c can be computed as (Absolute(u − t) < t

2 ) ? 1 : 0.
This holds true because Absolute(u− t) measures the distance
between u and t. If this distance is larger than half of t, it
means u and t are far from each other, so the nearest integer
of the quotient u

t must be 0. But if the distance is less than
half of t, then the nearest integer of the quotient u

t must be 1.
4) Number-Theoretic Transform: A Number-Theoretic

Transform is a generalization of the Fast Fourier Transform



Decryption 
Key Generation 

Encryption 

b

Noise Sampler r1

r0
Poly 
MUL 

Mod 
Redu 

Poly 
Add c0

Scalar 
MUL 

[q/2]

m

Poly 
MUL 

Mod 
Redu 

Poly 
Add 

c1
r2

a

Message to Encrypt

Cipher In

Cipher Out
Public Key In

Public Key Out
Noise Sampler

TRNG

e

s
Poly 
MUL 

Mod 
Redu 

Poly 
Add 

b

a

Nearest
Binary
Integer

of 
u/[q/2] 

c0

c1

s
Poly 
MUL 

Mod 
Redu 

Poly 
Sub 

m

u

Decrypted Message

Application System

Interface

Fig. 1. The three core building blocks for the PKC algorithm: Key Generation (KeyGen), Encryption (Enc), and Decryption (Dec).

+

>=

q

0

-

a b
c

- >=

q

0+

a b

c
tm

==
1

0
>=

ct

-

-
>=

t/2

0

1

a

c

Polynomial	Addition Polynomial	Subtraction Scalar	Multiplication Scalar	Division

Fig. 2. The four basic operations of the PKC algorithm: Polynomial Addition, Polynomial Subtraction, Scalar Multiplication, and Scalar
Division to the Nearest Binary Integer. All operations to be performed over Rq .

(FFT) over a finite ring Rq = R/〈q〉 = Zq[x]/〈f(x)〉 instead
of the complex number field C. The NTT equation is given
by:

Xi =

n−1∑
k=0

xk · ωik (10)

where ω is the nth root of unity in the corresponding field
of the polynomial. For a ring Rq , where q is a prime number,
the nth root of unity ω satisfies two conditions:

1) ωn = 1 mod q,
2) The period of ωi for i ∈ {0, 1, 2, · · ·n− 1} is exactly n.
Computing ω is not trivial. One fast approach is:

1) Find the primitive root of q, which must satisfy:
• αq−1 = 1 mod q
• The period of αi for i ∈ {0, 1, 2, · · · q − 1} is exactly
q − 1.

2) Since ωn ≡ αq−1 mod q, we have:

ω = α(q−1)/n mod q

3) Verify this ω according to its two conditions above.
For Inverse NTT (INTT), the computations can be per-

formed using the NTT equation after replacing ω with ω−1.
ω−1 can be computed as ω−1 = ωn−1 mod q. INTT compu-
tation also requires computing the inverse of n, which can be
computed as n−1·n = 1 mod q. Next, we will explore how NTT
can be used for performing fast polynomial multiplication.

5) Polynomial Multiplication using NTT: Polynomial mul-
tiplication has the highest implementation complexity; hence,
the polynomial multiplication module will govern the effi-
ciency of the entire system. So, it is critical to design an
efficient polynomial multiplication module.

One of the most common implementations of the polyno-
mial multiplier is using convolution. However, the convolu-
tion method has a complexity of O(n2) multiplications and,

therefore, is not an efficient way to implement it in hardware.
A better approach is based on negative wrapped convolution
combined with butterfly number-theoretic transform (NTT).
This approach takes O(n log2 n) multiplications. The NTT-
based multiplication algorithm 4 proposed by Chen et al. [16]
is as follows:

Algorithm 4: NTT-based Polynomial Multiplier
Setup:Let a = {a0, · · · , an−1} and b = {b0, · · · , bn−1}
∈ Zq [x]/〈f(x)〉 be two polynomials of length n (with n
coefficients), where f(x) = xn + 1 is an irreducible polynomial
with n a power of 2, and q ≡ 1 mod 2n is a large prime number).

Let ω be the n-th root of unity, ω−1 the inverse of ω,
φ2 = ω mod q, and φ−1 the inverse of φ.

1 Precompute: {wi, w−i, φi, φ−i} for all i ∈ {0, 1, · · · , n− 1}
/* negative wrap convolution of a and b */

2 for i=0 to n-1 do
3 āi ← aiφ

i

4 b̄i ← biφ
i

5 end
/* number-theoretic transforming a and b */

6 Ā← NTTn
ω (ā)

7 B̄ ← NTTn
ω (b̄)

/* component-wise multiplying A and B */
8 C̄ = Ā · B̄
9 c̄← iNTTn

ω (C̄)
10 for i=0 to n-1 do
11 ci ← c̄iφ

−i

12 end
13 Return c

One of the key contributions of our work is a parameterized
and optimized implementation of algorithm 4. Though hard-
ware implementations of NTT algorithms exist, they are very
expensive in terms of hardware cost, power and latency. This
is because prior implementations perform a great number of
multiplications and divisions in computing the indices of the
points and the corresponding wi. This may not be an issue for
software implementations. However, for hardware implemen-



NTT

b 

c
X X

a
φ

NTT

INTT X
φ-1 

Polynomial Multiplication

X
n-1 

i 

X >=

+

-

+ >=

-

<<
1 

log
n 

q 

a 

0 

w 

NTT Block

Fig. 3. Polynomial Multiplication, Operation within NTT Block

tations, those multiplications and divisions will consume large
numbers of LUTs.

In our implementation of algorithm 5, we use only shift and
xor to compute the indices of the points and the corresponding
wi. Shift and xor are cheap to implement in hardware and
these simple operations replace the large multiplication and
division circuits. The schematic diagram in Fig. 3 shows a high
level circuit for polynomial multiplication and the operations
within the NTT block. This is the most area efficient hardware
implementation of an NTT algorithm we have yet seen. It
should be noted that since this the algorithm is tailored for
FPGA implementation and uses many bit-level operations, one
may find it difficult to perform a one-on-one mapping to an
optimized software implementation.

Algorithm 5: Number-Theoretic Transform Fully Op-
timized for Hardware Implementation

Let a = {a0, · · · , an−1} ∈ Zq [x]/〈f(x)〉 where n is a power of 2,
and q ≡ 1 mod 2n is a prime number. Let ω be the n-th root of
unity for q. Let ω−1 be the inverse of ω. Precompute ωi and ω−i

for i ∈ {0, 1, · · · , n/2− 1}, and store them in the array element
ω[i] and iω[i] respectively.

Let a be swapped to A so that A[j] = a[jrev ], where jrev is a
binary vector bit-reversed from j. Let i, Stage both be initialized
to 0.

Index Computation:
/* calculate the corresponding point’s index icorr to the ith point */

1 assign icorr = i XOR (1 << Stage);
/* calculate the twiddle factor k for both icorr and i */

2 assign k0 = (Stage == 0)?0 : (i << (logn− Stage));
3 assign k = k0[log q − 1 : 1];

Shared Variable Computation:
4 assign v = A[icorr] ∗ ω[k] mod q;

NTT Function:
5 if Stage < logn then
6 if i < n then
7 i = i+ 1;
8 if i == n− 1 then
9 Stage = Stage+ 1;

10 end
11 if i[Stage] == 0 then
12 A[i] = A[i] + v − (A[i] + v ≥ q?q : 0);
13 A[icorr] = A[i]− v + (A[i] ≥ v?0 : q);
14 end
15 end
16 end
17 else
18 Return A as the transformed polynomial of a.
19 end

D. Gaussian Noise Sampler and True Random Number Gen-
erator (TRNG)

In all of the algorithms mentioned in Section II, the source
for generating small random noise vectors is a Gaussian Noise
Sampler. The importance of generating noise vectors within
Gaussian distribution range is described in detail by Regen
[17]. Also, a TRNG is required in the KeyGen module to
generate the public key a. Hence, the quality of a will be
determined by the quality of TRNG. Therefore, designing and
implementing an efficient Gaussian Noise Sampler and a high
entropy TRNG are critical. Implementations of the Gaussian
Noise Sampler and the TRNG are beyond the scope of this
paper, and one can refer to Karmakar et al. [18] and Sunar et
al. [19] for further details.

E. Parameterization and Open Source
A realistic implementation of the Ring-LWE based PKC re-

quires q > 10, 000, with each polynomial having 128 ∼ 1024
coefficients. This ensures that the algorithm has a security level
of at least 112 bits, as per the security standards prescribed by
NIST. Thus, parameterizing the implementation assists in easy
transition to large values for q and n to achieve the appropriate
long term security. Moreover, a parameterizable design also
facilitates generating variably-sized primitives to enable their
deployment in small devices, such as battery powered sensors
or other IoT devices, as well as large computing platforms,
such as homomorphic encryption engines.

As a contribution to the research community, we will open
source this parameterizable Verilog code base. Additionally,
we will release the software code for generating ω, n-th root of
unity for q and φ, the negative wrapped convolution variable.
This will provide researchers with a good baseline for quickly
designing their own secure architecture schemes.

IV. EVALUATION OF COST AND PERFORMANCE

We first present the correlation between the system param-
eters n, q and costs (latency and hardware) for all the three
building blocks of PKC system. These equations provide an
estimation of the performance and cost as soon as {n, q} are
selected. Therefore, it helps designers to plan ahead regarding
hardware resources and latency expectations for their own sys-
tems. As shown in Table I, the latency (in clock cycles) can be
precisely computed as a function of n, and the hardware cost
is proportional to n log2 n log2 q. This estimation is backed



(a) (b) (c)

Fig. 4. (a) Hardware Cost with different q and n for PKC System, (b) Total Latency (cycles) for PKC System, and (c) Latency comparison of NTT Multiplier
for our design, the design of Chen et al. [16], Pöppelmann et al. [20], and Aysu et al. [21].

by the experimental data listed in the tables and shown in the
figures.

Our PKC is implemented on the Zynq-7000 FPGA. The
synthesis is carried out using Xilinx Vivado 2018.2 design
suite. Table II and III present the implementation results, i.e.,
the hardware cost for the entire PKC system. The results
indicate that the hardware cost depends on the length (n) of the
polynomial and size (bit-width) of the chosen prime number
(q). Synthesis results are generated using variable polynomial
length, n while the prime number (q) used is 12,289. This
value of q is widely accepted as one of the safe to use values in
Ring-LWE based cryptosystems. We also present the hardware
cost trend for different combinations of n and q in Figure 4(a).

TABLE I
CORRELATION BETWEEN {q, n} AND {LATENCY,AREA}

Operation Latency

KeyGen 3n+ 3n
2

log2 n

Enc 7n+ 2n log2 n

Dec 4n+ n log2 n

Resource Cost

LUTs O(n log2 n log2 q)

Registers O(n log2 n log2 q)

TABLE II
HARDWARE COST(LUTS ONLY IMPLEMENTATION) WITH DIFFERENT n

AND q=12,289

Length n LUTs Registers DSP
128 66251 16805 26
256 11490 33138 26
512 227458 65643 26

1024 426402 130540 26

TABLE III
HARDWARE COST(BRAM IMPLEMENTATION) WITH DIFFERENT n AND

q=12,289

Length n LUTs Registers DSP BRAM
128 7376 221 26 3.5
256 9152 396 26 3.5
512 11504 674 26 3.5

1024 15717 1255 26 3.5

In Table IV and Figure 4(b), we present the latency of
the PKC system with varying polynomial length n. We can

see that the latency in clock cycles is determined by n,
independent of q. However, the maximum frequency will be
reduced as q increases, due to a larger combinational logic in
the modulo operation.

TABLE IV
LATENCY (CYCLES) FOR KEYGEN, ENC AND DEC MODULES IN PKC

Length n KeyGen Enc Dec
8 96 152 80
16 240 368 192
32 576 864 448
64 1344 1984 1024

128 3072 4480 2304
256 6912 9984 5120
512 15360 22016 11264
1024 33792 48128 24576

We also compared the latency of our design implementa-
tion for NTT Multiplier to the design of Chen et al. [16],
Pöppelmann et al. [20], and Aysu et al. [21]. For polynomial
length, n, ranging from 256 to 2048, Figure 4(c) shows a
performance improvement of about 22% when compared to
Chen et al. [16], about 72% when compared to Pöppelmann
et al. [20], and about 78% when compared to Aysu et al [21].

V. CONCLUSION

An efficient FPGA implementation of post-quantum crypto-
graphic hardware primitives is presented in this paper. Design
choices in the implementation of the sub-modules within the
PKC lead to optimal hardware cost and latency. We also
presented the design implementation of an efficient polynomial
multiplier. This implementation played a significant role in the
efficient implementation of the entire PKC. Parameterization
of the modules helped in fast prototyping and testing of the
design. It also provided a means to create variably sized
primitives targeting a wide range of applications.

We investigated the performance of our implementation on
the Zynq-7000 FPGA. We found that our multiplier imple-
mentation has 22% ∼ 78% lower latency on average when
compared to existing implementations [16] [20] [21]. Also,
the overall hardware cost and latency is found to be optimal
for a wide range of parameter sets. As for future work,
we will extend our design implementation to a Somewhat
Homomorphic Encryption scheme.



REFERENCES

[1] W. Knight, “Ibm raises the bar with a 50-qubit quan-
tum computer,” Sighted at MIT Review Technology:
technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-
quantum-computer, 2017.

[2] J. Hsu, “Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy,”
IEEE Spectrum Tech Talk, 2018.

[3] R. Courtland, “Google aims for quantum computing supremacy [news],”
IEEE Spectrum, vol. 54, no. 6, pp. 9–10, 2017.

[4] S. Daily. (2018) World-first quantum computer simulation
of chemical bonds using trapped ions. [Online]. Available:
www.sciencedaily.com/releases/2018/07/180724110028.htm

[5] R. F. Mandelbaum. (2018) This could be the best quantum computer
yet. [Online]. Available: gizmodo.com/this-could-be-the-best-quantum-
computer-yet-1831085617

[6] NIST. (2018) Post-quantum cryptography. [Online]. Available:
csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[7] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[8] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe cryptoprocessor,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2014, pp.
371–391.

[9] T. Poppelmann and T. Guneysu, “Area optimization of lightweight
lattice-based encryption on reconfigurable hardware,” in Circuits and
Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2014,
pp. 2796–2799.

[10] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key exchange-a new hope.” in USENIX Security Symposium, vol. 2016,
2016.

[11] T. Oder and T. Güneysu, “Implementing the newhope-simple key ex-
change on low-cost fpgas,” Progress in Cryptology–LATINCRYPT, vol.
2017, 2017.

[12] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng,
and B.-Y. Yang, “High performance post-quantum key exchange on fp-
gas,” Cryptology ePrint Archive, Report 2017/690.(2017). https://eprint.
iacr. org . . . , Tech. Rep., 2017.

[13] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 619–631.

[14] Coindesk. (2018) Ing bank launches zero-knowledge tech for
blockchain privacy. [Online]. Available: coindesk.com/ing-bank-
launches-simplified-zero-knowledge-proofs-for-blockchain-privacy

[15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key
exchange for the tls protocol from the ring learning with errors problem,”
in 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
553–570.

[16] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung,
D. Pao, and I. Verbauwhede, “High-speed polynomial multiplication
architecture for ring-lwe and she cryptosystems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 157–166,
2015.

[17] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[18] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede,
“Constant-time discrete gaussian sampling,” IEEE Transactions on Com-
puters, vol. 67, no. 11, pp. 1561–1571, 2018.

[19] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true
random number generator with built-in tolerance to active attacks,” IEEE
Transactions on computers, vol. 56, no. 1, pp. 109–119, 2007.

[20] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in International
Conference on Cryptology and Information Security in Latin America.
Springer, 2012, pp. 139–158.

[21] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
fpga implementations of lattice-based cryptography,” in 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST). IEEE, 2013, pp. 81–86.


