
IET Computers & Digital Techniques

Special Issue: Defect and Fault Tolerance in VLSI and
Nanotechnology Systems

RASSS: a hijack-resistant confidential
information management scheme for
distributed systems

ISSN 1751-8601
Received on 14th March 2018
Revised 12th November 2018
Accepted on 11th December 2018
E-First on 28th January 2019
doi: 10.1049/iet-cdt.2018.5167
www.ietdl.org

Lake Bu1 , Mihailo Isakov1, Michel A. Kinsy1

1Adaptive and Secure Computing System Laboratory, Department of Electrical and Computer Engineering, Boston University, Boston, USA
 E-mail: bulake@bu.edu

Abstract: In distributed systems there is often a need to store and share sensitive information (e.g., encryption keys, digital
signatures, login credentials etc.) among the devices. It is also generally the case that this piece of information cannot be
entrusted to any individual device since the malfunction or compromising of one node could jeopardize the security of the entire
system. Even if the information is split among the devices, there is still a risk when an attacker can compromise a group of them.
Therefore we have designed and implemented a secure and robust secret sharing scheme to enable a more resilient sharing of
confidential information. This solution provides three important features: (i) it uses threshold secret sharing to split the
information into shares to be kept by all devices in the system; so the information can only be retrieved collaboratively by groups
of devices; (ii) it guarantees the privacy of the confidential information under a certain number of passive hijacking attacks; and
(iii) it ensures the integrity of the confidential information against any number of hijackers who actively and collusively attack the
devices. It is able to identify all the compromised devices, while still keeping the secret unforgeable to attackers.

1 Introduction
Distributed systems have greatly impacted people's lives, from the
internet of things (IoT) systems in industrial applications,
communication and transportation infrastructures, and healthcare to
cluster and edge computing. Their introduction has brought new
computing challenges, especially in the domains of privacy and
security. In those systems with a security demand, there is often a
need for sharing and storing confidential information (secret) to the
devices. It can be encryption keys, digital signatures, login
credentials or important account numbers etc. This piece of
information (secret) will later be used by the devices or nodes for
certain security-oriented applications.

Usually, in a distributed system, the transmission channel
between a server (the dealer of the secret) and nodes (shared secret
holders) is well secured by various techniques, and the nodes are
always verified for its identity by authentication. However, these
protections cannot ensure the security of the secret when some of
the nodes are hijacked by attackers. Through hijacking one or more
nodes, an attacker will be able to silently acquire all the
information it owns, and use it to conduct malicious actions with
its legal identity. In addition, surveys [1] have shown that a huge
number of commercialised devices in distributed systems have
been using the same secret (cryptographic keys) on every device.
Hence hijacking one device will lead to the ownership of thousands
of other devices.

Obviously, this piece of secret cannot be entrusted as a whole to
any individual device, because the malfunction of a single device
will possibly jeopardise the security of the entire network. Thus the
threshold secret sharing (TSS) scheme is often adopted as a fitting
solution to this severe attack scenario. The confidential information
(secret) of a network, i.e. secret keys, accounts, permissions,
emergency response codes etc. is shared to all the devices in a
manner that it can only be retrieved collaboratively by a group of
devices. The minimum size of such a group is called ‘threshold t’,
which draws the line of the system's privacy level. Below the
threshold, the secret is information theoretically safe and kept
private from retrieval.

Practical secret sharing techniques are deployed in many real
world applications especially the distributed systems because of
their matching nature. The most common example is the key
management in wireless sensor networks. Rather than entrusting

the cryptographic key to a single node, which can be easily
compromised in hostile environments, the key is shared to a group
of nodes and can only be retrieved collaboratively [2] to be used
for digital signature or other cryptographic purposes at the other
terminal. If some nodes are found to be malfunctional, then they
will be revoked and replaced by the same number of healthy nodes
to reach the threshold. The ‘Vanish’ project [3] uses the threshold
property to make the secret key in a distributed system vanish
when the number of shareholding nodes gradually decrease to
below the threshold. Another application is in the hardware
security module (HSM)-based systems. HSMs are widely used in
bank card payment systems. Some HSMs [4] are produced and
distributed by certification authorities and registration authorities to
generate and share important secret keys under public key
infrastructure. These HSMs also require implementation of a multi-
part user authentication scheme, namely TSS. The most well-
known application is probably the domain name system (DNS)
security [5], which ensures the DNS servers to connect the users
and their internet destinations (uniform resource locators and
internet protocols) in a secure and verified manner. It has its root
key split and shared among seven holders all over the world. In the
case of an attack, if any five or more of the holders are able to
come to a U.S. base, then they can reconstruct the root key using
their shares to restore the internet connections. Technology survey
companies also use TSS to store sensitive survey data to prevent
them from being extracted by any single data analyst without the
participation of others [6].

Although this technique reduces the risk of losing all the
confidential information under the malfunction of one of a few
devices, there is still the danger of attackers compromising a larger
group of them. Due to this distributed nature, TSS schemes are
susceptible to a number of attacks, such as passive attacks, man-in-
the-middle (MITM) or share manipulations, i.e. cheating. The
resulting share disclosure or distortions from these attacks may
lead to the leakage of the original secret or retrieval of a wrong
secret. Generally speaking, the TSS is able to maintain the privacy
of the secret information under the existence of a small number
(below the threshold) of cheaters. It alone does not guarantee the
integrity of the secret. Although there have been a number of
secure TSS schemes, they are often limited in their cheater
tolerance. Generally, when the number of cheaters exceeds their

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

206

fault tolerance, neither the privacy or the integrity of the secret can
be protected.

Therefore we propose a robust adaptive secure secret sharing
(RASSS) [7] scheme to facilitate the sharing and storing of the
confidential information in distributed systems. The major
contributions of this scheme are as follows:

i. This scheme uses TSS to split the secret into shares to be kept
by all devices in the system. Thus, the secret can only be
retrieved collaboratively by groups of devices.

ii. Additional security features are added to the original TSS
functionality to protect the privacy of a secret even when
attackers have hijacked a group of devices to retrieve it.

iii. Besides privacy, this scheme ensures the integrity of a secret
when there is a large amount of sophisticated and collusive
attackers who have manipulated the shares to forge fake
secrets.

iv. This scheme is able to detect and identify a large number of
cheating or compromised holders up to the theoretical upper
bound.

v. An automation tool is provided to conveniently generate the
entire secret sharing and the accessory system based on user-
specified parameters.

In this study, we will also introduce our own Odysseus IoT
system, which requires a secure information sharing mechanism
and has been the major motivation of designing the proposed
scheme. It serves as a concrete example to illustrate the attack
models and the defences. It is worth noting that the proposed
scheme is a generalised technique and its application is not limited
to the Odysseus system or distributed edge computing platforms.

The rest of the paper is organised as follows. Section 2
introduces the details of the Odysseus platform, as well as the
original TSS scheme. We also define the attack model. Section 3
summarises related existing secure protocols for the TSS. Section 4
follows up with their vulnerabilities under the attack model.
Section 5 introduces our new secure and robust secret sharing
scheme, as well as a cheater identification protocol, followed by
the deployment of the scheme on the Odysseus-distributed edge
computing system. Section 6 presents a prototyped design
automation tool to facilitate the systematic construction and

analysis of the hardware-root-of-trust support for the algorithm.
Finally, Section 7 concludes the paper.

2 Odysseus IoT system, the original TSS scheme,
and the attack models
In this section, we will firstly introduce our distributed system
named Odysseus, on which our proposed secure TSS scheme will
be applied to. Without loss of generality, our scheme will be
introduced and illustrated in the context of Odysseus.

2.1 System model – Odysseus IoT

The Odysseus computing architecture is a three-layer distributed
system. It consists of (i) a set of distributed edge computing nodes
connected to data transmission bases using a short-distance
communication protocol (e.g. Zigbee), (ii) a pool of the data
transmission bases to perform long-distance transmissions (e.g.
WiFi), and (iii) a server-based backend compute infrastructure. The
Odysseus edge computing nodes are sensor hosting boards with an
open-interface and can support a multitude of programmable
sensors. These sensors can either be heterogeneous or
homogeneous. Users can select whichever sensors to be installed to
the boards via general purpose input/output ports, based on the
targeted application, before deploying the boards. An example of
Odysseus’ application is on fire-fighting and rescue: heat sensors to
map the fire intensity and locations in a building, and motion
sensors to identify human presence.

The original motivation of developing a secure and robust TSS
is to protect our Odysseus IoT system. In the Odysseus, the dealer
is the service provider who provides the Odysseus boards and is
responsible for the deployment. The dealer (administrator) of the
Odysseus system will deploy to a region a large number of sensor
boards, and their sensor data can be requested remotely by different
clients. From time to time, a client will request sensing data from a
group of sensors, while retrieving from them a secret if necessary.
The secret, such as an encryption key, a signature, or a login
credential etc., will be used by the client on various applications
associated with the sensor data. The system chart and prototype of
Odysseus are shown below in Figs. 1 and 2.

The security issue of this platform also needs to be addressed.
Although the dealer and clients alone can be trusted, the sensor
hosting boards scattered all over a region are not physically
monitored. Since any number of them can be subject to passive or
active attacks, no critical information such as the secret should be
entrusted to any individual board. There is even a danger of a large
amount of them being hijacked by the attackers, meaning the
adversary can gain full access to those devices. Therefore, there is
a demand for a secure protocol to attain the privacy and integrity of
the secret, as well as error tolerance under the existence of
compromised boards.

2.2 Original TSS

Due to the distributed nature of Odysseus (and other distributed
networks), there is often a demand to split the confidential
information among the devices instead of entrusting the whole
secret to every individual, such that the defect of a single device
will not harm the security of the entire network.

The following notations are used to describe and evaluate the
original TSS scheme, as well as the related secure variations:

• S: The original secret (a piece of confidential information).
• Di: The public ID of the ith shareholder.
• hi: The share of S to the ith shareholder.
• t: The threshold of a secret sharing scheme.
• cest: The number of estimated cheaters.
• cact: The number of actual cheaters.
• n: The total number of shareholders involved in a computation.
• b: The number of bits in a vector variable.
• ⊕: The addition operator in finite fields.
• ⋅: The multiplication operator in finite fields.

Fig. 1  Three layers of the Odysseus system: the dealer who deploys the
boards and the secret, the sensor boards as the shareholders with wireless
communication capability, and the client(s) who collects the data as well as
the secret

Fig. 2  Prototype boards of Odysseus

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

207

• ⊕: The cumulative sum operator in finite fields.
• ∏: The cumulative product operator in finite fields.
• MAC(): A secure message authenticating function.
• ENC(): A cryptographic encryption function.
• EtM(): An encrypt-then-MAC function.
• K: The cryptographic key.
• ∥: The concatenation operator.
• E: The encoded secret where E = EtM(S, K).
• ∼: The vector distortion symbol.
• Pmiss: The probability of failing to detect the conduct of cheating

in a distributed system.

The concept of t-TSS was first introduced by Shamir [8] in
1979. All the computations should be carried out over Galois finite
field (GF) arithmetic in order to maintain the information theoretic
security. To share a secret S, a polynomial of degree (t − 1) is used
to compute and distribute the shares, where the secret S serves as
the free or leading coefficient, and all other coefficients can be
arbitrarily chosen. The shares are the evaluations of the polynomial
by each holder's Di.

The share distribution equation when S is placed as the free
coefficient is as follows:

hi = S ⊕ a1Di ⊕ a2Di
2 ⊕ ⋯ ⊕ at − 1Di

t − 1 .

Also, as the leading coefficient

hi = a0 ⊕ a1Di ⊕ a2Di
2 ⊕ ⋯ ⊕ SDi

t − 1, (1)

where S, hi, Di ∈ GF(2b).
The ID number D is publicly known to everyone while the

share h is kept private by each shareholder.
With any subset of at least t shareholders’ IDs and shares, one

can use the Lagrange interpolation formula to reconstruct the
secret.

If S is placed at the free coefficient, it can be retrieved by

S = ⊕
i = 0

t − 1 Di ⋅ hi

∏ j = 0, j ≠ i
t − 1 (Di ⊕ Dj)

.

If S is the leading coefficient, it can be retrieved by

S = ⊕
i = 0

t − 1 hi

∏ j = 0, j ≠ i
t − 1 (Di ⊕ Dj)

. (2)

Such a construction is (t − 1)-private. This means it needs at least t
shareholders to reconstruct the secret and so any (t − 1) or fewer
shareholders have zero knowledge of the secret.

For computation simplicity, in this study, we choose to place S
as the leading coefficient as shown in (2). We also assume that the
system works over a finite field GF(2b), where in most computer
systems, b = 32, 64, 128, 256, ….

The original scheme's share distribution and secret
reconstruction procedures are shown in Fig. 3, which matches with
the Odysseus and many other distributed architectures very well in
the administrator–devices–clients three-layer structure.
 

Remark 1: Shamir's secret sharing scheme is supposed to work
under finite field arithmetic where the field size should be a prime
or power of a prime. Ordinary arithmetic will be vulnerable and
any secret can be retrieved by at most two carefully selected
shareholders instead of t.

In the ordinary positive integer arithmetic, for instance, if a
shareholder's ID is Di = 1, their share will be hi = a0 + a1 + ⋯ + S,
namely the sum of all coefficients of (2). Also, in the ordinary
arithmetic, it is obvious that hi > al al ∈ {a0, a1, …, S}. Then this
holder can find another holder with ID Dj ≥ hi whose share is hj. If
these two shareholders collude they will easily get the secret

regardless of the t by expressing hj in the radix of Dj, where the
most significant digit will be S.

However, in a finite field or modular arithmetic, one can never
have hi > al al ∈ {a0, a1, …, S} if hi = a0 ⊕ a1 ⊕ ⋯ ⊕ S.

2.3 Attack model

We define the attack model below which is much stronger than
what the original scheme and its conventional secure variations can
deal with.
 

Definition 1: The attack model in this study is described by the
following characteristics:

i. The dealer and the clients are trusted.
ii. The shareholders (devices in a distributed system) are not

trusted and there is no limit to the number of compromised
devices or cheaters.

iii. The cheaters are able to gain full control of the hijacked
devices, meaning to read its memories, input/output ports or to
tamper them.

iv. The cheaters can also eavesdrop or tamper the communication
channels between devices, and dealer and clients.

v. The attackers have the knowledge of the system's basic
parameters (n, t, equations [1, 2] etc.). They can work
collaboratively.

vi. The goals of the attackers are:

a. Passive attack: to stealthily compute and acquire the
original secret.

b. Active attack: to select their own secret and submit it to
the clients without being spotted.

Note: Besides the shares, each Odysseus board also submits its
sensor data to the clients. However, those are the source data and
their verification is another issue beyond the scope of this study.

When the cheaters work collusively, they are able to share any
information they hold or to modify it according to their common
interest. We also assume that the cheaters have sufficient
computation power to calculate equations such as [1, 2] and other
necessary tasks.

3 Conventional secure protocols for TSS
In this section, we will introduce the existing secure protocols
against passive and active attacks to TSS. In the following section,
their vulnerabilities under the attack model defined previously will
be explored.

3.1 Secret privacy preservation

The property of TSS only allows t or more shareholders (devices)
to retrieve the secret. Below this threshold, the secret information
is theoretically secure. Namely, t − 1 devices have no more
knowledge of the secret than any individual device does. However,
if the cheaters have compromised t or more devices, which is
cact ≥ t, then the privacy of the secret is not guaranteed since they
can use (2) to retrieve it.

Fig. 3  Secret sharing and reconstruction flow. The reconstructor can be
omitted if there is no end user and every shareholder (either device or
person) has trustworthy computation capability

208 IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

3.2 Approaches to resist share tampering

After the invention of Shamir's secret sharing, it was noticed that if
any number of shareholders participating in the secret
reconstruction apply an active attack by changing their shares to
make hi to h

~
i ≠ hi, the retrieved secret will be distorted S

~ ≠ S
according to (2). Therefore, the authenticity of the submitted shares
or the retrieved secret needs to be verified.

3.2.1 Share verification: Researchers [9–11] have proposed
approaches to verify the validity of shares with a probability of 1.
The common feature in the latter approaches is that, if the shares
can be encoded to a codeword of a certain error control code
(ECC), then the codeword's symbols (shares) can be verified and
corrected within the ECC's capability.

Particularly, the share distribution (1) is inherently equivalent to
the non-systematic encoding equation of the well-known Reed–
Solomon (RS) ECC codes. RS codes are maximum distance
separable (MDS) codes which meet the Singleton bound with
equality. With such a distribution equation, an (n, t, d) RS
codeword (h0, h1, …, hn − 1) is encoded with n symbols (shares) in
total, t information symbols, and distance d = n − t + 1, which
corrects up to ((d − 1)/2) (or ((n − t)/2)) erroneous symbols with
algorithms in [12, 13].

In the secret sharing language, with n shareholders’ IDs and
shares, we are able to tolerate up to cest ≤ ((n − t)/2) shares
maliciously modified by cheaters. Theoretically speaking, the error
correction capability of RS codes can tolerate up to cest < n/2
cheaters if n ≫ t. However, oftentimes an assumption is made that
there should be cest < t cheaters such that a group of all cheaters
has no access to the secret [14]. Then we have

cest < n/3. (3)

If n instead of t shareholders are involved in the share error
correction by RS decoders, then the correctness of the retrieved
secret is ensured when (3) holds as shown in Fig. 4. Consequently,
the secure secret sharing is both (t − 1)-private and (t − 1)-resilient
that up to t − 1 shareholders cannot reconstruct the secret, and up
to t − 1 cheaters cannot affect the correctness of the secret [15].

3.2.2 Secret verification: Besides share verification with share
correction probability of 1, another approach is to sign the original
secret with a key K using a message authentication code (MAC)
function. Then the original secret is shared together with its MAC
(usually in a manner of concatenation) to the holders. Denoting the
encoded secret as (S ∥ MAC(K, S)), then (1) becomes

hi = a0 ⊕ a1Di ⊕ a2Di
2 ⊕ ⋯ ⊕ (S ∥ MAC(K, S))Di

t − 1 . (4)

At the reconstructor end, after the retrieval of the possibly distorted
(S~ ∥ MAC(K, S)), the following authentication equation is
evaluated:

MAC(K~, S
~) =? MAC(K, S) . (5)

An inequality indicates the detection of cheating. If this MAC
function has a high enough security level, such as 2−128 (or lower)
collision or mis-detection probability, then it is generally believed

that all distortions will be spotted. The secure protocol of Shamir's
secret sharing is shown below.

There are commonly two ways to sign the original secret: hash-
based MAC (HMAC) with a key, and algebraic manipulation
detection (AMD) codes with a random vector.

A. HMAC with a key: HMAC, keyed-hashing for a message
authentication code, is the most often used technique for
authentication nowadays. To sign a secret S, the nested equation is
defined as follows [16]:
 

Definition 2: Let HMAC() be the HMAC function, K the
signing key, and K′ be derived from K by padding to the right zeros
to the block size. Also, let H be a hashing function; opad, the outer
padding; and ipad, the inner padding. Then

HMAC(K, S) = H((K′ ⊕ opad) ∥ H((K′ ⊕ ipad) ∥ S)) . (6)

The client can authenticate the secret using the HMAC version of
(5):

HMAC(K~, S
~) =? HMAC(K, S) . (7)

With secure hash algorithm-2 256 or higher used for H() [17], the
collision rate is < 2−128 and considered cryptographically secure.

B. AMD with a random number: Cramer et al. [18] have
proposed an AMD code to detect any modification of secrets with a
probability close to 1. Karpovsky et al. [19] later generalised this
code with flexible construction.

Unlike HMAC, it operates over finite fields and its security
level is adjustable by block size b. The AMD encoding is defined
as follows:
 

Definition 3: Let K = (K1, K2, …, Km), where Ki ∈ GF(2b) is a
randomly generated b-bit vector. An gth order generalised Reed–
Muller code with m variables consists of all codewords
(f (0), f (1), …, f (2bm − 1)), where f (K) is a polynomial of
K = (K1, K2, …, Km) of degree up to g. Let

A(K) =
⊕i = 1

m Ki
g + 2, if g is odd;

⊕i = 2
m − 1 K1Ki

G + 1, if g is even and m > 1;

where ⊕ is the accumulated sum in GF(2b). Let

B(K, S) = ⊕
1 ≤ j1 + j2 + ⋯ + j1 ≤ g + 1

yj1, j2, …, jm∏
i = 1

m
Ki

ji,

where ∏i = 1
m Ki

ji is a monomial of R of a degree between 1 and
g + 1. Also, ∏i = 1

m Ki
ji ∉ ΔB(K, S), which is defined by

{K1
h + 1, K2

g + 1, …, Km
g + 1}, if g is odd;

{K2
g + 1, K1K2

g, …, K1Km
g }, if g is even and m > 1.

Let f (K, S) = A(K) ⊕ B(K, S), then a generalised AMD
codeword is composed of the vectors (S, K, f (K, S)), where S is the
information portion, K the random vector, and f (K, S) the
redundancy signature portion [19].
 

Remark 2: If the attack involves a non-zero error on the
information S, which is the major purpose of almost all attacks,
then in f (K, S) the term A(K) can be omitted [20]. Furthermore, if
only one random number vector is used, the encoding equation can
be further more simplified to

AMD(K, S) = f (K, S)
= ⊕

1 ≤ j1 + ⋯ + ji + ⋯ + jm ≤ h + 1
S j1, …, ji, …, jmK ji, (8)

where S ji is a b-bit block of S.

Fig. 4  RS decoder is not only able to correct the distorted shares, but also
identify the malicious shareholders with their IDs, as long as (3) holds

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

209

The client can authenticate the secret using the AMD version of
(5):

AMD(K~, S
~) =? AMD(K, S) . (9)

The probability of mis-detecting a distortion of S in (9) is upper
bounded by g/2b [18], where g usually is a very small number in
most constructions. With b selected to be 128 bits or larger, the
security level of AMD codes will be in the same order of HMAC
(2−128 or less in attack mis-detection rate).

Note: Although HMAC and AMD codes are different
approaches for authenticating the retrieved secrets, there is no
essential difference in their design philosophy as (7) and (9) have
shown.

It is notable that there are two potential drawbacks on the secret
verification approach. Firstly, in the previous works, there was no
explanation on how to securely transmit the MAC key K from the
dealer to the client. Secondly, with this approach alone it can only
detect the distortion of the secret, but not identify the cheaters nor
retrieve the correct secret.

4 Vulnerabilities of the conventional secure TSS
schemes
In this section, we will illustrate the vulnerabilities of the
conventional secure schemes under the attack model defined
previously. Owing to the scattering nature of many distributed
systems, it is not unusual to have an unexpected scale of attacks
beyond the estimation. The demand for a more secure and robust
confidential information sharing scheme for distributed systems is
the major motivation of designing the proposed solution in the next
section.

4.1 Attack model

We firstly define the attack model, which is an indicator of the
attackers’ capability. The most commonly seen attacks on secret
sharing schemes are share distortions, which could be caused by
dishonest shareholders (cheaters) who maliciously change their
shares, or by a MITM who tampers the shares of honest
shareholders. Usually, people do not distinguish the two since both
of them will result in share manipulations which lead to the
retrieval of a wrong secret.
 

Definition 4: The attack model is described by the following
characters:

i. The dealer and the client are trusted.
ii. The devices are not trusted. They could either be dishonest or

attacked by MITM. We will refer to both as cheaters. For the
simplicity of later expressions, we assume for each distorted
share, there is a cheater to associate with.

iii. The cheaters have the knowledge of the system's basic
parameters (t, b, Di, cest etc .) and they can work collaboratively
to manipulate the shares to forge a new secret.

iv. The channel for the cryptographic key between the dealer and
the client could be subject to MITM.

v. The goal of the attackers is to learn the original secret or forge
their own secret without being spotted.

Based on the capability, there is a wide range of attacks
applicable to a TSS system, even if it is protected by conventional
security approaches.

4.2 Passive attack: acquiring the original secret

Usually, an assumption has to be made that cest < t so that a group
of all cheaters cannot retrieve the secret by themselves. However, it
could happen that there exist more cheaters than originally
estimated, such that cact ≥ t > cest. With any t of them, it is easy to
acquire the original secret by (2).

4.3 Active attack: making the secret unaccessible

Here we assume the distributed system's TSS is already equipped
with the share verification module. As mentioned in Section 3.2.1,
the essence of such a module is to encode the shares into a
codeword, whose validity can be verified by the RS decoding
algorithm. Although RS codes are known for their strong error
correction (tolerating cest < n/3 cheaters), their encoding procedure
is linear and susceptible to cheating exploits.

If the number of cheaters satisfies (n/3 < cact < n − t + 1),
although the RS decoder can still raise an alarm for cheating, it will
be beyond its share error correction capability. Therefore the
system is unable to retrieve the secret or identify the cheaters.

4.4 Active attack: forging a legal secret

If the number of cheaters satisfies (n − t + 1 ≤ cact ≤ n), they will
be able to manipulate the entire system. For instance, the cheaters
can pick another share distribution polynomial different from (1)
with random coefficients bi and their own forged secret S

~
:

hi′ = b0 ⊕ b1Di ⊕ b2Di
2 ⊕ ⋯ ⊕ S

~
Di

t − 1 . (10)

The new shares hi′ of the cheaters will be the evaluation of (10) by
the same IDs Di. When cact ≥ n − t + 1, the cheaters’ shares will
form a new legal RS codeword, which will never be detected by
the RS decoder. The secret reconstruction will then submit to the
client the secret S

~
 that the cheaters have selected. If the client uses

the forged secret on their important applications, such as digital
signatures, the attackers can effortlessly break those applications.
 

Example 1: A secret sharing system has a secret S = 111 in the
GF(23) finite field. It requires t = 2 shareholders to reconstruct the
secret every time. The following share distribution polynomial is
used to generate the shares:

hi = a0 ⊕ SDi = 010 ⊕ 111Di .

The protocol is designed in such a way that up to one cheater can
be tolerated. Therefore, in the secret reconstruction stage, there will
be n = 3cest + 1 = 4 shareholders involved. Suppose that in the
secret reconstruction, shareholders with IDs
D0 = 001, D1 = 010, D2 = 011, D3 = 100 are involved. Also, the
shares distributed to them are
h0 = 101, h1 = 111, h2 = 010, h3 = 001. These four shares form a
legal RS codeword v = (101, 111, 010, 001) with distance
d = n − t + 1 = 3 and it can correct up to one error.

In the case where all four of them are cheating collusively and
they have selected their own secret key S

~ = 100, the share
distribution polynomial will be

hi′ = b0 ⊕ S
~
Di = 001 ⊕ 100Di .

Thus their shares will be maliciously changed to
h0 = 101, h1 = 010, h2 = 110, h3 = 111, which is also a legal
codeword v′ = (101, 010, 110, 111) of an (n, t, d) = (4, 2, 3) RS
code. This codeword will be considered as a valid codeword by the
RS decoding algorithm [13] and there will be no cheating alarm.
As a result, the fake secret S

~ = 100 is retrieved by those shares
under (2). During the entire procedure, the cheating will not be
detected.

4.5 Active attack: framing up the honest shareholders

Another vulnerability that cheaters can exploit when
(n − t + 1 ≤ cact ≤ n) is to frame up the honest shareholders so that
the decoder treats the honest parties as ‘cheaters’ and cheaters as
‘honest shareholders’. If cact is large enough that the number of
honest shareholders is n − cact ≤ ((n − t)/2), then the honest
shareholders are within the RS decoder's error correction
capability. Since all cheaters’ shares are generated by the same

210 IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

forged secret sharing polynomial, the honest minority will be
treated as cheaters and ‘corrected’. The cheaters’ fake secret will
be regarded as the valid secret as the result of (2).
 

Example 2: Suppose that we have the same secret sharing
system as in Example 1. Let us have three shareholders
{D0 = 001, D1 = 010, D2 = 011} as cheaters, and shareholder
D3 = 100 is an honest participant. The codeword for the shares
submitted to the RS decoder will be v′ = (101, 010, 110, 001). v′
will be decoded as (101, 010, 110, 111) which is the cheaters’
codeword. Shareholder D3 = 100 will be labelled as a ‘cheater’.
Consequently, the forged secret S

~ = 100 (as in Example 1) will be
retrieved.

4.6 Active attack: against secret verification

For the distributed system with TSS equipped with secret
verification, as mentioned in the previous section, although it has a
high probability of detecting any number of share distortions, it
alone is not able to identify the cheaters nor correct the shares. In
addition, there is one more problem that has to be addressed: how
to securely pass the MAC key K from the dealer to the client (as in
Fig. 5) in order to conduct the secret authentication, giving that the
transmission channel might have eavesdropped.

There can be more types of attacks besides the ones listed
above. Especially when the number of cheaters is beyond
estimation, the entire system can be subject to total manipulation.
Therefore there is a demand for a more secure and resilient scheme
to handle the severe attacks.

5 Secure and robust secret sharing scheme for
distributed systems
In this section, we propose a new secure and robust secret sharing
scheme for distributed systems. Comparing with the current secret
sharing scheme, which has limited protection against the cheaters,
the advantages of the proposed scheme are as follows:

i. The proposed scheme protects both the confidentiality and the
integrity of the secret.

ii. The proposed scheme is able to detect and identify the cheaters
up to the theoretical upper bound.

iii. The proposed scheme uses the physical unclonable functions
(PUFs) to ensure the security of the cryptographic key update.

iv. The proposed scheme works in an adaptive manner that a more
powerful module will only be activated when the previous
module fails. Thus the scheme functions in a cost-efficient way
and consumes minimum resource on average.

The following subsections are organised in the order of an
overview of the proposed scheme, a detailed introduction of the
modules of this scheme, and finally a simple numeric example to
demonstrate the scheme.

5.1 Overview of the proposed secure secret sharing scheme

The proposed scheme consists of five adaptive stages and one
optional stage, in order to ensure the security of a TSS scheme
under cheaters, while minimising the overhead.

Stage 1: dealer – encoding and distribution of the secret: First, the
dealer will encode the secret S with an encryption-then-MAC
function EtM() to E = EtM(K, S), where K is randomly picked
from the dealer's repository, which stores the challenge and
response pairs (challenge response pair (CRP)s) of the client's PUF.
Then the dealer distributes E using (2) to n shareholders. The
detailed key transmission protocol will be introduced in the
following subsections.
Stage 2: client – secret retrieving: The client will select an
arbitrary set of t shareholders to participate in the secret retrieving
using (2). The retrieved secret will be authenticated by (7) or (9) by
the K generated at the client end. If the authentication claims the
validity of the secret, then it is considered a successful secret
reconstruction with no cheat. If not, the scheme calls for Stage 3
for share correction.
Stage 3: client – share error correction: This stage uses the RS
error correction module in the classic protocol. Here, n = 3cest + 1
shareholders will be invited to participate in the protocol, where cest
is the number of estimated cheaters defined by the system. The RS
decoder will try to correct the shares and then send them back to
the secret reconstruction and verification modules at the client end.
If it passes both the share correction (by RS decoder module) and
secret verification (by authentication module), then the secret
reconstruction is successful. If either module fails then the protocol
ascends to its fourth stage, indicating that the actual number of
cheaters is greater than n/3.
Stage 4: client – small-scale group testing: In this stage, a small-
scale group testing module is called to identify the cheaters mis-
detected in Stage 3. This module generates a lightweight group
testing pattern based on superimposed codes in order to identify the
dishonest parties.
Stage 5: client – large-scale group testing: This stage with a large-
scale group testing pattern will be activated if cact is a large number
and stage 4 fails. It will involve n shareholders, among whom there
can be up to cest = n − t cheaters with a minimum number of t
honest holders. This is also the theoretical upper bound of the
number of cheaters when the secret is still retrievable. Even if there
are more than n − t cheaters, it is still able to detect cheating
despite not being able to reconstruct the correct secret due to the
lack of honest holders.
Stage 6: optional extra invitation: This optional stage is designed
for clients who have access to larger resources than just n devices.
By involving more devices, the chances of having more honest
devices may increase. Thus, the client may be able to retrieve the
correct secret, while identifying all the cheaters even if cact > n − t.

The work flow of the proposed scheme is shown in Fig. 6. The
techniques adopted in the six stages will be introduced in the
following subsections.

5.2 Encoding of the secret

In order to perform obfuscation and authentication of the secret, we
will apply the encryption-then-MAC function to encode the
original secret S to E by

E = EtM(K, S) = ENC(K, S) ∥ MAC(K, ENC(K, S)) . (11)

The encryption function ENC() can be the standard advanced
encryption standard (AES) or other lightweight approaches. Also,
the MAC() function can be either HMAC with a fixed security
level Pmiss or AMD codes with flexible Pmiss as mentioned in
Section 3.2.1. AMD codes are able to trade-off between the
security level and hardware cost conveniently by adjusting the
vector size b, which sometimes is an ideal choice for distributed
systems with limited resources.

For some distributed systems without a client end, it is not
possible to maintain the confidentiality of the secret if there are
more than t devices compromised. This is because the TSS scheme
for this case entrusts the secret to the devices themselves. However,
for other distributed systems, such as the Odysseus with a client
end, it is possible to protect the privacy of the secret even if cact ≥ t

Fig. 5  Secret sharing scheme with secret authentication in the context of
Odysseus system

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

211

because the secret is entrusted to the client. In this way, even if the
attackers have compromised more than t devices, they can only
acquire the cipher but not the secret plaintext. However, there is a
critical issue of transmitting the EtM key to the client securely,
which will be introduced in the following subsection.

5.3 EtM key transmission

The core of this proposed scheme's security is to establish a secure
transmission channel for K which is

• Eavesdrop resistant: if the cheaters eavesdrop the channel, they
should not acquire any knowledge of K.

• Easy to update: it should be easy and secure to update K on both
the dealer and the client sides.

• Unforgeable: a cheater should not be able to predict, duplicate,
or forge the keys.

• Uniqueness: in case of a multi-client secret sharing system, the
different client should have different sets of keys.

Based on the criteria above, the PUF is an excellent and fitting
solution. Another choice is to use public and private key pairs.
Since Odysseus and many other distributed systems are hardware
based, it is very convenient and natural to implement PUFs on
them. Therefore, we will use PUFs to facilitate the transmission of
K in this study. Although this concept of PUF has been known
since 1983 [21], the term PUF only came to be in 2002 [22]. A
PUF is a piece of hardware that produces unpredictable responses
upon challenges due to their manufacturing variations. PUF has the
property of easy to make and hard to duplicate, even under exact
the same circuit layout and manufacturing procedures. A PUF can
be made from a device's [either application specific integrated

circuit or field programmable gate array (FPGA)] memory cells or
circuits without modifying the device's architecture. Owing to its
attributions of randomness and uniqueness, PUF provides an
inexpensive and integrated solution for random number or secret
key generation, dynamic authentication, and identification [23].

The PUF serves as a cryptographic primitive in a manner of
challenge–response pairs (CRPs). Each PUF's output (response) is
a non-linear function of the outside input (challenge) and the PUF's
own physical, intrinsic, and unique diversity, in another word,
‘silicon fingerprints’ [24]. Given the same challenge, the same PUF
design on different circuits will return different responses, which
cannot be predicted by just having the challenge vector. Therefore
PUF is an ideal choice in facilitating the transmission of K.

 
Algorithm 1: For the kth round of secret sharing, denote the

secret as Sk, the arbitrarily selected challenge and response of the
client's PUF as CHLk and Kk, respectively. Then the EtM key K is
transmitted from the dealer to the client as follows:

i. When a client registers to the dealer, the dealer challenges the
client's intrinsic PUF with a set of inputs and stores its CRPs.

ii. Before Sk is to be distributed, the dealer selects an arbitrary
CRP and uses its response Kk to encode the secret with EtM()
to Ek. At the same time, the challenge CHLk takes the position
of the share distribution polynomial's free coefficient.
Therefore (1) becomes

hi = CHLk ⊕ a1Di ⊕ a2Di
2 ⊕ ⋯ ⊕ EkDi

t − 1 . (12)

Then the encoded secret Ek is distributed in the form of shares
to the devices of the distributed system.

iii. When Sk needs to be retrieved, t holders will turn in their IDs
and shares to the client;

iv. The client uses (2) to retrieve the encoded secret Ek, and by
another Lagrange interpolation formula the client calculates
CHLk

CHLk = ⊕
i = 0

t − 1 Di ⋅ hi

∏ j = 0, j ≠ i
t − 1 (Di ⊕ Dj)

. (13)

The client takes CHLk to its PUF and regenerates the
corresponding response Kk, which is the same key used by a dealer
to EtM Sk. This Kk is used to authenticate and decrypt the retrieved
encoded secret Ek.

Now the Odysseus system (or other similar distributed systems)
equipped with the proposed scheme will have the following work
flow (Fig. 7).

The advantage of this protocol is that CHLk leaks no
information of Kk. Even if there are t or more cheaters calculate
CHLk, they are still not able to acquire the corresponding Kk
because the CRPs of a PUF is not predictable.

When a new secret Sl is about to be distributed, the dealer can
select another CRP of the PUF to EtM the secret and embed the
new challenge CHLl to (12). This makes the update of the key to Kl
simple and secure.

5.3.2 Selection of PUFs for secret sharing: Based on where the
variation comes from, there are multiple types of PUFs. Delay
PUFs and memory PUFs are the two popular implementations.
Delay PUF uses the random variation in delays of wires and gates,
and their race condition to generate the response bits. Memory PUF
is based on the random initial state (1 or 0) of each memory cell.
Depending on the size of the CRPs, there are weak and strong
PUFs, which have different applications in security. Weak PUFs’
CRP size grows linearly with the PUF size, while strong PUFs’
CRPs exponentially.

Fig. 6  Proposed scheme functions with three entities: a dealer, a group of
devices(shareholders), and a client. The dealer firstly encodes the secret
with encryption then MAC (EtM) to preserve its confidentiality and
authenticity. The secret and the EtM key's zero-knowledge clue, known as
the challenge of a PUF, are both shared through the secret distribution
equation to the devices. Then the client gathers t devices to retrieve the
secret, as well as the EtM key from his PUF. If the secret authentication
fails, then the RS decoder, small-scale group testing, large-scale group
testing will be activated by order. The cost increases as a more powerful
module is called. Yet the assurance of retrieving the correct secret and
identify all the cheaters also increases

Fig. 7  Dealer now shares both the encoded secret and the challenge to the
devices. Once the client retrieves the secret, stages 2–4 in Section 5.1 will
be performed to identify the cheaters (if any)

212 IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

In our design, we consider the frequent updates of the key (up
to one key per secret). Thus we have selected the delay PUFs
because of their large sets of CRPs. In our design, we use FPGAs
to implement the secret sharing system with both the ring oscillator
(RO) PUF based on the race condition of two ROs, and the Arbiter
PUF based the delay difference between two MUX chains [25]. We
also improved the design of both to increase the Hamming distance
among the responses, while developing a design automation tool
(introduced in Section 6).

5.3.3 Alternative methods for EtM key transmission: There
can be alternative approaches to facilitate key transmission if it
does not have to be hardware-based. There is one critical rule that
these approaches always have to follow: the free coefficient in (12)
needs to reveal zero-knowledge about Kk so that the passive attacks
in Section 4.2 cannot apply. In this subsection, two possible
alternatives are introduced.
 

Algorithm 2: This algorithm uses the classic cryptographic key
exchange scheme. In this way, the framework of Algorithm 1 can
be kept with a slight modification.

i. The dealer and the client firstly achieve an agreement on a
secret a in a finite group GF(). This can be implemented by a
secure eavesdrop-resistant channel or key exchange protocols
such as Diffie–Hellman.

ii. When a new secret Sk is to be deployed, it is encoded to Ek by
key Kk = ga f .

iii. Then (12) is used to distribute f by placing it at the free
coefficient of the polynomial;

iv. The other steps of Algorithm 1 remain the same, except for
using modular exponentiation instead of PUF to compute Kk at
the user end.

Note: Except that the key Kk is updated in a one-way manner,
the mechanism above is similar to the double ratchet algorithm
[26], known as the ‘silent whisper’ used in secure messaging apps
nowadays.
 

Algorithm 3: Another approach is to leverage the seeded pseudo
random number generators (PRNGs). Denote the PRNG function
as PRNG(seed).

i. The dealer and the client firstly achieve an agreement on a
secret r0. This can also be implemented by a secure channel or
key exchange protocols.

ii. When a new secret Sk is to be deployed, it is encoded to Ek by
Kk, where Kk = PRNG(r0 + r1).

iii. Equation (12) is used to distribute r1 by placing it at the free
coefficient of the polynomial.

iv. The other steps of Algorithm 1 remain the same, except for
using PRNG() instead of PUF to compute Kk at the user end.

Note: The ‘+’ here stands for a combination of r0 and r1. It can
be operations such as bitwise XOR, concatenation, or modular
addition etc.
 

Remark 3: In terms of security, the three EtM key update
algorithms all provide similar trustworthiness in the transmission
of the EtM key. They do not need a specific secure channel for the
transmission since the protocols are already eavesdrop resistant.
The PUF-based approach adopted in this work has two key
advantages: (i) unlike the key exchange-based using modular
exponentiation and the PRNG-based algorithms, Algorithm 1 has
its security rooted in the hardware uniqueness of the PUF, which is
hard to forge or duplicate unless the adversary physically acquires
the device; and (ii) The PUF-enabled design is the most cost-
efficient, in terms of hardware area, when the RASSS protocol is
applied to physical devices. This point is captured in the
implementation results shown in Table 1. Key exchange-based and
PRNG-based schemes both need to take extra circuit and
computation resources (cf. Section 6.4).

5.4 Cheater identification by group testing

In Section 3.2.2, we pointed it that the secret verification alone
does not identify the cheaters nor help to retrieve the correct secret.
Therefore in this study, we propose an adaptive group testing
which works together with secret verification for cheater
identification. It can locate up to cest = n − t number of cheaters,
which is the theoretical upper bound. Meaning in a t-TSS scheme,
among all the n shareholders participating in our scheme, our
scheme only needs as few as only t honest parties to retrieve the
correct secret.

There are two group testing stages, a small-scale testing stage
and a large-scale. The former is based on superimposed codes with
limited cheater identification, and the latter does an exhaustive
search to locate up to n − t cheaters. The superimposed code is
defined as follows.
 

Definition 5: Let Mi, j ∈ {0, 1} be the element in row i and
column j in a binary matrix M of size A × N. The set of columns of
M is called a c-superimposed code, if for any set W of up to c
columns and any single column h ∉ W , there exists a row f in the
matrix M, for which M f , h = 1 for column f, and M f , j = 0 for all
j ∈ W [27, 28]. The above property is called zero-false-drop of
order c. It follows that for all the N columns in M, the Boolean OR
of up to any c columns are all different.

When M is used as the group testing pattern to identify the
cheaters, the 1's in each row (test) correspond to the shareholders
participating in that particular test. Each test is a two-step
procedure:

i. A secret reconstruction using (2) to retrieve the secret E
~
 with

its specific participants.
ii. An authentication using (7) or (9) over E to verify the validity

of the retrieved secret.

The returned test syndrome is a T-bit binary vector u, where 0's
in u indicate the equality of (7) or (9), and 1's the inequality. For up
to c cheaters, each cheater combination will have a different test
syndrome.

For example, the columns of the following matrix are c-
superimposed code, where c = 1:

M =

1 0 1 0 0
0 0 1 0 1
0 1 1 0 0
0 0 1 1 0

.

Using this test pattern will enable a client to locate one cheater out
of five devices within four tests. If device D2 = 2 is the cheater,
then its test syndrome will uniquely be {1, 1, 1, 1}.

Table 1 EtM Key exchange hardware costs
PUF PRNG Key-exchange

LUT 1380 4841 15,232
register 1539 2844 13,311
slice 768 1521 5298
major Op oscillation multiplication field exponentiation
aAll three schemes are designed for the E = 128-bit EtM key update.
bA RO PUF is adopted. As for the PRNG, a Bernoulli chaotic map-based random
number generator is implemented. The key-exchange is a standard two-party Diffie–
Hellman scheme.
cThe complexity of the major operations (Major Op) is different for the three
algorithms. The key-exchange requires complicated field exponentiation operations,
the PRNG standard floating point multiplications, and the PUF only clock-less
oscillation of inverter rings.

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

213

When c > 1 the construction of a c-superimposed code matrix
is no longer trivial. Here we suggest the construction based on
error correction codes.
 

Construction 1: Let Cq be a (mq, kq, dq)q q-ary (q = ps is a power
of prime and p ≠ 2) conventional error correcting code. Each digit
of Cq in GF(q) is represented by a q-bit binary vector with
Hamming weight one. A superimposed code CSI can be constructed
by substituting every q-ary digit of codewords in Cq by its
corresponding binary vector. The resulted A × N matrix M of the c-
superimposed code CSI has the following parameters [29]:

A = qmq;
N = qkq;

c = mq − 1
mq − dq

.
(14)

If Cq is a MDS q-nary code, for which dq = mq − kq + 1, such as
RS codes, then c can be written as

c = mq − 1
kq − 1 , (15)

where c is the cheater identification capability in this construction.
The selection of this construction is for the reason that, for the

A × N matrix M, in every row, there is exactly the same number of
1's. This feature is suitable for the use of TSS secret retrieval since
every retrieval requires the same number of devices.

However, the group testing pattern constructed above has a very
limited cheater identification capability, as shown in (15). When
there is a large number of cheaters, we propose the following large-
scale group testing scheme.
 

Construction 2: For any t-TSS scheme, suppose among n
holders there are c attackers where 0 ≤ c ≤ n − t. A test pattern to
identify the honest holders and attackers can be constructed as a
binary matrix M of size T × n, where T is the number of tests
needed at most. The rows of M consist of all different n-bit vectors

with exactly t 1's and so T = n
t

. Each column of the matrix,

therefore, has
n − 1
t − 1 number of 1's. The 1's in each row (test)

correspond to the shareholders participating in that particular test.
Each test is a two-step procedure:

i. A secret reconstruction using (2) to retrieve the secret E
~
 with

its specific participants.
ii. An authentication using (7) or (9) over E to verify the validity

of the retrieved secret.

The test syndrome is a T-bit binary vector u, where 0's in u
indicate the equality of (7) or (9), and 1's the inequality.

Then the cheater identification algorithm is
 

Algorithm 4: For any t-TSS scheme and its corresponding group
testing matrix M there are n shareholders participating in the tests
indexed by H = {0, 1, 2, …, n − 1}. Among the n shareholders,
there are cest cheaters where n/3 ≤ cest ≤ n − t. Let
w = (w0, w1, …, wn − 1) be a n-digit vector and w = uT × M, where u
is the T-bit binary test syndrome and × is the multiplication of
regular arithmetic. The cheaters’ indices belong to the set

l wl = n − 1
t − 1 . and the rest of the holders are honest.

However, the testing technique above requires
n
t

 tests in total

to identify the cheaters. This can be a large number when n and t
are large. Therefore its adaptive form is given below which
drastically reduces the average number of tests to a linear formula.
 

Algorithm 5: For a test pattern M of size T × n generated by
Construction 2, ΔT is the number of tests needed to find the first 0
(equality of (7) or (9)) in the test syndrome. The n shareholders are
indexed by H = {0, 1, 2, …, n − 1}. The t honest holders identified
by this test are indexed by I = {i0, i1, …, it − 1}. The system only
needs to run at most n − t more tests whose participants are
{i0, i1, …, it − 2, j}, where j ∈ H∖I. Each test's syndrome indicates
holder j as an attacker or not by 1 or 0. The total number of tests
needed to identify all holders is then at most ΔT + (n − t).

5.5 Extra invitation module

If the group testing module in Stage 4 cannot successfully identify
the cact cheaters in the system, where n − t < cact ≤ n, then the
number of honest shareholders is less than t.

At this point, our scheme will still raise the cheating alarm
based on the secret authentication. Moreover, the protocol is
adaptive enough to be extended to a further stage to include an
invitation module. This module can pull in additional participants
and perform new rounds of group testing. From the hardware
perspective, the invitation module can be power-gated and disabled
when not in use.
 

Algorithm 6: Let the number of honest shareholders in the
current group testing be Δt and 0 ≤ Δt < t. Suppose the system is
able to identify an extra set of t honest shareholders from another
group. Then these t honest parties can be combined into the current
group with the modified group testing matrix of size
n + t

t
× (n + t). With this new test pattern, the Δt + t honest

shareholders can be identified and the rest will be properly labelled
as cheaters.

5.6 Numeric examples

Here we present two illustrative examples to demonstrate the
security of the proposed protocol. The first one will be under the
passive attack and the second one under the active attack.
 

Example 3: For an Odysseus system equipped with the
proposed secret sharing scheme, there are t cheaters who want to
stealthily compute the original secret S. However, what they can
acquire are E = EtM(K, S) and CHL. Without the client's PUF they
are not able to have the response K to CHL. Therefore, S still
remains unknown to the t curious cheaters.

For the second example, for simplicity, we will not perform the
encryption function ENC() in the EtM. For the MAC function, we
will use AMD() since it is able to work with very short vectors.
Thus this numeric example will be relatively small and easy to
follow.
 

Example 4: In an Odysseus system, there are seven boards
distributed. This system has adopted our proposed secure TSS
scheme which is t-threshold and t = 3. The original secret is a
digital signature S ∈ GF(212), where S = 001111110000 = 0x3F0.
The RS decoder in this scheme is constructed under the assumption
that there are at most two cheaters. However, in this scenario, there
are four devices which have been compromised by the cheaters.

Stage 1: secret encoding and share distribution: The original
secret 0x3F0 is first encoded by the AMD encoding equation (8).
Using Definition 3, we choose b = 4 such that the encoding and
decoding are over GF(24), m = 1 such that the random vector has
only one symbol and g = 3 such that S is partitioned into three
symbols S = (S0, S1, S2) where S0 = 0x3, S1 = 0xF, and S2 = 0x0.
Suppose the dealer has chosen a response from the client's PUF
which is K = 0x0006 whose corresponding challenge is
CHL = 0xAAAA. The original secret will be encoded to an AMD
codeword E = AMD(K, S) by

AMD(K, S) = S0K ⊕ S1K2 ⊕ S2K3 = 0x1 ⇒ E = (0x3F01) .

Then with the share distribution polynomial

214 IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

hi = CHL ⊕ a1Di ⊕ EDi
2,

where a1 = 0x5555 is an arbitrarily chosen coefficient and
CHL, a1, E ∈ GF(216), this encoded secret is shared to seven
Odysseus boards with IDs and shares {Di:hi} = {1:0xC0FE},
{2:0xFC04}, {3:0x9650}, {4:0x0FB4}, {5:0x65E0},
{6:0x591A}, and {7:0x334E}.

However, devices {3, 4, 6, 7} have been compromised by
cheaters and they have collusively selected another secret
S
~ = 0xABCD and forged another share distribution polynomial:

h
~

i = 0xAAAA ⊕ 0x7777Di ⊕ 0xABCD ⋅ Di
2 .

By their IDs, their shares are changed to {3:0x2686},
{4:0xDBAF}, {6:0x9A2F}, and {7:0x4695}.

Stage 2: secret reconstruction and verification: suppose firstly
Odysseus devices {2, 3, 4} are selected to reconstruct the secret
with {3, 4} being cheaters. By the secret reconstruction (2) the
retrieved secret is

E = 0x5522.

The reconstructed secret will be verified by the AMD decoder
using (9) AMD(K, S) =? AMD(K, S). Through the computation
over GF(24) we have the following inequality:

AMD(K, S) ≠ [AMD(K, S) = S0K ⊕ S1K
2 ⊕ S2K

3] .

Thus, cheating is detected and Stage 3 will be initiated under the
assumption of cest = 2 cheaters.

Stage 3: share error correction: Under the RS decoder,
n = 3cest + 1 = 7 shareholders will be involved and it can correct
up to two shares using an (n, t, d) = (7, 3, 5) RS code. However,
there is a total number of cact = 4 cheaters {3, 4, 6, 7} which is
beyond the capability of this RS decoder. Therefore, the protocol
moves in its fourth stage upon the failure of error correction.

Stage 4: small-scale group testing: A 9 × 9 group testing matrix
is generated based on a two-superimposed code by using a (3, 2, 2)3
ECC code through construction 1. By truncating two columns it
can be used to locate two cheating Odysseus boards among seven
in nine tests Fig. 8.

However, this group test is still not able to identify the cheaters,
since cact = 4 > 2. Thus Stage 5 has to be activated.

Stage 5: large-scale group testing: This stage is designed under
the assumption that among all the seven Odysseus boards from
Stage 3, only t = 3 are not compromised by cheaters. The group
testing matrix M of size T × n can be constructed with

Construction 5.1, where T = n
t

= 35, n = 7. To save space M is

listed transposed as MT Fig. 9:
Each test involves three boards and the secret retrieved by them

is to be verified by (9). Since boards {1, 2, 5} are not compromised
by cheaters, test 7 is the first test with syndrome 0.

Based on the adaptive Algorithm 5.3, ΔT = 7. The system will
only need to run the tests of {1, 6, 8, 9} whose participants are
boards {1, 2, j} where j ∈ H∖I = {3, 4, 6, 7}. Thus only tests {8, 9}
are left to run. The actual number of implemented tests are then

9 < ΔT + (n − k) ≪ n
k

= 35.

In this way, the Odysseus boards which have been hijacked by
cheaters are identified as {3, 4, 6, 7}. Also, the properly functional
boards {1, 2, 5} will be able to retrieve the encoded legal secret
E = 0x3F01 and therefore the correct digital signature is
S = 0x3F0.

6 Design evaluation and automation
In this section, we will evaluate the proposed scheme and offer a
design automation tool for it.

6.1 Design evaluation

In the previous example, the AMD code works over GF(24), where
the error mis-detection probability is Pmiss = (3/24) in the worst
case. To increase the security level, one can simply have the
protocol work over a larger field. If the system uses HMAC as the
MAC() function, then Pmiss is a fixed value. Therefore, we will
only test the performance of the AMD() under different vector
sizes.

In our experiments, the sizes of the encoded secret E are set to
{8, 16, 32, 48, 64, 80, 96, 128} bits, which are the cases for most
real-world applications. Therefore, the AMD codes are over GF(2b)
fields where b ∈ {2, 4, 8, 12, 16, 20, 24, 32}. A comparison is made
between the experimental Pmiss (under 4 ⋅ 2b rounds of attack and
defence) and the theoretical Pmiss (Fig. 10).

6.2 Hardware and timing overhead

The hardware cost comparison between RASSS and the classic
scheme (original secret sharing with share verification, c.f. section
3) in Table 2 is made on a Xilinx Vertex 7 XC7VX330T FPGA
board under the same parameters as in Section 6.1.

The timing comparison is made under a severely adverse
scenario with cact ≤ n − t cheaters for RASSS, and much fewer
cheaters of cact ≤ n/3 − 1 for the classic scheme. It is implemented
by Python on an Intel® Core™ i7-6700 @ 3.4 GHz and 8 GB
memory machine running Linux operating system.

Fig. 8  The test pattern generated assuming up to 4 cheaters are involved

Fig. 9  The test pattern generated assuming no more than 2 cheaters are
involved

Fig. 10  Experimental Pmiss matches the theoretical upper bound
Pmiss = (g/2b). The experimental results are usually better than the upper
bound because (9) does not always have h solutions in the finite field. Also,
when b ≥ 32 the experiments did not miss a single attack

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

215

6.3 Cheater detection and identification in the Odysseus
system

In a simulation, an E ≥ 96-bit version of the proposed RASSS
protocol achieves near perfect cheater tolerance. In 17 billion tests,
almost no attacks are mis-detected. To evaluate the robustness and
scalability of the protocol under practical settings, we implement
and deploy an E = 128-bit version of the protocol on the Odysseus
platform (cf. Section 2). Five Odysseus system network sizes are
tested. In other words, we have n ∈ {10, 20, 30, 40, 50}, where n is
the number of edge nodes (sensor boards) in the system. Each of
the five systems is configured with three thresholds: t ∈ {2, 3, 4} in
the secret sharing scheme. In total, the cheater tolerance tests,
therefore, are conducted under 15 different Odysseus system
setups. Similar to Table 2, a comparison is made in Table 3
between the classic cheater tolerance scheme (with share
verification by RS decoder) and RASSS.

It should be noted that although the RASSS protocol guarantees
a stronger cheater tolerance, under the Odysseus system testing, it
also incurs a longer convergence delay. As shown in Table 2, for
E = 128-bit version of the RASSS protocol, the delay is about 11
times that of the classic scheme. This delay is due to a large
number of group testings in Stage 5 of the protocol (cf. Section

5.1). Therefore, when deploying the protocol in large network
applications such as the Odysseus network, the group testing
module (which involves the test matrix) should be adjusted in order
to achieve the desirable security-cost/delay trade-off.

6.4 Encrypt-then-MAC (EtM) key transmission primitives

In Sections 5.3.2 and 5.3.3, we introduced three approaches to
performing the EtM keys transmission. As mentioned in Remark 3,
all three techniques provide the same level of security to the key
transmission process. However, their implementations do require
different hardware complexities and costs. Table 1 summaries the
hardware resources utilisation for their FPGA-based
implementations, as well as the major operations (Major Op) used
in each approach.

When the RASSS protocol is deployed in IoT systems with
limited hardware resources and small form factor edge nodes, such
as the Odysseus edge nodes (cf. Section 2), the selection of the
EtM key update algorithm is important. The PUF-based technique
lends itself particularly well to such settings.

6.5 Design automation

Although one can manually make a secret sharing system with
PUF on FPGAs, it still involves a good amount of work: writing
the hardware description language (HDL) code, fixing the routing
and placement of PUF's basic elements, and configuring the
bitstream etc. Also, with a change of a parameter, the entire system
may need to be modified. Therefore, we have designed an
automation tool (Fig. 11), which simply takes user's inputs of four/
five parameters: secret size, security level (for AMD only, HMAC
default as 2−128), total number of holders n, threshold t, and MAC
function. In addition, we also provide a PUF automation tool to
generate the PUFs based on user specified response and challenge
sizes.

In this tool, the system's HDL codes and PUF's fixed-routing
configuration are pre-written in a folder named ‘Templates’. The
tool will generate the system according to user specified
parameters based on the files in this folder. In future updates to the

Table 2 Hardware and timing overhead
E (bits) Hardware (slices) Timing (106 clock cycles)

Classic RASSS Ratio Classic RASSS Ratio
8 521 828 0.59 0.47 3.80 7.09
16 1492 2256 0.51 0.56 5.62 9.04
32 3977 6164 0.55 1.36 16.24 10.94
48 6114 9462 0.55 1.89 24.68 12.06
64 8462 12,749 0.51 2.55 29.90 10.73
80 9895 15,804 0.59 3.18 36.92 10.61
96 11,873 18,918 0.59 3.68 45.05 11.24
128 17,842 27,695 0.55 4.79 58.55 11.22
aRatio = (RASSS/Classic) − 1.
bWith only 60% of the hardware overhead the RASSS protocol drastically improves the cheater tolerance capability. The latency of the classic protocol is 49 logic steps and the
latency of RASSS 223 steps.
cAlthough the RASSS protocol has a large T as an upper bound, with the adaptive test in Algorithm 5 it effectively reduces the actual number of tests.

Table 3 Cheater tolerance in the Odysseus system
n t = 2 t = 3 t = 4

Classic RASSS Classic RASSS Classic RASSS
10 3 8 3 7 3 6
20 6 18 6 17 6 16
30 9 28 9 27 9 26
40 13 38 13 37 13 36
50 16 48 16 47 16 46
aDifferent numbers of cheaters are injected in the tests – where for an Odysseus network of size n and secret sharing threshold t, we have 1 ≤ cact ≤ n − t. The results recorded in the
table are the maximum number of cheaters that a particular scheme can tolerate.
bIn almost all the tested Odysseus system settings, the proposed RASSS protocol consistently provides better cheater tolerance than the classic scheme, especially when n is large.
For example, when n = 50, RASSS is able to (i) identify and tolerate 30 more cheaters than the classic scheme, and (ii) retrieve the correct secret.

Fig. 11  Graphical user interfaces for the secret sharing system generator
(left) and the PUF generator (right). With this tool, any researcher/user
interested in PUF-based secret sharing can easily generate their own
customised secret sharing system in just a few clicks. We plan to release this
automation instrument as an open-source design tool

216 IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

tool, the templates could be modified while the generator tool
remains unchanged.

Although the RASSS scheme automatic generation follows
Section 5.1 and enough details have been given, the design
automation for the PUF has not been fully discussed, due to the
focus and content limitation of the study. Thus, in Fig. 12, we
provide the PUF automation's work flow, which generates two
different types of PUFs (RO and Arbiter PUF [30]) with the user
defined challenge and response (key) sizes.

7 Conclusion
In this study, we have proposed a secure and robust scheme to
share confidential information in distributed systems. This scheme
uses TSS to split the information into shares to be kept by all
devices in the system. Thus the malfunction of a single device will
not harm the security of the entire system. Given a larger number
of malfunctional devices, the scheme ensures both the privacy and
integrity of that piece of information even when there is a large
amount of sophisticated and collusive attackers who have hijacked
the devices. Furthermore, it is able to identify all the compromised
devices, while still keeping the secret unknown and unforgeable to
attackers. Overall, this scheme works in an adaptive manner; a
more powerful and resource consuming security module will only
be activated when the previous modules fail. Therefore the average
power consumption is minimised. In terms of application, this
scheme can be applied but not limited to most of the IoT systems
with a structure similar to the Odysseus.

8 Acknowledgments
This research was partially supported by the NSF grant (no.
CNS-1745808).

9 References
[1] Khandelwal, S.: ‘Millions of IoT devices using same hard-coded CRYPTO

keys’, 2015. Available at http://thehackernews.com

[2] Chadha, A., Liu, Y., Das, S.K.: ‘Group key distribution via local collaboration
in wireless sensor networks’. IEEE SECON Proc., Santa Clara, CA, USA,
2005

[3] Geambasu, R., Kohno, T., Levy, A.A., et al.: ‘Vanish: increasing data privacy
with self-destructing data’. USENIX Security Symp., Montreal, Canada, 2009

[4] http://go.thalesesecurity.com/rs/480-LWA-970/images/Microsoft-AD-CS-and-
OCSP-Integration-Guide-for-Microsoft-Windows-Server-2016.pdf, accessed
May 2017

[5] Able, J., et al.: ‘DNSSEC root zone high level technical architecture’, 2010.
Available at http://www.rootdnssec.org/wp-content/uploads/2010/06/draft-
icanndnssec-arch-v1dot4.pdf

[6] Lapets, A., Volgushev, N., Bestavros, A., et al.: ‘Secure multi-party
computation for analytics deployed as a lightweight web application’, Science
Department, Boston University, 2016

[7] Bu, L., Nguyen, H., Kinsy, M.A.: ‘RASSS: a perfidy-aware protocol for
designing trustworthy distributed systems’. Defect and Fault Tolerance in
VLSI and Nanotechnology Systems, Cambridge, UK, 2017

[8] Shamir, A.: ‘How to share a secret’, Commun. ACM, 1979, 22, (11), pp. 612–
613

[9] McEliece, R.J., Sarwate, D.V.: ‘On sharing secrets and Reed–Solomon codes’,
Commun. ACM, 1981, 25, (9), pp. 583–584

[10] Gennaro, R., Ishai, Y., Kushilevitz, E., et al.: ‘The round complexity of
verifiable secret sharing and secure multicast’. 33rd Annual ACM Symp. on
Theory of Computing, Crete, Greece, 2001

[11] Fitzi, M., Garay, J., Gollakota, S., et al.: ‘Round-optimal and efficient
verifiable secret sharing’. Theory of Cryptography Conf., New York, NY,
USA, 2006

[12] Berlekamp, E.: ‘Algebraic coding theory: revised edition’ (World Scientific,
Singapore, 2015)

[13] Gao, S.: ‘A new algorithm for decoding Reed-Solomon codes’,
‘Communications, information and network security’ (Springer, Boston, MA,
USA, 2003), pp. 55–68

[14] Krawczyk, H.: ‘Secret sharing made short’. Annual Int. Cryptology Conf.,
Santa Barbara, CA, USA, 1993

[15] Liu, J., Mesnager, S., Chen, L.: ‘Secret sharing schemes with general access
structures’. Int. Conf. on Information Security and Cryptology, Seoul,
Republic of Korea, 2015

[16] Krawczyk, H., Canetti, R., Bellare, M.: ‘HMAC: keyed hashing for message
authentication’, RFC2104, 1997

[17] Eastlake 3rd, D., Hansen, T.: ‘US secure hash algorithms (SHA and SHA-
based HMAC and HKDF’, RFC6234, 2011

[18] Cramer, R., Dodis, Y., Fehr, S., et al.: ‘Detection of algebraic manipulation
with applications to robust secret sharing and fuzzy extractors’. Annual Int.
Conf. on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, 2008

[19] Wang, Z., Karpovsky, M.G.: ‘Algebraic manipulation detection codes and
their applications for design of secure cryptographic devices’. IEEE On-Line
Testing Symp., Athens, Greece, 2011

[20] Bu, L., Karpovsky, M.G.: ‘A design of secure and reliable wireless
transmission channel for implantable medical devices’. 3rd Int. Conf. on
Information Systems Security and Privacy, Porto, Portugal, 2017

[21] Bauder, D.: ‘An anti-counterfeiting concept for currency systems’. Research
report PTK-11990, Sandia National Labs, 1983

[22] Gassend, B., Clarke, D., Van Dijk, M., et al.: ‘Silicon physical random
functions’. Proc. Computer and Communications Security Conf., Washington,
DC, USA, 2002

[23] Yu, M.-D., Devadas, S.: ‘Pervasive, dynamic authentication of physical
items’, Queue, 2016, 60, (4), pp. 32–39

[24] https://www.eetimes.com/document.asp?doc_id=1254886, accessed February
2018

[25] Morozov, S., Maiti, A., Schaumont, P.: ‘An analysis of delay based PUF
implementations on FPGA’. Int. Symp. on Applied Reconfigurable
Computing (ARC), Bangkok, Thailand, 2010

[26] Marlinspike, M., Perrin, T.: ‘The double ratchet algorithm.(2016)’, 2016.
Available at https://whispersystems.org/docs/specifications/doubleratchet

[27] D'yachkov, A.G., Macula, A.J., Rykov, V.V.: ‘On optimal parameters of a
class of superimposed codes and designs’. IEEE Int. Symp. on Information
Theory, Cambridge, MA, USA, 1998

[28] D'yachkov, A.G., Macula, A.J., Rykov, V.V.: ‘New applications and results of
superimposed code theory arising from the potentialities of molecular
biology’, ‘Numbers, information and complexity’ (Springer, Boston, MA,
USA, 2000), pp. 265–282

[29] Bu, L., Karpovsky, M., Wang, Z.: ‘New byte error correcting codes with
simple decoding for reliable cache design’. IEEE On-Line Testing Symp.
(IOLTS), Halkidiki, Greece, 2015

[30] Herder, C., Yu, M.-D., Koushanfar, F., et al.: ‘Physical unclonable functions
and applications: a tutorial’, Proc. IEEE., Piscataway, NJ, USA, 2014, 102,
(8), pp. 1126–1141

Fig. 12  This tool is able to generate . v Verilog HDL source files, . tcl
bitstream configuration files, and a . xdc constraint file, with which a
researcher can request his/her customised PUF. However, the input and
output ports need to be defined by the researcher in the . v top module file
since different FPGAs have different ports

IET Comput. Digit. Tech., 2019, Vol. 13 Iss. 3, pp. 206-217
© The Institution of Engineering and Technology 2018

217

