
978-1-7281-1968-7/18/$31.00 ©2018 IEEE

Towards a Generalized Reconfigurable Agent-Based
Architecture: Stock Market Simulation Acceleration

Alan Ehret, Mihailo Isakov, Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory

Department of Electrical and Computer Engineering, Boston University
Email: {ehretaj, mihailo, mkinsy}@bu.edu

Abstract—Agent-based simulations have been used in domains ranging
from biology to economics. In order to more accurately simulate systems,
agent based simulations are becoming larger and more complex. Simu-
lations could benefit from the speed and scale provided by a generalized
agent-based architecture. In order to understand which features are
relevant for such an architecture, we create a scalable implementation
of an agent-based stock market model and compare it to an existing
market simulation. The scalable stock market simulation uses several
distributed markets rather than a single centralized market. A hardware
implementation with support for reconfigurable agent logic and various
market topologies is described. Synthesis results for simulations with up
to 100 agents are presented. Lessons learned form this domain specific
implementation will be applied in future work to a generalized agent-
based architecture.

Index Terms—FPGA Simulation, Agent Based Simulation, Stock Mar-
ket Simulation

I. INTRODUCTION
Agent-based simulations are best used to model systems with many

independent entities taking actions in parallel. Systems that have been
modeled with agent-based simulations include bacterial colonies, traf-
fic flows, epidemics and stock markets. Agent-based simulations work
to model these systems by modeling the individual entities within
them. The independent nature of entities such as cells in an organ or
cars in a traffic jam means that simulations of these entities should be
able to reach similar scales as the systems being modeled. However,
most existing agent-based simulations represent a tiny portion of the
system they model because of limited compute resources or limited
ability to build and analyze such large simulations. The parallel
nature of Field Programmable Gate Arrays (FPGA) makes them a
good candidate for modeling systems of parallel and independent
entities. An FPGA architecture focused on accelerating large scale
agent-based simulations could execute such simulations faster and
more efficiently than the clusters of CPUs used for today’s largest
simulations.

Agents in agent-based simulations must be able to sense and
influence their environment, taking actions based on their senses inde-
pendently of other agents [1]. With a population of agents acting in a
simulation, a system level behavior will emerge. The system behavior
is often more complex than individual agent behavior. Observing
this emergent system-level behavior is generally the motivation for
conducting a simulation.

Growth in compute resources and improvements in agent-based
models have led to an improved understanding of many of these
complex systems. Synthetic biologists are beginning to not only
understand but also to engineer interactions between cells with the aid
of agent-based simulations [2]. Understanding cell to cell interactions
has a wide range of potential applications, including treatments for
antibiotic resistant diseases. To study the origin of epidemics and
how to prevent them, the authors of [3] model populations of wild
birds, poultry and people to simulate the spread of avian influenza on
a global scale. Researchers in [4] have used agent-based simulations
to model individuals trading stocks. Others have built on this stock
market model to study how modeling news in the market impacts the
model’s fidelity [5].

In order to continue advancing our understanding of these com-
plex systems, larger and more detailed simulations are needed. For
example, simulations built with the framework in [2] generally model
between 104 and 106 cells but many cell structures (such as organs or
whole organisms) have billions or trillions of cells. Similarly, stock
market simulations in [4] model just 25 agents and simulations in
[6] model less than 10,000 agents while many more people may
participate in trading.

As agent-based simulations grow in order to better model a system,
they will become increasingly expensive and time consuming to run.
General purpose CPUs may not efficiently execute agent based simu-
lations on the scale needed by future researchers. A generalized agent-
based simulation architecture designed with a focus on scalability
would enable researchers to quickly run large simulations.

There are strong indications that enough features common to nearly
all agent-based simulations exist to justify a generalized agent-based
architecture [7]. Some of these features include the communication
pattern between agents and modeling of the environment. A single
generalized architecture is more practical than a series of domain
specific architectures as it would support far more domains than ded-
icated accelerators could be built for. Implementing this architecture
on one or more FPGAs would allow researchers to optimize it for
their application, implementing agent models in custom logic with a
fixed interface to the rest of the system. The ability to customize the
architecture will permit researchers to add any necessary features not
already in the generalized architecture.

In this work we design the Trading Agent Architecture (TAA),
a scalable distributed stock market simulation and implement it on
an FPGA to illustrate the design challenges of accelerating scalable
agent based simulations. Stock market simulations have been chosen
because current software simulations are fundamentally limited in
scalability. Lessons learned from this implementation will be applied
to a generalized architecture in future work.

II. RELATED WORK

Researchers in [4] implement an agent-based stock market sim-
ulation, allowing them to study and understand various aspects of
a market. Stock market simulations enable economists to test the
impact of different policies or actions in a controlled environment or
validate theories about real-world market behavior.

In the simulation, each agent computes their ideal demand or
supply given the current market price, the random value of a dividend
and their prediction of the next market price. To set a price based on
agent demands, a market specialist (MS) collects all of the supply and
demand values and determines the difference between the net supply
and the net demand. The MS must set a price so that the number of
stocks being sold and the number of stocks being bought is equal.
The process of collecting demands, setting a price and completing
trades is shown in Figure 1. Transmitting the demands from each
agent to the single MS limits the number of agents in the system, as
more agents means more bandwidth or time is necessary to compute
the difference between supply and demand.

Fig. 1. The process of setting a new market price and executing trades. Local
market actions are in purple and agent actions are in blue. Each agent performs
the agent actions in parallel.

To compute demands, agents use a set of 100 market predictors.
Each predictor has a set of parameters and a market state for which
the predictor is considered active. Each trade iteration, the most
accurate active predictor is selected to compute an agent’s demand.
An agent’s demand is a function of the current stock and dividend
value as well as the selected predictor’s parameters and accuracy.

The predictor’s market state is represented with a series of true or
false conditions. Market states are represented by several true/false
comparisons between the current price and the moving average price
or the current dividend. Agents use a genetic algorithm (GA) to train
their predictions about the next price set by the specialist. The GA
updates the parameters as well as the market state for which the
predictor is active.

As an agent changes its market predictors to become more accurate,
they will change their demand for a given market state. With price
being influenced by demand, each agent is trying to make a profit by
learning how other agents will value the stock. This prevents agents
from reaching an equilibrium where each agent agrees on the value
of a stock.

This model of a stock market has served as a baseline for others
to extend and experiment with. In [5], news is added to the model to
study how incorporating a trader’s interpretation of extra information
impacts the simulated market’s fidelity to real world markets.

The stock market model in [4] has been chosen as the baseline
market simulation in this paper because many others have used and
extended it. The distributed model proposed here also builds on this
popular stock market simulation.

Previous works have tried to improve the scalability of the market
model in [4]. Works such as [6] enable larger simulations by
distributing agents across several nodes in a cluster. However, agents
still communicate with a centralized market specialist which will
inevitably limit scaling. The distributed model proposed here over-
comes this limitation by removing the centralized market specialist.

III. MODEL SCALABILITY ANALYSIS

This section analyzes the scalability of each model in a hardware
implementation context. To complete a simulation trade iteration in
the centralized model described in [4], a market specialist proposes a
stock price and broadcasts it to n agents. The agents calculate their
individual demands at the given price, and send them back to the
market specialist. The market specialist then modifies the stock price
to reduce the imbalance between supply and demand. This process is
repeated until the supply and demand are equal. Figure 1 illustrates
the agent and market specialist actions during this process.

A block diagram of the centralized model is shown in Figure 3. The
market specialist broadcasts the stock price over a bus, and agents
respond by sending their demands to one of the market specialist
input ports. A system with n agents and k market specialist ports
must time-multiplex the agent-market communication over n/k time-
steps.

(a) (b)
Fig. 2. The number of cycles per price update iteration (a) and the number
of price updates per second (b) with respect to the number of agents in the
system with a 100MHz clock frequency.

Since the time required for the n agents to communicate their
demands to the market specialist grows linearly with the number
of agents, this market specialist’s bandwidth quickly becomes the
bottleneck of the centralized model. A market specialist with several
ports trades area for time to sum the agent demands into a net demand
in fewer cycles. An adder tree in the market specialist would add up
the agent demands in parallel. For n agents, the tree has n−1 adders,
is log2(n) layers deep, with a communication latency of O(log2(n))
cycles. The tree requires O(n) area to implement. While area grows
linearly with the number of agents, the growing latency is still the
main bottleneck of the system. As the next price depends on the
current price, pipelining cannot hide the communication latency.

Figure 2(a) shows the number of cycles each price update iteration
requires with respect to the number of agents for three different
systems: (1) the centralized system where the market specialist only
has one input port, (2) the centralized system with n input ports where
an adder tree sums up the agent demands, and (3) a decentralized
system without a global market specialist. The decentralized system is
assumed to have 4 agents in each local market and uses 4 input ports
with an adder tree. In our implementation, the agents require 2 cycles
to compute a demand. With n agents, the single input port centralized
system will require 2+n cycles, and the centralized system with the
adder tree will require 2+ log2(n) cycles to complete a price update
iteration. The decentralized system requires a constant 4 cycles per
price update iteration (2 for demand calculation and 2 for demand
summing by the market specialist). One simulation time-step (one
trade iteration) is made up of many price update iterations, as the
market specialist must find a price such that supply equals demand.

For the large numbers of agents we are targeting, neither of
the centralized models can sustain enough traffic and the whole
system quickly becomes communication bound. Figure 2(b) shows
the decreasing rate of trades with the increasing number of agents.

Our distributed model does not suffer from the scaling issues of
the centralized versions, as the bandwidth needed by local markets
is independent from the total number of agents. The system is
then able to grow while keeping the number of trade iterations
per second fixed. Having a fixed bandwidth between local markets
is a desirable feature for large scale simulations. For simulations
too large to fit on a single FPGA, the bandwidth needed between
FPGAs is determined by the number of agents trading across the
boundary between them. Replacing the all-to-one communication
with distributed local communication enables the simulation to be
designed such that the number of agents trading across two FPGAs
is also independent of the simulation size.

In the centralized hardware implementation, many cycles are
needed to compute the supply and demand imbalance, preventing
efficient scaling of the system. In the distributed system, we remove
the all-to-one communication between the agents and the centralized

market specialist. Instead, agents distribute the pricing and demand
information through the network of local markets over several price
update iterations. While beneficial for scaling, this distribution may
make the model unstable when the number of agents is high, as
the number of iterations needed to transmit the pricing and demand
information will increase. For a torus-based implementation of n×n
agents at least n iterations are needed to transmit information between
the most distant nodes. We therefore also test a hypercube-based
implementation, which will reduce this communication latency to
log2 n iterations.

IV. MODEL COMPARISON

In order to test the proposed distributed models before building a
hardware implementation, agent-based software simulations are used
to compare the existing and proposed models.

The centralized model of a market (seen in Figure 3) requires
each agent in the market to communicate their supply or demand
values to a single market specialist who synchronously makes trades.
This all-to-one communication fundamentally limits the size of the
simulation. By modeling the market as a series of smaller distributed
markets, local market trades become asynchronous and the scalability
limitation is avoided. Each local market has its own local price.
The local markets in the proposed distributed model are connected
by agents participating in several markets at once. The topology of
agents and markets can be adapted to best fit the desired simulation
conditions. In this section, a checkerboard and a hypercube topology
are examined.

In the checkerboard topology, agents (traders) and markets are
arranged in a checkerboard pattern such that each agent participates
in 4 markets and each market has 4 agents. The edges of the checker-
board are wrapped around, forming a torus. Figure 4 shows the
checkerboard topology. A checkerboard pattern was chosen because
simulations with less than 4 agents in a market produce drastic price
swings because of the difficulty in matching supply to demand. The
routing overhead of a hardware implementation of the checkerboard
topology will be minimal, as its similarity to a 2D mesh allows it to
map well to an FPGA’s fabric. If local markets require more than 4
traders, multiple traders could connect two local markets instead of
a single trader as is done here. Using multiple traders would enable
local markets with an arbitrary (multiple of 4) number of traders.

In addition to the checkerboard topology, a hypercube topology
is also examined. In the hypercube topology, each vertex of the
hypercube represents a local market with the edges representing
agents in 2 markets. The number of dimensions in the hypercube
represent the number of agents in each local market. This gives
simulation designers a simple way to change the properties of the
simulation. Figure 5 depicts the hypercube topology. In the hypercube
topology, agents only participate in 2 markets but the number of
markets grows slower than the number of agents, meaning that
perceived prices have fewer markets to propagate through.

While the distributed model makes some significant changes to the
original centralized model, it overcomes scalability challenges related
to the all-to-one communication used by a single market specialist.
In order to determine how the distributed local markets impact the
average global price and trading properties, we run simulations for
the centralized, distributed checkerboard and distributed hypercube
market models. The trading volume per 10k iterations, mean trader
profit and standard deviation of trader profit are shown in Table I
for the centralized model and in Table II for the decentralized
checkerboard model. Simulations with 4, 16, 25, 36 and 100 agents
are compared. The market models used in these simulations are

Fig. 3. The communication between the market specialist and trading agents
in the centralized model. While the market specialist can broadcast the global
price, each agent individually sends their price to the market specialist.

Fig. 4. The distributed model checkerboard topology. Blue boxes are trading
agents. Purple boxes are local markets. Each agent is connected to 4 markets
and each market is connected to 4 agents.

Fig. 5. The distributed model hypercube topology. A 3D hypercube is shown
here. Blue boxes are trading agents. Purple boxes are local markets. Each
agent is connected to 2 markets and each market is connected to N agents,
where N is the dimension of the hypercube.

software implementations of the centralized and proposed distributed
market models.

The checkerboard simulations have a higher trade volume because
agents are trading on several markets, giving them more opportunities
to trade per simulation trade iteration. Although each agent partici-
pates in 4 markets, the volume is not four times larger because of
the limited money agents have to buy stocks. This prevents a single
agent from acquiring a significant portion of the stocks in a market,
causing unrealistic market prices. Notice that the volume traded in
each decentralized checkerboard simulation is roughly double that of
the centralized simulation, indicating that the volume of trades in a
single market scales equally in both models.

The centralized model tested here is based on the agent-based
simulation in [4] where the mean agent profit is 0.0. Here different
simulation parameters cause agents to believe that the stocks are
worth more than they would be in an efficient market model. This
causes the price in each simulation to range between 80 and 140 when
the efficient market model would value the stock around 80 to 100
depending on the value of the dividend. The higher price caused by
different parameter settings leads to the consistently negative profit
in all simulations. Note that the same market parameters were used
in the centralized and distributed model tests, meaning that negative
profits are not caused by changes made in the distributed models.

In both models, the mean profit tends to grow with the number of
agents. This is likely caused by a higher volume of trading making
it easier for agents to buy or sell the ideal amount of the stock. The
profits of the distributed model have a lower standard deviation and
a flatter upward trend as the number of agents increases. The flatter
trend can be expected in the distributed model because agents only
interact with a local neighborhood regardless of the number of agents

Fig. 6. The market price for the centralized model and a single local market
from each of the distributed checkerboard and distributed hypercube models.

in the simulation. This suggests that the agent profits are slow to be
influenced by other distant markets, even as more markets are added.
Agents still interact with their neighbors though, allowing perceived
values to spread, adding some effects from the larger simulation.

In order to test how the topology of the agents and markets in the
distributed model impacts the price, volume and profit, another set
of simulations are run for the centralized, checkerboard and hyper-
cube topologies. Each simulation has 32 agents. The checkerboard
topology has 32 local markets. The hypercube topology uses a 4
dimensional hypercube with 16 markets. Each hypercube market has
4 agents but each agent only participates in 2 markets (compared to
4 in the checkerboard version). Table III compares the volume, mean
profit and profit standard deviation for each of the models. As in the
other tests, these simulation results have been generated with software
implementations of the different market models and topologies.

Note that the volume traded in the hypercube is significantly
smaller than in either the checkerboard or the centralized models.
This is likely because each agent participates in only 2 small markets,
giving it fewer trading opportunities. This comparison shows that the
distributed model is sensitive to the topology chosen and that not all
topologies will be appropriate for desired volume and price values.

Figure 6 shows the market price in the centralized model and
a single local market price from the checkerboard and hypercube
models. Only one market from each simulation is shown for clarity.
Additionally only 1000 iterations are plotted to make details in the
graph visible. In the distributed models, a different random dividend
is used for the stock in each local market changing how each agent
will perceive the value of the stock. This means that the price time
series are not expected to be the same as the original centralized
model but should still have similar ranges and properties.

V. THE TRADING AGENT ARCHITECTURE

a) Architecture Description: The FPGA implementation of the
proposed distributed stock market simulation is called the Trading
Agent Architecture (TAA). The TAA is designed to enable large
scale agent-based simulations of a stock market. These simulations
are supported with distributed local markets rather than a single
centralized market. A user can change the number of agents or
the number of local markets in the simulation by altering Verilog
parameters or the simulation topology.

Local market and agent modules are used to model an environment.
These modules can be connected in different topologies (such as
the checkerboard or hypercube described in Section IV) to model
different markets. Local markets support a parameterized number of
agents. The fixed interface between each agent and market simplifies
the design and creation of simulations with different topologies.
The ability to easily connect different processing elements in an
arbitrary pattern is a desirable feature in a generalized architecture.
The generalized architecture will support communicating a variety of
information so that more complex models with features such as news
spreading as in [5] can be created and studied.

TABLE I
MEAN STATISTICAL RESULTS FOR 4 RUNS OF THE CENTRALIZED MODEL.

Number of Volume per Mean Std Dev of
Agents 10k iterations Profit Profit
4 1198 -2.99 15.93
16 4726 -2.73 16.29
25 6977 -1.99 10.51
36 9404 -2.40 14.94
100 29158 -0.23 2.33

TABLE II
AVERAGE PROFIT AND VOLUME STATISTICS FOR 4 RUNS OF THE

DISTRIBUTED MODEL WITH A CHECKERBOARD TOPOLOGY.

Number of Volume per Mean Std Dev of
Agents 10k iterations Profit Profit
4 2222 -2.50 9.87
16 8392 -2.12 10.27
25 13039 -1.56 9.44
36 16516 -1.57 8.81
100 52798 -1.35 6.44

TABLE III
COMPARISONS OF THE CENTRALIZED, DISTRIBUTED CHECKERBOARD
AND DISTRIBUTED HYPERCUBE MODELS. RESULTS SHOWN ARE THE

AVERAGE OF 4 SIMULATIONS WITH EACH MODEL.

Model Volume per 10k Mean Std Dev of
Iterations Profit Profit

Centralized 8677 -2.51 14.86
Checkerboard 18995 -1.81 8.81
Hypercube 6026 -1.44 4.23

b) The Agent Module: Each agent module computes the de-
mands of a single agent. A separate demand is computed for each
market an agent participates in. A market selector in the trade
processing logic presents a market price and dividend to the demand
computation logic and the computed demand is sent to the selected
market. Figure 7 shows a simplified view of the agent module.

A local market will not execute trades until each agent has re-
sponded to a trade lock request by asserting the lock acknowledgment
signal for the appropriate market. This is necessary as agents will
participate in multiple local markets and may not have a new demand
ready each cycle. The trade lock signals for each local market allow
a user to change the simulation topology or the agent latency without
the need to alter the communication protocol.

Agents communicate with the local markets they are connected to
with a series of lock request, lock acknowledge and trade valid signals
(one for each local market) and dedicated buses for price and demand
values. The local market uses a trade lock request signal to indicate
that demand and supply are equal and a trade is about to be executed.
When the agent is ready to process the trade, it acknowledges the
lock request by asserting a lock acknowledge signal. Once all agents
in the local market have asserted the acknowledge signal, the local
market responds by asserting the trade valid signal indicating that
agents should update their cash and position values.

The architecture provides an interface in the agent module that
separates user customizable demand computation logic from the
trade processing logic needed in all simulations. This interface and
customizable logic are represented as a red box in Figure 7. This
interface allows new models to be incorporated into the architecture
without the need to change the logic handling trade arbitration or
cash and position updating. This type of modularity will also be
incorporated into the generalized agent-based architecture.

The current implementation of the agent module must store any
necessary data for demand computation in on-chip BRAM. There is
no interface for agents to access off-chip memory. Off-chip memory
is avoided because of the high bandwidth needed during each price

Local
Prices

Local
Dividend

Market
Selector

Market
Selector

Market
Selector

Trade
Valid

Lock
Agent

Lock
AcknowledgeDemandsCash Position

Trade
Valid

Market
Selector

D
em

an
d

Demand
Calculation

Logic

Cash

+ +

Position

+

FSM

Fig. 7. A simplified view of the agent module architecture.

Shift by 8

Lock Agent
Trade Valid 4Lock

Acknowledge Dividend

Local Price
Demand
Values

Supply
Values

UpdatePrice

Local
Price

+>>-

+

+

FSM

Fig. 8. A simplified view of the local market module architecture.

update iteration, where every agent computes a new demand.
In the software implementation, each agent is randomly initialized.

In the hardware implementation, an agent’s demand computation
memory is initialized to a random valid state. States for each agent
are determined by the user at synthesis time. The bit-stream generated
by the synthesis tool initializes an agent’s BRAM to the given state.
Currently, a user must manually determine the appropriate BRAM
state for each agent. A tool was not developed to streamline this
process because it would be dependent on the agent model used.

c) Local Market Module: The local market module represents
the market specialist and is responsible for computing new market
price and dividend values. A finite state machine handles the module’s
control signals. Figure 8 depicts a simplified view of the local market
FPGA implementation.

The module takes in supply and demand values from all of the
agents in the market and computes the net difference between them.
The number of agents in each local market should be small enough
that the adder tree described in Section III is practical to implement.
The imbalance between supply and demand is shifted by a constant
and added to the current proposed local price. Shifting the imbalance
replaces costly multiplication (by a power of 2) and creates a value
small enough to represent a change in the proposed local price
without destabilizing the market. If a change in the proposed price
is large, unrealistically wide swings in market price can occur.

While the supply and demand difference is greater than a threshold,
the proposed local price is continuously updated and no trading
occurs. This is different than the original software model but it avoids
the need for division hardware when a maximum number of price
update iterations has been reached without a balance between supply
and demand, forcing agents to trade at a fraction of their ideal volume.

Once a balance has been reached, the trade process begins. First,
the “lock agent request” signal is asserted. Once all agents have
acknowledged the lock request by asserting the “lock acknowledge”
signal, the local market asserts the “trade valid” signal. The proposed
local price is set as the new local market price and agents update their
cash and stock values, completing the trade.

The local market module only needs to store the local price. A
new trade imbalance is computed based on demand values set by
agents each price update iteration. The small memory requirement of
the local market module means that no off-chip memory or on-chip
BRAM is needed. The local market price is stored in registers.

d) Market Topology: The local market and agent modules
can be connected in different patterns to support different market
simulations. The topology of the market could be chosen to model a
specific environment, such as traders in different time zones or traders
who cannot trade directly.

This paper compares hardware implementations of the checker-
board topology with the original centralized topology. A depiction
of the original centralized architecture is shown in Figure 3. The
distributed checkerboard topology can be seen in Figure 4.

A checkerboard topology was chosen because simulations with
markets containing fewer than 4 agents behaved poorly, creating
unrealistic market behavior. In some of these simulations market
price would swing wildly by thousands of dollars (rather than tens
of dollars). In other simulations, the market prices would diverge,
approaching infinity as no buyers for stocks could be found. Synthesis
results for the hypercube topology have not been collected because
it did not produce a reasonable trading volume for the 32 agent
simulation that was tested.

Currently the checkerboard topology is the only supported topology
in the TAA. The size of the checkerboard can be adjusted with
parameters. The fixed interface between local markets and agent
modules means that constructing different topologies only requires
the connections in the top level module to be reassigned.

Using several distributed markets allows the TAA to make trades
asynchronously. Trades are made when supply and demand are
balanced at any local market rather than waiting for global supply to
equal global demand. In addition to being a more scalable market
simulation, this is a more realistic representation of stock trades.
Asynchronous agent interactions with the environment is an important
feature that will be included in the generalized architecture.

e) Synthesis Results: Synthesis results for three different im-
plementations are discussed in this section. One implementation
simulates the existing centralized stock market model in [4]. The
other two implementations use a simpler irrational agent model to
simplify topology design and testing. The irrational agent models
compute demands with random changes to their parameters rather
than calculating demand based on past market history as in the
rational model used in the first implementation. A market full of
irrational agents is of limited practical use but markets with some
irrational agents have been used in [8] to create heterogeneous market
predictions similar to the rational agent model implemented here.

In each of the implemented designs, 18 bit fixed point integers are
used to represent prices, demands and stock holdings. Each 18 bit
fixed point integer uses 9 bits for the integer and 9 bits for the fraction.
Cash values have an extra 8 integer bits (for a total of 26 bits) to
ensure that they do not overflow. A precision of 18 bits was selected
to fit the 18 bit hardware multipliers on the selected FPGA device.
Dollar values are not rounded to one cent increments and stocks are
not rounded to integer values. The full 9 bits of the fraction is used to
maintain as much precision as possible. Fractional stock values can
be interpreted as stock splitting between traders or parts of larger
bundles of stocks if stocks must be indivisible.

The first architecture implements the centralized market model
described in [4]. This version uses rational agents. As few changes
as possible were made to the original algorithm for this FPGA
implementation. Aspects of the original model including the division
needed to trade a fraction of the total requests when supply cannot
be balanced with demand after 100 price update iterations are
implemented without any hardware specific optimizations. The re-
source utilization could be improved by restricting several simulation
parameters to powers of 2, allowing multiply and division hardware

TABLE IV
SYNTHESIS RESULTS FOR CENTRALIZED SIMULATIONS WITH 4, 8 AND 16

AGENTS WITH RATIONAL AGENT MODELS.

Number of Logic 9-Bit
Agents Elements Registers Multipliers
4 17724 12249 100
8 25062 14817 196
16 39537 19953 388

TABLE V
SYNTHESIS RESULTS FOR CENTRALIZED SIMULATIONS WITH 4, 16 AND

24 AGENTS WITH IRRATIONAL AGENT MODELS.

Number of Logic 9-Bit
Agents Elements Registers Multipliers
4 1786 556 12
16 6595 2991 36
24 9741 4431 52

TABLE VI
SYNTHESIS RESULTS FOR DECENTRALIZED SIMULATIONS WITH 4, 16, 24

AND 100 IRRATIONAL AGENTS WITH A CHECKERBOARD TOPOLOGY.

Number of Logic 9-Bit
Agents Elements Registers Multipliers
4 3470 1080 24
16 13747 4224 96
24 20618 6320 144
100 85760 26232 600

to be replaced with bit shifts. These optimizations were not made to
ensure this version was as accurate as possible.

The centralized model, complete with rational agents trained by a
GA, is bound by the number of hardware multipliers on a single
FPGA. The limited number of multipliers available and the high
internal bandwidth of FPGAs means that single FPGA implemen-
tations are not significantly limited by the all-to-one communication.
However, large simulations across multiple FPGAs, will still be
bound by the latency/bandwidth increase shown in Figure 2(a) that
comes with a larger number of agents.

The GA logic used to train agents is implemented as a single
module that is connected to each agent. The centralized GA logic is
less of an issue than the centralized market specialist because agents
are only updated by the GA every 250 trade iterations, allowing the
accuracy of predictors in agents to be measured between GA updates.
This slow rate of GA execution means that the GA has a more relaxed
latency requirement than the centralized market authority. For large
simulations on multiple FGPAs one GA module can be used per
FPGA without creating scaling issues because GA modules only need
to communicate with a single local agent at a time, there is no need
for GA modules to communicate with logic in other FPGAs.

Table IV shows the resource usage for 4, 8 and 16 centralized
rational agent model simulations. Each of the simulations synthe-
sized in this paper target an Altera Cyclone IV FPGA with 150k
logic elements. Larger centralized simulations were not synthesized
because of the limited number of hardware multipliers on the selected
FPGA. The smaller irrational agents allow for larger simulations to
be created. More rational agents could be fit on a single FPGA with
minor optimizations not expected to impact the simulations fidelity
to real markets but these optimizations have not been made in order
to create a simulation as close to the software implementation as
possible. Additionally, these optimizations would not have enabled
the desired scale by themselves. Large simulations will need to
be implemented with the distributed model on several FPGAs to
maximize the exploitation of parallelism in the system.

As the rational agent model has not been implemented in the
distributed simulation, the centralized simulation is re-synthesized

with an irrational agent model. This way, the size of distributed and
centralized simulations can be directly compared.

The centralized simulation with irrational agents is built with the
same agent and local market modules as the distributed version but
with a different topology. The topology is changed so that each
agent participates in the single centralized market rather than several
distributed markets. Table V shows synthesis results for centralized
model simulations with 4, 16 and 24 agents. Note that fewer resources
are used in the irrational agent simulations because of the simpler
agent model.

Table VI shows synthesis results for distributed simulations with
4, 16, 24 and 100 agents. A checkerboard topology is used in each
of these distributed simulations. In the checkerboard topology, the
number of local markets is equal to the number of agents. The extra
local markets add a significant amount of area to the design but also
allow for a much larger number of agents by limiting the number of
agents in a single market. The extra logic used by local markets will
become less significant with larger rational agents which will take
up a greater percentage of the total area. The local market module
does not contain any hardware multipliers because all multiplication
operations have one constant operand that are fixed at a power of 2.
This ensures that the number of local markets is not bound by the
number of hardware multipliers on a device.

VI. CONCLUSION

In this work, we have discussed the need for a generalized scalable
agent-based architecture to accelerate large simulations. Agent-based
stock market simulations were examined to demonstrate their limited
scalability. A software implementation of a scalable distributed mar-
ket model is compared to the existing centralized model to examine
the trade-offs between the two. To better understand the challenges of
creating scalable simulations, we design and implement the Trading
Agent Architecture, a distributed stock market simulation. Features
of TAA include customizable agent logic and user defined market
topologies. The architecture does not achieve the density of agents
needed for the large simulations targeted, highlighting the importance
of multi-FPGA support in the generalized architecture.

REFERENCES

[1] L. J. Moya and A. Tolk, “Towards a taxonomy of agents and multi-agent
systems,” in Proceedings of the 2007 spring simulation multiconference-
Volume 2. Society for Computer Simulation International, 2007, pp.
11–18.

[2] T. E. Gorochowski, A. Matyjaszkiewicz, T. Todd, N. Oak, K. Kowalska,
S. Reid, K. T. Tsaneva-Atanasova, N. J. Savery, C. S. Grierson, and
M. di Bernardo, “Bsim: An agent-based tool for modeling bacterial
populations in systems and synthetic biology,” PLOS ONE, vol. 7, no. 8,
pp. 1–9, 08 2012.

[3] D. M. Rao, A. Chernyakhovsky, and V. Rao, “Modeling and analysis
of global epidemiology of avian influenza,” Environmental Modelling &
Software, vol. 24, no. 1, pp. 124–134, 2009.

[4] W. B. Arthur, J. H. Holland, B. LeBaron, R. G. Palmer, and P. Tayler, “As-
set pricing under endogenous expectations in an artificial stock market,”
1996.

[5] L. Neuberg and K. Bertels, “Heterogeneous trading agents,” Complexity,
vol. 8, no. 5, pp. 28–35, 2003.

[6] C. Wang, C. Yu, H. Wu, X. Chen, Y. Li, and X. Zhang, “A platform
for stock market simulation with distributed agent-based modeling,” in
International Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2014, pp. 164–177.

[7] A. Ehret, P. Jamieson, and M. A. Kinsy, “Scalable open-source re-
configurable architecture for bacterial quorum sensing simulations,” in
Proceedings of the 9th International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies, ser. HEART 2018. New
York, NY, USA: ACM, 2018, pp. 17:1–17:5.

[8] e. a. De Long, J Bradford, “The survival of noise traders in financial
markets,” The Journal of Business, vol. 64, no. 1, pp. 1–19, 1991.

