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Abstract— In this work, we introduce a hardware root-of-trust 

architecture for low-power edge devices. An accelerator-based 
SoC design that includes the hardware root-of-trust architecture 
is developed. An example application for the device is presented. 
We examine attacks based on physical access given the significant 
threat they pose to unattended edge systems. The hardware root-
of-trust provides security features to ensure the integrity of the 
SoC execution environment when deployed in uncontrolled, 
unattended locations. E-fused boot memory ensures the boot code 
and other security critical software is not compromised after 
deployment. Digitally signed programmable instruction memory 
prevents execution of code from untrusted sources. A 
programmable finite state machine is used to enforce access 
policies to device resources even if the application software on the 
device is compromised. Access policies isolate the execution states 
of application and security-critical software. The hardware root-
of-trust architecture saves energy with a lower hardware overhead 
than a separate secure enclave while eliminating software attack 
surfaces for access control policies. 
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I. INTRODUCTION 
Increasingly efficient System-on-Chips (SoC) have enabled 

numerous new applications for low-power embedded systems. 
Much of the efficiency and performance improvements in 
modern SoCs are attributable to the inclusion of heterogeneous 
hardware accelerators [1]. Example accelerators include Digital 
Signal Processing (DSP) cores, neural network inference 
engines, and Fast-Fourier Transform (FFT) cores. Energy 
efficiency and performance gains have allowed SoC-based 
devices to perform more of their computations locally. Devices 
that compute on data locally are commonly referred to as “edge” 
devices, because they operate at the edge of a network, between 
data sources (sensors) and a centralized infrastructure [2]. 
Without the need to frequently offload data to a centralized 
infrastructure, edge devices can be deployed in environments 
lacking a stable network connection or power grid access. 

Common examples of edge devices include solar-powered 
smart signs that can change their display after deployment and 
connected trashcans that alert a city’s sanitation department 
when they are full. Other examples include unattended ground 
sensor nodes, unmanned aerial vehicle (UAV) swarms, and 

mobile payment processing systems. These examples are all 
solar- or battery-powered, but the amount of power they 
consume can vary by several orders of magnitude. Edge devices, 
such as smartphone-based mobile payment systems, may 
consume between 100s of mW to several Watts. Meanwhile, 
unattended ground sensors may consume power on the order of 
nW to µW. Achieving nW power consumption requires the use 
of sub-threshold CMOS ASICs, as in [3]. Despite a wide range 
of power consumption, the above examples all share long 
duration deployments and local computation requirements. In 
the case of a smart sign or ground sensor, ideally, device 
deployments would last months or years without maintenance or 
physical access on the part of the device owner. UAVs or ground 
sensor nodes require local computation because of latency or 
security requirements. 
 Connected edge devices, such as a wireless sensor in a 
security system or a ground sensor node, frequently handle 
security-critical functions, making them prime targets for 
attacks. The advances in power efficiency that made edge 
applications and devices possible have also led to the 
deployment of these devices in outdoor and public spaces. 
Furthermore, the nature of edge applications means that edge 
devices are frequently left unattended by those responsible for 
them. Unattended deployment means that an attacker can gain 
uninterrupted physical access to a device. Physical access 
presents a security challenge when devices must ensure the 
integrity of their program results to achieve their objectives. 
Further advances in power efficiency will only exacerbate the 
vulnerability of these devices as they are deployed in greater 
numbers, for longer periods of time and in more remote 
locations. Anti-tamper protections can mitigate physical access-
based attacks. Previous works have used battery-backed volatile 
memory to prevent tampering with sensitive memory such as 
FPGA bit streams [4]. However, the power budgets for edge 
devices generally preclude powering volatile memories for the 
entire lifetime of the device. The security challenges faced by 
unattended edge devices has motivated previous works, 
including surveys of hardware-based security defenses [5][6].  
 In this work, we design a security-focused low-power SoC 
architecture for use in edge devices. The architecture mitigates 
deployment-time threats faced by edge devices while meeting 
power and energy constraints with a hardware root-of-trust.  
The SoC architecture is named RECORD, short for 
Reconfigurable Edge Computing for Optimum Resource 
Distribution. The RECORD architecture continues the trend of 
accelerator-focused SoC designs with the inclusion of a single 
RISC-V core and several reconfigurable hardware accelerators. 
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The RECORD SoC is designed to serve as a multi-purpose 
wireless audio sensor device. The RECORD SoC supports a 
microphone as a peripheral device and includes hardware 
accelerators for processing microphone sensor data. 
Accelerators are designed to operate in a hierarchy, with each 
one consuming more resources than the last. When data must be 
processed, RECORD activates the lowest power accelerator first 
and evaluates the output to determine if further processing is 
warranted. When additional processing is needed, more resource 
intensive accelerators are activated.  

The RECORD SoC ensures the integrity of the execution 
environment when deployed in uncontrolled locations with the 
Root-of-Trust (RoT) Unit. The RoT Unit is made up of several 
individual hardware modules.  A non-volatile boot memory 
module includes an E-fused [7] write port to prevent changes to 
the device boot loader or other security-critical code after device 
deployment. Digitally signed programs can be loaded into non-
volatile programmable instruction memory before or after 
deployment. Verification of the digital signature ensures the 
application program is from a trusted source. Occasionally, the 
RoT unit requires access to a resource shared with application 
code, such as the CPU or data memory. To prevent information 
leakage and unauthorized resource usage, a programmable finite 
state machine (FSM) enforces access control policies. Access 
control policies prevent simultaneous access to a resource by the 
RoT Unit and application code. The RoT Unit’s FSM and access 
controls allow it to temporarily take control of the SoC, pause 
application execution, and execute one of its own security-
critical functions implemented in software. The RoT Unit helps 
prevent information leakage by reseting the state of a shared 
resource when a security-critical operation has completed, 
allowing the application code to be safely granted access again. 
Also included are Built-In Self Test and E-fused programmable 
interrupt controller modules. To meet energy and security 
constraints, the RoT Unit architecture considers both a tight area 
and power budget, as well as the physical access to the device 
attackers have. 

The RECORD SoC and the included RoT Unit demonstrate 
how threats faced by edge devices during their deployment can 
be mitigated using a hardware root-of-trust deeply integrated 
with the rest of the SoC. The design philosophy applied to 
RECORD and the RoT Unit in this work are not specific to 
microphone sensor-based devices. The techniques presented 
here can be adopted in future edge designs regardless of the 
application, sensors, or accelerators. 

II. RECORD ACCELERATOR HIERARCHY 
 The RECORD SoC is designed as a multi-purpose device for 
edge systems with audio-based applications. Potential 
applications include speech detection or recognition, perimeter 
monitoring, or noise identification and classification. Four 
hardware accelerators are included in the SoC: a noise/energy 
detector, a Finite Impulse Response (FIR) filter, a Fast Fourier 
Transform (FFT) module, and a Support Vector Machine 
(SVM). The SoC uses a RISC-V core to perform general 
purpose operations. The selected accelerators have been chosen 
to minimize the energy consumed processing sensor data. 
Accelerators can be reconfigured to further optimize their 
energy consumption for different use cases, such as different 

input sizes. In this case, a microphone serves as the sensor but 
other sensors could be used. 

 
Fig. 1. Hierarchical resource usage 

 
Fig. 2. Classification accelerator hierarchy. 

 The four hardware accelerators form a hierarchy of 
computation. The lowest level of the hierarchy consumes 
minimal power while waiting to detect an event in the sensor 
data. When an event is detected, the next level of the hierarchy 
begins preliminary processing of the data. The application 
program on the RISC-V core checks the accelerator output to 
determine if data processing should continue. Only events 
selected by the program will continue processing with higher 
power accelerators. This hierarchy of processing allows events 
irrelevant to the edge system application to be quickly dropped, 
saving energy and compute resources for relevant events. Fig. 1 
shows how more device resources are allocated to a computation 
as processing progresses through the hierarchy. Using a RISC-
V core to analyze accelerator output and determine which events 
are relevant gives different RECORD SoCs the flexibility to 
support different edge applications.  

III. EXAMPLE APPLICATION 
To guide the design of the RECORD SoC, we selected an 

example application to run on the completed edge device. In the 
application, the RECORD SoC-based edge device listens for 
noise and identifies it as either human or wildlife. A hierarchy 
of computation can greatly improve SoC efficiency. Consider 
that edge systems deployed in uncontrolled environments are 
likely to encounter numerous events (noises in this case) that are 
not relevant to the application. Wind, and rain are examples of 
irrelevant noises likely to be detected by an edge device running 
the classification application example. A hierarchy of 
computation quickly eliminates irrelevant noises from the 
human/wildlife detection algorithm, saving energy and compute 
resources. 

In the first step in the hierarchy, the RECORD SoC uses the 
energy detector accelerator to listen for noise. When the energy 
detector is active, other accelerators and the RISC-V core are put 
in a sleep state. When a noise triggers the energy detector, the 
detector wakes up the RISC-V core to configure the FIR filter 
and eliminate unwanted frequencies from the recorded audio 
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signal. The RISC-V core checks if enough energy is left in the 
signal to warrant FFT processing. If a significant signal is still 
present, the FFT module computes the transform of the signal. 
When the transform is complete, the RISC-V core performs 
simple sanity checks on the result, ensuring the spectrum has a 
reasonable distribution, i.e., more than a single tone is present. 
Finally, the SVM accelerator is enabled outputs a classification. 
The complete classification hierarchy is shown in Fig. 2. 

IV. THREAT MODEL AND ATTACK OVERVIEW 
Sections II and III described how the RECORD SoC 

achieves the energy efficiency and performance necessary for 
edge devices and provided an application example as a 
reference. This section examines the threats faced by edge 
devices. The security mechanisms used to mitigate some of 
those threats are introduced and described in detail in the 
following Section V. 

A. Threat Model 
The nature of edge device deployment creates a challenge 

when trying to create a trusted execution environment. 
Deployment in an uncontrolled environment means an attacker 
can gain physical access to a device. With physical access, edge 
devices can be attacked with both software and hardware 
modifications. The limited power budget of edge devices means 
that mitigating all of the threats they face is not feasible. Instead, 
the RECORD SoC architecture mitigates a subset of software 
and PCB level hardware modification-based attacks that aim to 
achieve arbitrary code execution on the device.  

Attackers are assumed to be capable of (1) interfacing with 
any device ports accessible by an end user, (2) disassembling 
and inspecting the device’s internal design, including any PCBs 
in the device, (3) analyzing signals on PCB traces or IC pins, (4) 
accessing debug ports, such as PCB test points or the scan-chain, 
and (5) making PCB-level modifications, such as removing ICs, 
shorting traces, and opening traces. Attackers are not assumed 
to be capable of decapsulating the RECORD SoC or probing 
internal chip wires. 

With the previously listed capabilities, a variety of attacks 
are possible. Attacks considered during the design of RECORD 
include: scan-chain attacks, off-chip memory probing or 
modification, timing/power/electro-magnetic (EM) side-
channel information leakage, power fault injections, and clock 
fault injections. These attacks all occur after the device has been 
deployed. Table I summarizes considered attacks and their 
potential countermeasures. The RECORD SoC is assumed to be 
uncompromised until it is deployed in an uncontrolled 
environment. 

B. Attack Descriptions 
In scan-chain attacks, an attacker uses the debugging scan-

chain to observe or alter the internal state of an IC. Attackers can 
use unprotected scan-chains to dump firmware or upload 

malicious code. Off-chip memory is vulnerable to snooping or 
modification by an attacker. PCB traces from an SoC to a 
memory IC can easily be probed by an attacker. Complex 
systems can suffer from timing-based microarchitectural side 
channel attacks, such as the Spectre [8] family of attacks. These 
attacks leverage access-based cache-timing side-channels to 
leak information. Power side-channel attacks including, Simple 
Power Analysis and Differential Power Analysis, can leak 
information about which instructions are executing or the data 
they execute on. This information could allow an attacker to 
learn secret keys or other information about a program’s 
execution. Similarly, EM side-channels can reveal secret 
information about a program by comparing EM noise from 
different inputs. Power or clock fault attacks reveal encryption 
keys by comparing the ciphertexts produced under fault-free and 
faulty conditions. Detailed description of these hardware-based 
attacks is beyond the scope of this work but can be found in [9].  

V. RECORD SOC ARCHITECTURE 
This section describes the architecture of the RECORD SoC 

and how it mitigates hardware-based attacks discussed in the 
threat model. Section V.A describes the logical organization of 
the RECORD SoC. Section V.B presents a detailed view of the 
SoC architecture. Section V.C describes the design and 
functionality of each RoT Unit feature.  

A. RECORD Logical System View 
As an accelerator-focused SoC, RECORD includes a single 

RV32I RISC-V Core and four reconfigurable hardware 
accelerators. Fig. 3 presents a logical view of the RECORD SoC. 
The RISC-V core has isolated instruction and data buses. 
Accelerators share a dedicated bus and communicate with the 
RISC-V core through a second port on the data memory. All 
SoC memory is on-chip to mitigate memory probing/tampering 
attacks. The RoT Unit is not logically connected to the rest of 
the system. Logical isolation means the RECORD compute 
modules (shown in blue) cannot observe the RoT Unit’s internal 
state. 

 
Fig. 3. A logical view of the RECORD SoC 

B.  RECORD Detailed Architecture 
Fig. 4 presents a detailed block diagram of the architecture. 

In addition to the RISC-V core, accelerators, memory and I/O 
shown in the logical system view (Fig. 3), specific RoT modules 
are shown in orange. Access control modules and the 
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Programmable Finite State Machine (FSM) isolate RoT Unit 
and application code state when the RoT Unit must use shared 
resources. Access controls can also be applied to create multiple 
isolated memory partitions within RoT Unit or application code. 
Section VI describes how the FSM sets and updates access 
control policies. Also included in the RoT unit are the 
Programmable Interrupt Controller (PIC) shown in yellow and 
digitally signed instruction memories. The device includes a 
hard coded, memory-mapped public key used to verify the 
instruction memory signatures. We assume the device designer 
and end user have previously arranged a secure process to sign 
authentic instruction memory images. Device I/O is sanitized 
with an RoT control module to prevent I/O related side channels. 

RECORD’s area budget forces many performance 
enhancing micro-architecture features (including caches) to be 
omitted, mitigating many common timing side-channels. 
Additionally, the signed instruction memory and access controls 
prevent attackers from executing the code needed to exploit 
popular access-based cache timing side-channels. 

C. RoT Unit 
1) Built-In Self Test: The Built-In Self Test (BIST) 

hardware module checks the RoT circuitry for faults. Energy 
and area limitations prevent the BIST module from performing 
testing extensive enough to ensure the RoT hardware is 
implemented as designed. Instead, the BIST module and the rest 
of the RoT Unit are considered the trusted computing base of the 
RECORD system. Mitigating design-time attacks such as 
hardware trojans is beyond the scope of this work. 

 With the included BIST module, the RoT hardware does not 
need to be connected to an external scan-chain. Eliminating 
scan-chain connections on security critical hardware mitigates 
scan-chain based attacks that attempt to change or observe the 
internal hardware state. 

2) Programmable Finite State Machine: Security 
constraints are enforced in hardware with a programmable FSM. 
Prior to deployment, the FSM configuration can be programmed 
to implement any N-input, L-output, K-state Moore FSM. N, L 
and K are parameters chosen at SoC design time. FSM inputs 
are fed into Look-Up-Tables (LUT) to compute the next state. 
The system state is fed into more LUTs to compute outputs. Fig. 
5 presents the FSM architecture. At deployment time, an E-fuse 
is used to prevent further writes to the configuration memory, 
locking the FSM configuration. 

The FSM inputs include “done” status signals from each of 
the accelerators and a two bit Control Status Register (CSR) 
from the RISC-V core. The two bit CSR represents system 
events such as the completion of the next accelerator 
configuration. For each accelerator, the FSM outputs a two bit 
signal to the associated access control module to select one of 
four permission configurations. Three additional FSM outputs 
are fed into a decoder connected to eight interrupt lines. 
Interrupts can indicate that an accelerator computation is 
complete or that the RoT Unit must take control of the system to 
process a security related event. Decoding output bits into 
interrupt lines or access control states reduces the number of 
output bits, saving a significant amount of area that would 
otherwise be needed for output LUTs.  

 

Fig. 4. Detailed RECORD Architecture 

 
Fig. 5. Programmable FSM architecture. Interrupt outputs are not shown. 

The programmable FSM mitigates attacks that leverage 
unauthorized or unexpected use of SoC compute resources. The 
access control policies selected by the FSM ensure software 
vulnerabilities or rogue accelerators cannot overwrite sensitive 
sections of memory or improperly use I/O resources. As the 
application execution progresses through the hierarchy of 
accelerators, the FSM state changes to set the appropriate access 
control policy. 

3) Boot Memory: A dedicated non-volatile memory module, 
called the boot memory, is used to store code that the RECORD 
SoC executes first on power up. The boot memory stores the 
instructions used for all RoT software features. One RoT Unit 
software feature is the verification of the digital signature of the 
programmable instruction memory against the hard-coded 
public key. Additional application or deployment specific RoT 
software features can be added before the RECORD SoC 
deployment. The RECORD SoC currently uses an elliptic curve 
digital signature algorithm (ECDSA, [10]) for the 
programmable instruction memory verification. The boot 
memory and hard-coded public key of future designs could 
easily be updated for new key sizes or algorithms. In the 
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example application, programmable instruction memory 
verification is the only software-based RoT Unit functionality. 
Similar to the programmable FSM, the boot memory includes an 
E-fused write port. At deployment time, the boot memory is 
made read-only by blowing the fuse, providing a trusted, 
immutable section of memory for security and boot code. The 
programmable interrupt controller and programmable FSM are 
flexible enough that (prior to deployment) additional RoT 
software-based functionality can be added to the boot memory 
without hardware changes. 

4) RISC-V Core: The single-cycle RISC-V core is used to 
execute both application code and RoT Unit code. The other 
RoT Unit hardware modules enforce isolation between the two 
states of execution. The RISC-V core is based on The BRISC-V 
Platform, an open-source RISC-V design space exploration 
platform [11]. Several custom Control Status Registers (CSR) 
have been added to the core to support interrupts, as described 
in V.C.6. These CSRs are modeled after the interrupt CSRs 
defined in the privileged RISC-V specification. Power and area 
constraints make the full privileged specification impractical. 

5) Programmable Instruction Memory: The programmable 
instruction memory provides non-volatile memory for 
application code. All software in the programable instruction 
memory must be digitally signed by the private key associated 
with the hard coded public key on the RECORD SoC. The 
programmable instruction memory can be altered after 
deployment. The programmable FSM and access control 
modules ensure the programmable memory passes the signature 
verification check (performed by the RoT Unit software in the 
boot memory) before it can be executed.  

6) Programmable Interrupt Controller: The Programmable 
Interrupt Controller (PIC) enables the RISC-V core to react to 
asynchronous events such as accelerator done signals or FSM 
triggered security events. Core interrupts are delayed by one 
cycle to allow the FSM to detect the interrupt condition and 
update the access controls if necessary. The PIC configuration 
memory stores an interrupt handler PC value for each interrupt 
line. To support interrupts, the RISC-V core includes two 
custom CSRs that are not included in the RV32I base 
specification. The first CSR stores the next instruction address 
when an interrupt is triggered. The second CSR stores a status 
code written by the PIC based on the interrupt condition. The 
PIC configuration memory (the handler PC and status code 
associated with each interrupt) includes an E-fuse to prevent 
writes after deployment. When an interrupt is triggered, the 
interrupt handler will read the status register to determine what 
action to take. When interrupt handling is complete, the interrupt 
handler returns to the stored PC address. A dedicated RoT 
interrupt handler function is stored in boot memory. Other 
handlers are stored in programmable instruction memory. 
Access controls prevent non-RoT related software from 
executing the RoT interrupt handling code. Nested interrupts are 
not supported. 

Interrupts are the only mechanism to transition control of the 
RECORD SoC to the RoT Unit. When a RoT related interrupt 

occurs, access controls prevent accelerators from accessing data 
memory. Using interrupts to transition control of the RISC-V 
core to the RoT Unit allows RoT software to enter a known state 
of execution, independent of the application program state. 

7) Data Bus Access Control: The access control modules 
restrict the range of allowable read or write addresses for each 
bus master in the RECORD SoC. Each access control module 
supports four access policies. Each policy consists of a 
minimum and maximum address with read and write permission 
settings. A two-bit signal from the programmable FSM selects 
the current policy. Access control policies are written with the 
programmable FSM configuration and become read-only after 
the programmable FSM’s fuse is blown. 

A minimum of two access policies must be configured to 
isolate RoT memory from application memory (one for RoT 
mode, another for application mode). The FSM ensures the 
appropriate access control policy is selected during RoT or 
application code execution. Additional policies can be used to 
create isolated regions within application or RoT memory. For 
example, policies could be used to prevent accelerator reads or 
writes when an accelerator is supposed to be inactive. 
Alternatively, multiple isolated RoT memory regions could be 
created for different interrupt routines. 

VI. RECORD PROGRAMING AND DEPLOYMENT 
This section describes how all of the RoT Unit modules work 

together to prevent arbitrary code execution attacks on the 
RECORD SoC. The development, deployment and operation of 
the RECORD SoC are described for the application example 
discussed in Section III. 

In the development phase, application software is written 
and any necessary changes to the RoT configuration are made. 
In this phase, the RECORD SoC is assumed to operate in a 
trusted environment where it will not be attacked. System 
developers test and verify the application and RoT 
configuration. When satisfied that a device is ready for 
deployment, an end user (the one who will deploy the device) 
loads the final RoT configuration and blows the E-fuses to 
prevent further changes. Then, they can load a stable version of 
the application program into the programmable instruction 
memory. Finally, the end user deploys the device in its final, 
uncontrolled location. 

Once deployed, the RECORD SoC is powered on. The Built-
In Self-Test (BIST) holds the hardware reset high while it tests 
the RoT circuits for faults. If the test is passed, the reset signal 
is lowered and the start-up process continues. After a hardware 
reset, the RoT Unit’s Finite State Machine (FSM) is configured 
to grant control of the system to the RoT Unit and the RISC-V 
core PC is set to an address in boot memory. At this point in the 
start-up process, all accelerators are disabled and no application 
code has executed. The RoT Unit executes the signature 
verification function in boot memory to ensure the 
programmable instruction memory contains a trusted program. 
Once the signature verification is complete, the RoT Unit 
software writes to the FSM input CSR, indicating the RoT Unit 
is about to cede control of the RECORD SoC to the application 
program. One cycle after writing to the CSR, the RoT software 
jumps to the application entry point to begin application 
execution. The FSM updates access control accordingly. 
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In the application example given in Section III, the energy 
detector (ED) accelerator is the first to be configured. The 
application program sets the desired threshold to trigger an 
interrupt and writes to the FSM CSR to indicate the application 
has entered a new phase. In this phase, the energy detector is 
given access to the data memory while the rest of the 
accelerators and the RISC-V core enter a sleep mode without 
data memory access. When the ED threshold is passed, the 
accelerator triggers an interrupt. The FSM detects the interrupt 
and updates the access controls to grant the RISC-V core data 
memory access. The RISC-V core begins logging sensor data 
for the remaining accelerators to process. Energy limitations 
prevent the ED accelerator from constantly logging sensor data. 
When logging is complete, the application configures the FIR 
Filter accelerator to begin processing the logged sensor data. 
Another FSM CSR write indicates that the program phase has 
changed. The FSM updates access controls. The accelerator 
interrupt, FSM access control update, and data checking process 
continue for each of the accelerators until the application 
program receives a final classification from the SVM accelerator 
or rules out the logged data as an event of interest. 

After a predetermined amount of time, the RoT Unit will 
trigger an interrupt to take control of the RECORD SoC and re-
verify the programmable instruction memory. The FSM will 
disable each of the accelerators and enable RoT memory access 
for the RISC-V core. The RoT Unit interrupt handler begins 
executing. First, the RoT interrupt handler must save the 
application register file state to a predetermined point in the RoT 
memory. With the application state saved, a new known, safe 
state is loaded into the register file. After gaining control of the 
SoC and placing the RISC-V core in a known state, the RoT Unit 
will re-verify the signature of the programmable instruction 
memory to ensure no tamping has taken place during program 
execution. Finally, the RoT Unit interrupt handler restores the 
application register file state, writes to the FSM CSR to indicate 
the end of the RoT interrupt and jumps to the address stored in 
the “next address” CSR. The FSM updates the access controls, 
and application execution resumes. 

VII. RESULTS AND ANALYSIS 
The RoT Unit hardware modules, including the 

microcontroller, were synthesized for the Xilinx Artix-7 
XC7A200T-2FBG676C. Table II presents the synthesis results. 
Results are included for each submodule of the RECORD SoC 
top module. The domain specific accelerators are excluded. 
FPGA resources are reported as Slices (four 6-input LUTS and 
eight flip flops) and Block RAM (BRAM) Tiles. Dedicated RoT 
Unit modules are listed in bold. Collectively, these modules are 
the hardware overhead of the RoT Unit in the RECORD SoC. 
The RoT Unit carries a 13.7% slice overhead and a 34.4% 
BRAM Tile overhead. 

Each programmable instruction memory verification takes 
approximately 180M cycles with the libecc ECDSA 
implementation [12]. During verification, the application 
execution will not progress. The frequency of verifications can 
be adjusted to meet application specific performance or security 
requirements. The remaining RoT Unit features (access control 
and programmable FSM) only impart an area overhead. They do 
not impact the performance of accelerators or application code. 

TABLE II.  RISC-V CORE FPGA SYNTHESIS RESULTS 

Module Slices BRAM 
Tiles 

Module Slices BRAM 
Tiles 

RECORD SoC 
(Top) 

1471 192 Instr. Bus 
Access Control 

9 0 

Boot Memory 32 64 Microcontroller 1151 0 

Data Memory 6 64 PIC 8 0 

Data Bus Access 
Control 

9 0 Programmable 
FSM 

99 0 

Instruction 
Memory 
Signature 

13 2 Programmable 
Instruction 
Memory 

29 62 

UART 192 0 Public Key 31 0 

VIII. CONCLUSION AND FUTURE WORK 
This work has presented the RoT Unit hardware root-of-trust 

architecture. The RECORD accelerator-based SoC, a design 
tightly integrated with the RoT Unit, was developed. An 
example application was described to illustrate the intended use 
case for the RECORD SoC. Future work will focus on 
estimating battery lifetimes for given deployment durations and 
battery sizes. Analysis will focus on the energy used by different 
RoT Unit features to mitigate specific attacks. Such analysis will 
facilitate design decisions for future edge system designs.  
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