
A Hardware Root-of-Trust Design for
Low-Power SoC Edge Devices
Alan Ehret, Eliakin Del Rosario, Karen Gettings	", Michel A. Kinsy

Adaptive and Secure Computing Systems (ASCS) Laboratory, ECE Department, Texas A&M University
{ehretaj, eliakin.drosario, mkinsy)@tamu.edu

	" MIT Lincoln Laboratory
karen.gettings@ll.mit.edu

Abstract— In this work, we introduce a hardware root-of-trust

architecture for low-power edge devices. An accelerator-based
SoC design that includes the hardware root-of-trust architecture
is developed. An example application for the device is presented.
We examine attacks based on physical access given the significant
threat they pose to unattended edge systems. The hardware root-
of-trust provides security features to ensure the integrity of the
SoC execution environment when deployed in uncontrolled,
unattended locations. E-fused boot memory ensures the boot code
and other security critical software is not compromised after
deployment. Digitally signed programmable instruction memory
prevents execution of code from untrusted sources. A
programmable finite state machine is used to enforce access
policies to device resources even if the application software on the
device is compromised. Access policies isolate the execution states
of application and security-critical software. The hardware root-
of-trust architecture saves energy with a lower hardware overhead
than a separate secure enclave while eliminating software attack
surfaces for access control policies.

Keywords—Hardware Security; System-on-Chip; Low-Power

I. INTRODUCTION
Increasingly efficient System-on-Chips (SoC) have enabled

numerous new applications for low-power embedded systems.
Much of the efficiency and performance improvements in
modern SoCs are attributable to the inclusion of heterogeneous
hardware accelerators [1]. Example accelerators include Digital
Signal Processing (DSP) cores, neural network inference
engines, and Fast-Fourier Transform (FFT) cores. Energy
efficiency and performance gains have allowed SoC-based
devices to perform more of their computations locally. Devices
that compute on data locally are commonly referred to as “edge”
devices, because they operate at the edge of a network, between
data sources (sensors) and a centralized infrastructure [2].
Without the need to frequently offload data to a centralized
infrastructure, edge devices can be deployed in environments
lacking a stable network connection or power grid access.

Common examples of edge devices include solar-powered
smart signs that can change their display after deployment and
connected trashcans that alert a city’s sanitation department
when they are full. Other examples include unattended ground
sensor nodes, unmanned aerial vehicle (UAV) swarms, and

mobile payment processing systems. These examples are all
solar- or battery-powered, but the amount of power they
consume can vary by several orders of magnitude. Edge devices,
such as smartphone-based mobile payment systems, may
consume between 100s of mW to several Watts. Meanwhile,
unattended ground sensors may consume power on the order of
nW to µW. Achieving nW power consumption requires the use
of sub-threshold CMOS ASICs, as in [3]. Despite a wide range
of power consumption, the above examples all share long
duration deployments and local computation requirements. In
the case of a smart sign or ground sensor, ideally, device
deployments would last months or years without maintenance or
physical access on the part of the device owner. UAVs or ground
sensor nodes require local computation because of latency or
security requirements.
 Connected edge devices, such as a wireless sensor in a
security system or a ground sensor node, frequently handle
security-critical functions, making them prime targets for
attacks. The advances in power efficiency that made edge
applications and devices possible have also led to the
deployment of these devices in outdoor and public spaces.
Furthermore, the nature of edge applications means that edge
devices are frequently left unattended by those responsible for
them. Unattended deployment means that an attacker can gain
uninterrupted physical access to a device. Physical access
presents a security challenge when devices must ensure the
integrity of their program results to achieve their objectives.
Further advances in power efficiency will only exacerbate the
vulnerability of these devices as they are deployed in greater
numbers, for longer periods of time and in more remote
locations. Anti-tamper protections can mitigate physical access-
based attacks. Previous works have used battery-backed volatile
memory to prevent tampering with sensitive memory such as
FPGA bit streams [4]. However, the power budgets for edge
devices generally preclude powering volatile memories for the
entire lifetime of the device. The security challenges faced by
unattended edge devices has motivated previous works,
including surveys of hardware-based security defenses [5][6].
 In this work, we design a security-focused low-power SoC
architecture for use in edge devices. The architecture mitigates
deployment-time threats faced by edge devices while meeting
power and energy constraints with a hardware root-of-trust.
The SoC architecture is named RECORD, short for
Reconfigurable Edge Computing for Optimum Resource
Distribution. The RECORD architecture continues the trend of
accelerator-focused SoC designs with the inclusion of a single
RISC-V core and several reconfigurable hardware accelerators.

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:35:09 UTC from IEEE Xplore. Restrictions apply.

The RECORD SoC is designed to serve as a multi-purpose
wireless audio sensor device. The RECORD SoC supports a
microphone as a peripheral device and includes hardware
accelerators for processing microphone sensor data.
Accelerators are designed to operate in a hierarchy, with each
one consuming more resources than the last. When data must be
processed, RECORD activates the lowest power accelerator first
and evaluates the output to determine if further processing is
warranted. When additional processing is needed, more resource
intensive accelerators are activated.

The RECORD SoC ensures the integrity of the execution
environment when deployed in uncontrolled locations with the
Root-of-Trust (RoT) Unit. The RoT Unit is made up of several
individual hardware modules. A non-volatile boot memory
module includes an E-fused [7] write port to prevent changes to
the device boot loader or other security-critical code after device
deployment. Digitally signed programs can be loaded into non-
volatile programmable instruction memory before or after
deployment. Verification of the digital signature ensures the
application program is from a trusted source. Occasionally, the
RoT unit requires access to a resource shared with application
code, such as the CPU or data memory. To prevent information
leakage and unauthorized resource usage, a programmable finite
state machine (FSM) enforces access control policies. Access
control policies prevent simultaneous access to a resource by the
RoT Unit and application code. The RoT Unit’s FSM and access
controls allow it to temporarily take control of the SoC, pause
application execution, and execute one of its own security-
critical functions implemented in software. The RoT Unit helps
prevent information leakage by reseting the state of a shared
resource when a security-critical operation has completed,
allowing the application code to be safely granted access again.
Also included are Built-In Self Test and E-fused programmable
interrupt controller modules. To meet energy and security
constraints, the RoT Unit architecture considers both a tight area
and power budget, as well as the physical access to the device
attackers have.

The RECORD SoC and the included RoT Unit demonstrate
how threats faced by edge devices during their deployment can
be mitigated using a hardware root-of-trust deeply integrated
with the rest of the SoC. The design philosophy applied to
RECORD and the RoT Unit in this work are not specific to
microphone sensor-based devices. The techniques presented
here can be adopted in future edge designs regardless of the
application, sensors, or accelerators.

II. RECORD ACCELERATOR HIERARCHY
 The RECORD SoC is designed as a multi-purpose device for
edge systems with audio-based applications. Potential
applications include speech detection or recognition, perimeter
monitoring, or noise identification and classification. Four
hardware accelerators are included in the SoC: a noise/energy
detector, a Finite Impulse Response (FIR) filter, a Fast Fourier
Transform (FFT) module, and a Support Vector Machine
(SVM). The SoC uses a RISC-V core to perform general
purpose operations. The selected accelerators have been chosen
to minimize the energy consumed processing sensor data.
Accelerators can be reconfigured to further optimize their
energy consumption for different use cases, such as different

input sizes. In this case, a microphone serves as the sensor but
other sensors could be used.

Fig. 1. Hierarchical resource usage

Fig. 2. Classification accelerator hierarchy.

 The four hardware accelerators form a hierarchy of
computation. The lowest level of the hierarchy consumes
minimal power while waiting to detect an event in the sensor
data. When an event is detected, the next level of the hierarchy
begins preliminary processing of the data. The application
program on the RISC-V core checks the accelerator output to
determine if data processing should continue. Only events
selected by the program will continue processing with higher
power accelerators. This hierarchy of processing allows events
irrelevant to the edge system application to be quickly dropped,
saving energy and compute resources for relevant events. Fig. 1
shows how more device resources are allocated to a computation
as processing progresses through the hierarchy. Using a RISC-
V core to analyze accelerator output and determine which events
are relevant gives different RECORD SoCs the flexibility to
support different edge applications.

III. EXAMPLE APPLICATION
To guide the design of the RECORD SoC, we selected an

example application to run on the completed edge device. In the
application, the RECORD SoC-based edge device listens for
noise and identifies it as either human or wildlife. A hierarchy
of computation can greatly improve SoC efficiency. Consider
that edge systems deployed in uncontrolled environments are
likely to encounter numerous events (noises in this case) that are
not relevant to the application. Wind, and rain are examples of
irrelevant noises likely to be detected by an edge device running
the classification application example. A hierarchy of
computation quickly eliminates irrelevant noises from the
human/wildlife detection algorithm, saving energy and compute
resources.

In the first step in the hierarchy, the RECORD SoC uses the
energy detector accelerator to listen for noise. When the energy
detector is active, other accelerators and the RISC-V core are put
in a sleep state. When a noise triggers the energy detector, the
detector wakes up the RISC-V core to configure the FIR filter
and eliminate unwanted frequencies from the recorded audio

Event
Detected

Worth
Analyzing

Wait for Event
Detection

Preliminary
Analysis

Detailed
Analysis

 Device Resources

Compute
Spectrum

Classify
Spectrum

Noise Detected Intersting Tones Present

Multiple
Tones

Present

Classification Output

Energy
Detector

FIR
Filter

FFT

SVM

Accelerator

Action

Listen
For Noise

Pass Certain
Frequencies

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:35:09 UTC from IEEE Xplore. Restrictions apply.

signal. The RISC-V core checks if enough energy is left in the
signal to warrant FFT processing. If a significant signal is still
present, the FFT module computes the transform of the signal.
When the transform is complete, the RISC-V core performs
simple sanity checks on the result, ensuring the spectrum has a
reasonable distribution, i.e., more than a single tone is present.
Finally, the SVM accelerator is enabled outputs a classification.
The complete classification hierarchy is shown in Fig. 2.

IV. THREAT MODEL AND ATTACK OVERVIEW
Sections II and III described how the RECORD SoC

achieves the energy efficiency and performance necessary for
edge devices and provided an application example as a
reference. This section examines the threats faced by edge
devices. The security mechanisms used to mitigate some of
those threats are introduced and described in detail in the
following Section V.

A. Threat Model
The nature of edge device deployment creates a challenge

when trying to create a trusted execution environment.
Deployment in an uncontrolled environment means an attacker
can gain physical access to a device. With physical access, edge
devices can be attacked with both software and hardware
modifications. The limited power budget of edge devices means
that mitigating all of the threats they face is not feasible. Instead,
the RECORD SoC architecture mitigates a subset of software
and PCB level hardware modification-based attacks that aim to
achieve arbitrary code execution on the device.

Attackers are assumed to be capable of (1) interfacing with
any device ports accessible by an end user, (2) disassembling
and inspecting the device’s internal design, including any PCBs
in the device, (3) analyzing signals on PCB traces or IC pins, (4)
accessing debug ports, such as PCB test points or the scan-chain,
and (5) making PCB-level modifications, such as removing ICs,
shorting traces, and opening traces. Attackers are not assumed
to be capable of decapsulating the RECORD SoC or probing
internal chip wires.

With the previously listed capabilities, a variety of attacks
are possible. Attacks considered during the design of RECORD
include: scan-chain attacks, off-chip memory probing or
modification, timing/power/electro-magnetic (EM) side-
channel information leakage, power fault injections, and clock
fault injections. These attacks all occur after the device has been
deployed. Table I summarizes considered attacks and their
potential countermeasures. The RECORD SoC is assumed to be
uncompromised until it is deployed in an uncontrolled
environment.

B. Attack Descriptions
In scan-chain attacks, an attacker uses the debugging scan-

chain to observe or alter the internal state of an IC. Attackers can
use unprotected scan-chains to dump firmware or upload

malicious code. Off-chip memory is vulnerable to snooping or
modification by an attacker. PCB traces from an SoC to a
memory IC can easily be probed by an attacker. Complex
systems can suffer from timing-based microarchitectural side
channel attacks, such as the Spectre [8] family of attacks. These
attacks leverage access-based cache-timing side-channels to
leak information. Power side-channel attacks including, Simple
Power Analysis and Differential Power Analysis, can leak
information about which instructions are executing or the data
they execute on. This information could allow an attacker to
learn secret keys or other information about a program’s
execution. Similarly, EM side-channels can reveal secret
information about a program by comparing EM noise from
different inputs. Power or clock fault attacks reveal encryption
keys by comparing the ciphertexts produced under fault-free and
faulty conditions. Detailed description of these hardware-based
attacks is beyond the scope of this work but can be found in [9].

V. RECORD SOC ARCHITECTURE
This section describes the architecture of the RECORD SoC

and how it mitigates hardware-based attacks discussed in the
threat model. Section V.A describes the logical organization of
the RECORD SoC. Section V.B presents a detailed view of the
SoC architecture. Section V.C describes the design and
functionality of each RoT Unit feature.

A. RECORD Logical System View
As an accelerator-focused SoC, RECORD includes a single

RV32I RISC-V Core and four reconfigurable hardware
accelerators. Fig. 3 presents a logical view of the RECORD SoC.
The RISC-V core has isolated instruction and data buses.
Accelerators share a dedicated bus and communicate with the
RISC-V core through a second port on the data memory. All
SoC memory is on-chip to mitigate memory probing/tampering
attacks. The RoT Unit is not logically connected to the rest of
the system. Logical isolation means the RECORD compute
modules (shown in blue) cannot observe the RoT Unit’s internal
state.

Fig. 3. A logical view of the RECORD SoC

B. RECORD Detailed Architecture
Fig. 4 presents a detailed block diagram of the architecture.

In addition to the RISC-V core, accelerators, memory and I/O
shown in the logical system view (Fig. 3), specific RoT modules
are shown in orange. Access control modules and the

RoT Unit

I/O

SVMFFTFIR FilterEnergy Detector

Instruction Memory RISC-V Core Data Memory

 Compute Modules RoT Modules

TABLE I. ATTACKS AND COUNTERMEASURES FOR EDGE DEVICES

Attack Scan-Chain state
modification

Off-Chip RAM
modification

Timing Side
Channel

Power Side
Channel

EM Side
Channel

Power Fault
Injection

Clock Fault
Injection

Countermeasures Disable scan-chain,
built-in self-test On-chip RAM Constant runtime,

no caches
Obfuscate power
consumption

EM noise
circuits

On-chip
capacitors

On-chip
PLL

Mitigated in
RECORD Yes Yes Yes No No No Yes

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:35:09 UTC from IEEE Xplore. Restrictions apply.

Programmable Finite State Machine (FSM) isolate RoT Unit
and application code state when the RoT Unit must use shared
resources. Access controls can also be applied to create multiple
isolated memory partitions within RoT Unit or application code.
Section VI describes how the FSM sets and updates access
control policies. Also included in the RoT unit are the
Programmable Interrupt Controller (PIC) shown in yellow and
digitally signed instruction memories. The device includes a
hard coded, memory-mapped public key used to verify the
instruction memory signatures. We assume the device designer
and end user have previously arranged a secure process to sign
authentic instruction memory images. Device I/O is sanitized
with an RoT control module to prevent I/O related side channels.

RECORD’s area budget forces many performance
enhancing micro-architecture features (including caches) to be
omitted, mitigating many common timing side-channels.
Additionally, the signed instruction memory and access controls
prevent attackers from executing the code needed to exploit
popular access-based cache timing side-channels.

C. RoT Unit
1) Built-In Self Test: The Built-In Self Test (BIST)

hardware module checks the RoT circuitry for faults. Energy
and area limitations prevent the BIST module from performing
testing extensive enough to ensure the RoT hardware is
implemented as designed. Instead, the BIST module and the rest
of the RoT Unit are considered the trusted computing base of the
RECORD system. Mitigating design-time attacks such as
hardware trojans is beyond the scope of this work.

 With the included BIST module, the RoT hardware does not
need to be connected to an external scan-chain. Eliminating
scan-chain connections on security critical hardware mitigates
scan-chain based attacks that attempt to change or observe the
internal hardware state.

2) Programmable Finite State Machine: Security
constraints are enforced in hardware with a programmable FSM.
Prior to deployment, the FSM configuration can be programmed
to implement any N-input, L-output, K-state Moore FSM. N, L
and K are parameters chosen at SoC design time. FSM inputs
are fed into Look-Up-Tables (LUT) to compute the next state.
The system state is fed into more LUTs to compute outputs. Fig.
5 presents the FSM architecture. At deployment time, an E-fuse
is used to prevent further writes to the configuration memory,
locking the FSM configuration.

The FSM inputs include “done” status signals from each of
the accelerators and a two bit Control Status Register (CSR)
from the RISC-V core. The two bit CSR represents system
events such as the completion of the next accelerator
configuration. For each accelerator, the FSM outputs a two bit
signal to the associated access control module to select one of
four permission configurations. Three additional FSM outputs
are fed into a decoder connected to eight interrupt lines.
Interrupts can indicate that an accelerator computation is
complete or that the RoT Unit must take control of the system to
process a security related event. Decoding output bits into
interrupt lines or access control states reduces the number of
output bits, saving a significant amount of area that would
otherwise be needed for output LUTs.

Fig. 4. Detailed RECORD Architecture

Fig. 5. Programmable FSM architecture. Interrupt outputs are not shown.

The programmable FSM mitigates attacks that leverage
unauthorized or unexpected use of SoC compute resources. The
access control policies selected by the FSM ensure software
vulnerabilities or rogue accelerators cannot overwrite sensitive
sections of memory or improperly use I/O resources. As the
application execution progresses through the hierarchy of
accelerators, the FSM state changes to set the appropriate access
control policy.

3) Boot Memory: A dedicated non-volatile memory module,
called the boot memory, is used to store code that the RECORD
SoC executes first on power up. The boot memory stores the
instructions used for all RoT software features. One RoT Unit
software feature is the verification of the digital signature of the
programmable instruction memory against the hard-coded
public key. Additional application or deployment specific RoT
software features can be added before the RECORD SoC
deployment. The RECORD SoC currently uses an elliptic curve
digital signature algorithm (ECDSA, [10]) for the
programmable instruction memory verification. The boot
memory and hard-coded public key of future designs could
easily be updated for new key sizes or algorithms. In the

Data
Memory

Single Cycle
RISC-V RV32i

Secure JTAG

Boot
Memory

Programmable
Instruction Memory

I-Mem
Signature

Hard Coded
Public Key

I/O

Access Control Access Control Access Control Access Control

I-Mem Bus

Access Control

 D-Mem Bus

AXI Accelerator & Peripheral Bus

User JTAG

 E-Fuse

Write Write Write

Read ReadReadReadRead

Read

Read

Read Read Read Read WriteWriteWriteWrite

Write

Write

Prog.
FSM

 RoT
 Modules

 Compute
 Modules

 Access Control
 Modules

PIC

Write

CSRs

Write

 Interrupt Control
 Modules

Energy Detector FIR Filter FFT SVM

BIST
Scan
Reset

Buf

Ctrl

...
...

N-LUT

N-LUT

N-LUT

.........

K-LUT

2 K
-to-1 M

ux

K-LUT

K-LUT

K-LUT

K-Bits

N-Bits

Accelerator 1
Input

Accelerator 2
Input

Accelerator 3
Input

Accelerator 4
Input

Accelerator 1
Outputs

Accelerator 2
Outputs

Accelerator 3
Outputs

Accelerator 4
Outputs

N Input
Signals K State Bits L Output

Signals
K*2K

N-Input LUTs
L

K-Input LUTs

RISC-V Core
Inputs

K-LUT
RISC-V Core

Outputs

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:35:09 UTC from IEEE Xplore. Restrictions apply.

example application, programmable instruction memory
verification is the only software-based RoT Unit functionality.
Similar to the programmable FSM, the boot memory includes an
E-fused write port. At deployment time, the boot memory is
made read-only by blowing the fuse, providing a trusted,
immutable section of memory for security and boot code. The
programmable interrupt controller and programmable FSM are
flexible enough that (prior to deployment) additional RoT
software-based functionality can be added to the boot memory
without hardware changes.

4) RISC-V Core: The single-cycle RISC-V core is used to
execute both application code and RoT Unit code. The other
RoT Unit hardware modules enforce isolation between the two
states of execution. The RISC-V core is based on The BRISC-V
Platform, an open-source RISC-V design space exploration
platform [11]. Several custom Control Status Registers (CSR)
have been added to the core to support interrupts, as described
in V.C.6. These CSRs are modeled after the interrupt CSRs
defined in the privileged RISC-V specification. Power and area
constraints make the full privileged specification impractical.

5) Programmable Instruction Memory: The programmable
instruction memory provides non-volatile memory for
application code. All software in the programable instruction
memory must be digitally signed by the private key associated
with the hard coded public key on the RECORD SoC. The
programmable instruction memory can be altered after
deployment. The programmable FSM and access control
modules ensure the programmable memory passes the signature
verification check (performed by the RoT Unit software in the
boot memory) before it can be executed.

6) Programmable Interrupt Controller: The Programmable
Interrupt Controller (PIC) enables the RISC-V core to react to
asynchronous events such as accelerator done signals or FSM
triggered security events. Core interrupts are delayed by one
cycle to allow the FSM to detect the interrupt condition and
update the access controls if necessary. The PIC configuration
memory stores an interrupt handler PC value for each interrupt
line. To support interrupts, the RISC-V core includes two
custom CSRs that are not included in the RV32I base
specification. The first CSR stores the next instruction address
when an interrupt is triggered. The second CSR stores a status
code written by the PIC based on the interrupt condition. The
PIC configuration memory (the handler PC and status code
associated with each interrupt) includes an E-fuse to prevent
writes after deployment. When an interrupt is triggered, the
interrupt handler will read the status register to determine what
action to take. When interrupt handling is complete, the interrupt
handler returns to the stored PC address. A dedicated RoT
interrupt handler function is stored in boot memory. Other
handlers are stored in programmable instruction memory.
Access controls prevent non-RoT related software from
executing the RoT interrupt handling code. Nested interrupts are
not supported.

Interrupts are the only mechanism to transition control of the
RECORD SoC to the RoT Unit. When a RoT related interrupt

occurs, access controls prevent accelerators from accessing data
memory. Using interrupts to transition control of the RISC-V
core to the RoT Unit allows RoT software to enter a known state
of execution, independent of the application program state.

7) Data Bus Access Control: The access control modules
restrict the range of allowable read or write addresses for each
bus master in the RECORD SoC. Each access control module
supports four access policies. Each policy consists of a
minimum and maximum address with read and write permission
settings. A two-bit signal from the programmable FSM selects
the current policy. Access control policies are written with the
programmable FSM configuration and become read-only after
the programmable FSM’s fuse is blown.

A minimum of two access policies must be configured to
isolate RoT memory from application memory (one for RoT
mode, another for application mode). The FSM ensures the
appropriate access control policy is selected during RoT or
application code execution. Additional policies can be used to
create isolated regions within application or RoT memory. For
example, policies could be used to prevent accelerator reads or
writes when an accelerator is supposed to be inactive.
Alternatively, multiple isolated RoT memory regions could be
created for different interrupt routines.

VI. RECORD PROGRAMING AND DEPLOYMENT
This section describes how all of the RoT Unit modules work

together to prevent arbitrary code execution attacks on the
RECORD SoC. The development, deployment and operation of
the RECORD SoC are described for the application example
discussed in Section III.

In the development phase, application software is written
and any necessary changes to the RoT configuration are made.
In this phase, the RECORD SoC is assumed to operate in a
trusted environment where it will not be attacked. System
developers test and verify the application and RoT
configuration. When satisfied that a device is ready for
deployment, an end user (the one who will deploy the device)
loads the final RoT configuration and blows the E-fuses to
prevent further changes. Then, they can load a stable version of
the application program into the programmable instruction
memory. Finally, the end user deploys the device in its final,
uncontrolled location.

Once deployed, the RECORD SoC is powered on. The Built-
In Self-Test (BIST) holds the hardware reset high while it tests
the RoT circuits for faults. If the test is passed, the reset signal
is lowered and the start-up process continues. After a hardware
reset, the RoT Unit’s Finite State Machine (FSM) is configured
to grant control of the system to the RoT Unit and the RISC-V
core PC is set to an address in boot memory. At this point in the
start-up process, all accelerators are disabled and no application
code has executed. The RoT Unit executes the signature
verification function in boot memory to ensure the
programmable instruction memory contains a trusted program.
Once the signature verification is complete, the RoT Unit
software writes to the FSM input CSR, indicating the RoT Unit
is about to cede control of the RECORD SoC to the application
program. One cycle after writing to the CSR, the RoT software
jumps to the application entry point to begin application
execution. The FSM updates access control accordingly.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:35:09 UTC from IEEE Xplore. Restrictions apply.

In the application example given in Section III, the energy
detector (ED) accelerator is the first to be configured. The
application program sets the desired threshold to trigger an
interrupt and writes to the FSM CSR to indicate the application
has entered a new phase. In this phase, the energy detector is
given access to the data memory while the rest of the
accelerators and the RISC-V core enter a sleep mode without
data memory access. When the ED threshold is passed, the
accelerator triggers an interrupt. The FSM detects the interrupt
and updates the access controls to grant the RISC-V core data
memory access. The RISC-V core begins logging sensor data
for the remaining accelerators to process. Energy limitations
prevent the ED accelerator from constantly logging sensor data.
When logging is complete, the application configures the FIR
Filter accelerator to begin processing the logged sensor data.
Another FSM CSR write indicates that the program phase has
changed. The FSM updates access controls. The accelerator
interrupt, FSM access control update, and data checking process
continue for each of the accelerators until the application
program receives a final classification from the SVM accelerator
or rules out the logged data as an event of interest.

After a predetermined amount of time, the RoT Unit will
trigger an interrupt to take control of the RECORD SoC and re-
verify the programmable instruction memory. The FSM will
disable each of the accelerators and enable RoT memory access
for the RISC-V core. The RoT Unit interrupt handler begins
executing. First, the RoT interrupt handler must save the
application register file state to a predetermined point in the RoT
memory. With the application state saved, a new known, safe
state is loaded into the register file. After gaining control of the
SoC and placing the RISC-V core in a known state, the RoT Unit
will re-verify the signature of the programmable instruction
memory to ensure no tamping has taken place during program
execution. Finally, the RoT Unit interrupt handler restores the
application register file state, writes to the FSM CSR to indicate
the end of the RoT interrupt and jumps to the address stored in
the “next address” CSR. The FSM updates the access controls,
and application execution resumes.

VII. RESULTS AND ANALYSIS
The RoT Unit hardware modules, including the

microcontroller, were synthesized for the Xilinx Artix-7
XC7A200T-2FBG676C. Table II presents the synthesis results.
Results are included for each submodule of the RECORD SoC
top module. The domain specific accelerators are excluded.
FPGA resources are reported as Slices (four 6-input LUTS and
eight flip flops) and Block RAM (BRAM) Tiles. Dedicated RoT
Unit modules are listed in bold. Collectively, these modules are
the hardware overhead of the RoT Unit in the RECORD SoC.
The RoT Unit carries a 13.7% slice overhead and a 34.4%
BRAM Tile overhead.

Each programmable instruction memory verification takes
approximately 180M cycles with the libecc ECDSA
implementation [12]. During verification, the application
execution will not progress. The frequency of verifications can
be adjusted to meet application specific performance or security
requirements. The remaining RoT Unit features (access control
and programmable FSM) only impart an area overhead. They do
not impact the performance of accelerators or application code.

TABLE II. RISC-V CORE FPGA SYNTHESIS RESULTS

Module Slices BRAM
Tiles

Module Slices BRAM
Tiles

RECORD SoC
(Top)

1471 192 Instr. Bus
Access Control

9 0

Boot Memory 32 64 Microcontroller 1151 0

Data Memory 6 64 PIC 8 0

Data Bus Access
Control

9 0 Programmable
FSM

99 0

Instruction
Memory
Signature

13 2 Programmable
Instruction
Memory

29 62

UART 192 0 Public Key 31 0

VIII. CONCLUSION AND FUTURE WORK
This work has presented the RoT Unit hardware root-of-trust

architecture. The RECORD accelerator-based SoC, a design
tightly integrated with the RoT Unit, was developed. An
example application was described to illustrate the intended use
case for the RECORD SoC. Future work will focus on
estimating battery lifetimes for given deployment durations and
battery sizes. Analysis will focus on the energy used by different
RoT Unit features to mitigate specific attacks. Such analysis will
facilitate design decisions for future edge system designs.

REFERENCES
[1] M. D. Hill and V. J. Reddi, “Accelerator-level parallelism,” CoRR, vol.

abs/1907.02064, 2019. [Online]. Available:
http://arxiv.org/abs/1907.02064

[2] W. Shi and S. Dustdar, "The Promise of Edge Computing," in Computer,
vol. 49, no. 5, pp. 78-81, May 2016.

[3] S. Jeong et al., "Always-On 12-nW Acoustic Sensing and Object
Recognition Microsystem for Unattended Ground Sensor Nodes,"
in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 261-274, Jan.
2018.

[4] S. M. Trimberger and J. J. Moore, "FPGA Security: Motivations,
Features, and Applications," in Proceedings of the IEEE, vol. 102, no. 8,
pp. 1248-1265, Aug. 2014.

[5] A. Ehret, K, Gettings, B. Jordan, and M. Kinsy, “A Survey on Hardware
Security Techniques Targeting Low-Power SoC Designs,” IEEE High
Performance extreme Computing Conference, Waltham, MA, 2019.

[6] M. Isakov, V. Gadepally, K. M. Gettings and M. A. Kinsy, "Survey of
Attacks and Defenses on Edge-Deployed Neural Networks," 2019 IEEE
High Performance Extreme Computing Conference (HPEC), Waltham,
MA, USA, 2019, pp. 1-8.

[7] C. Kothandaraman, S. K. Iyer, and S. S. Iyer, “Electrically pro-
grammable fuse (efuse) using electromigration in silicides,” IEEE Elec-
tron Device Letters, vol. 23, no. 9, pp. 523–525, Sep. 2002

[8] P. Kocher et al., "Spectre Attacks: Exploiting Speculative
Execution," 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 2019, pp. 1-19.

[9] S. Bhunia and M. Tehranipoor, “Hardware Security: A Hands-on Learn-
ing Approach”. Morgan Kaufmann, 2018.

[10] Johnson, D., Menezes, A. & Vanstone, S., “The Elliptic Curve Digital
Signature Algorithm (ECDSA),” IJIS 1, 36–63, 2001.

[11] S. Bandara, A. Ehret, D. Kava, and M. Kinsy. “BRISC-V: An Open-
Source Architecture Design Space Exploration Toolbox,” In Proceedings
of the 2019 International Symposium on Field-Programmable Gate
Arrays (FPGA ’19). ACM, New York, NY, USA

[12] Libecc Library. https://github.com/ANSSI-FR/libecc.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:35:09 UTC from IEEE Xplore. Restrictions apply.

