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Abstract

In Internet of Things (IoT) systems with security demands, there is often a need to distribute sensitive information (such as en-
cryption keys, digital signatures, or login credentials, etc.) among the devices, so that it can be retrieved for confidential purposes
at a later moment. However, this information cannot be entrusted to any one device, since the failure of that device or an attack
on it will jeopardize the security of the entire network. Even if the information is divided among devices, there is still the danger
that an attacker can compromise a group of devices and expose the sensitive information. In this work, we design and implement
a secure and robust scheme to enable the distribution of sensitive information in IoT networks. The proposed approach has two
important properties: (1) it uses Threshold Secret Sharing (TSS) to split the information into pieces distributed among all devices
in the system - and so the information can only be retrieved collaboratively by groups of devices; and (2) it ensures the privacy and
integrity of the information, even when attackers hijack a large number of devices and use them in concert - specifically, all the
compromised devices can be identified, the confidentiality of information is kept, and authenticity of the secret can be guaranteed.
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1. Introduction

Internet of Things (IoT) and connected devices have trans-
formed our lives. IoT systems are actively deployed in a vari-
ety of settings, including homes, hospitals, battlefields, schools,
airports, manufacturing plants, and more. The architecture
of these systems, generally, consists of devices connected to
one another or users/clients where the main network activity
is data or information exchanges. In contrast to general and
non-sensitive information exchange, such as reading sensors or
controlling air conditioners remotely, there are many instances
where critical or confidential information needs to be shared or
routed among the devices. These pieces of information or “se-
crets” are used by the devices or the users/clients to perform
security or privacy related functions in the IoT system. The
information could be encryption keys, digital signatures, login
credentials, or important account numbers.

However, such a secret cannot be entrusted to any individ-
ual device, because the malfunction of a single device might
then jeopardize the security of the entire network. Therefore,
an appropriate approach is to split the secret and distribute it
among multiple devices. The most commonly adopted tech-
nique in this area is threshold secret sharing (TSS). In an IoT
or distributed system, TSS is generally carried out by a dealer
(usually the server or administrator of the IoT system), which
divides the secret and parcels those pieces among multiple hold-
ers (the devices), in such a way that the secret can only be recon-
structed collaboratively by subsets of holders whose size has to
reach a minimum number. This minimum size is called “thresh-
old.” Below the threshold, the secret is theoretically safe and
kept private from retrieval.

Practical secret sharing techniques are deployed in many real
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world applications hat include IoT systems. The most com-
mon example is key management in wireless sensor networks.
Rather than entrusting the cryptographic key to a single node,
which can be easily compromised in hostile environments, the
key is shared among a group of nodes and can only be retrieved
collaboratively [Chadha et al. (2005)] to be used for digital sig-
nature or other cryptographic purposes at an other terminal. If
some nodes are found to be malfunctioning, then their access
will be revoked, and they will be replaced by the same number
of healthy nodes to reach the threshold. One such application
is the “Vanish” project [Geambasu et al. (2009)], which uses
the threshold property to make the secret key in a distributed
system vanish when the number of shareholding nodes gradu-
ally decreases to below the threshold. Another application is
in Hardware Security Module (HSM) based systems. HSMs
are widely used in bank card payment systems. Some HSMs
[Thales (2013)] are produced and distributed by certification
authorities (CAs) and registration authorities (RAs) to gener-
ate and share important secret keys under Public Key Infras-
tructure (PKI). These HSMs also require implementation of a
multi-part user authentication scheme, namely threshold secret
sharing. The most well-known application is probably DNS Se-
curity (DNSSEC) [Able (2010)], which ensures the DNS (Do-
main Name System) servers can connect users and their Internet
destinations (URLs and IPs) in a secure and verified manner.
Its root key is split and shared among seven holders all over the
world. In the case of an attack, if any five or more of the holders
are able to come to a U.S. base, then they can reconstruct the
root key using their shares to restore the Internet connections.
Technology survey companies also use TSS to store sensitive
survey data to prevent them from being extracted by any sin-
gle data analyst without the participation of others [Lapets et
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al. (2016)].

However, although this technique reduces the risk of losing
all the confidential information due to a malfunction of one of a
few devices, there is still a danger when attackers compromise
a larger group of them. Due to their distributed nature, TSS
schemes are susceptible to a number of attacks, like passive at-
tacks, man-in-the-middle (MITM) or share manipulations, i.e.,
cheating. These attacks, resulting in share disclosure or distor-
tions, may lead to the leakage of the original secret or retrieval
of a false secret. Generally speaking, the TSS is able to main-
tain the privacy of the secret information under the existence of
a small number (below the threshold) of cheaters. However, it
alone cannot guarantee the integrity of the secret.

Although, there have been many secure TSS schemes, they
are often limited in their adversarial capabilities, i.e., cheater
tolerance. For instance, [Cramer et al. (2008)] proposed a se-
cure version of TSS based on secret validation, which is able to
detect, but not identify, any number of cheaters. The authors in
[Wang et al. (2008)] on the other hand, leveraged the superim-
posed codes with secret verification and were able to locate no
more than n%° cheaters, where 7 is the total number of devices
involved. With higher computation complexity, [McEliece et
al. (1981); Gennaro et al. (2001); Fitzi et al. (2006)] verify the
shares with error control coding (particularly Maximum Dis-
tance Separable codes) to boost the cheater tolerance to nearly
n/3. However, when the number of cheaters exceeds their fault
tolerance, neither the privacy nor the integrity of the secret can
be guaranteed. In addition, the dishonest parties can even frame
the honest ones as cheaters.

Therefore, we propose a secure and robust scheme to enable
the sharing of the confidential information in IoT systems with
a stronger cheater tolerance. The major contributions of this
work are:

1. The proposed approach uses Threshold Secret Sharing
(TSS) to split the secret into shares distributed among the
devices in the system, so the secret can only be retrieved
collaboratively by groups of devices;

2. It adds additional security features on top of the original
TSS functionality; specifically, it protects the confidential-
ity of the secret even when attackers have hijacked a group
of devices;

3. It also ensures the integrity of the secret even when attack-
ers hijack a large number of devices, collude, or manipu-
late the shares to forge fake secrets;

4. The proposed approach is able to detect and identify
cheaters or compromised share holders up to a given theo-
retical upper bound;

5. It provides an automation tool to aid in the secret shar-
ing procedure and system programming based on user-
specified parameters.

For evaluating the feasibility of the proposed robust secret
sharing approach in systems consisting of physically distributed

and connected devices, we introduce the Odysseus IoT open-
interface testbed system. Testing on the Odysseus IoT testbed
serves to validate the practicality of the attack models and asso-
ciated defenses. It also highlights how a practical secure infor-
mation sharing mechanism may be implemented.

Section II introduces the details of the Odysseus IoT testbed
system, as well as the original threshold secret sharing scheme.
The section also covers the attack model. Section III summa-
rizes some existing secure protocols for the TSS. Section IV
follows up with the vulnerabilities of those protocols under the
attack model. Section V describes the proposed secure and ro-
bust secret sharing scheme, as well as a cheater identification
protocol. Section VI presents the design automation tool, and
finally, Section VII concludes the paper.

2. The Odysseus IoT System, the Original Threshold Secret
Sharing Scheme, and the Attack Models

In this section, we first introduce the Internet of Things (IoT)
Testbed System, “Odysseus”, on which we evaluate the practi-
cality of the proposed secure TSS scheme. We use this system
to introduce and illustrate the proposed approach without a loss
of generality, and to provide some deployment concreteness.

2.1. System Model - Odysseus loT

The original motivation of developing a secure and robust
TSS is to protect systems like the Odysseus IoT system. In
such a system, the dealer is the service provider, which provides
the Odysseus boards and is responsible for their deployment.
The Odysseus boards are sensor hosting boards supporting var-
ious types of sensors. The boards have wireless communication
modules for data exchange. The clients or users can pick the
sensors to be installed and processed on the boards via GPIO
ports before the boards’ deployment. These sensors can either
be heterogeneous or homogeneous. One example of Odysseus’
application is in fire-fighting and rescue: heat sensors to map
the fire intensity and location within a burning building, and
motion sensors to identify human presence.

In general, the dealer (administrator) of the Odysseus system
can deploy a large number of sensor boards to an area, and their
sensor data can be requested remotely by different clients. From
time to time, a client will request sensing data from a group of
sensors, while retrieving from them a secret, if necessary. The
secret, such as an encryption key, will be used by the client
on various applications associated with the sensor data. The
system chart and prototype of Odysseus are shown below in
Fig. 1 and 2.

The security of this IoT system also needs to be addressed.
Although the dealer and clients can be trusted, the sensor host-
ing boards scattered all over a region are not physically moni-
tored. Since any number of them can be subject to passive or
active attacks, no critical information such as the secret can be
entrusted to any individual board. There is even a danger of a
large number of them being hijacked by attackers, who might
thereby gain full access to those devices. Therefore, a secure
protocol to maintain the privacy and integrity of the secret is
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Figure 1: The three layers of the Odysseus system: the dealer who de-
ploys the boards and the secret, the sensor boards as the shareholders
with wireless communication capability, and the client(s) who collects
the data as well as the secret.

Figure 2: The prototype boards of Odysseus.

needed, as well as error tolerance to deal with the existence of
compromised boards.

2.2. The Original Threshold Secret Sharing

As noted in Section 1, TSS divides confidential information
between devices, instead of storing the whole secret on each
device, such that a defect in, or the compromise of, a single
device will not impair the security of the entire network.

The following notations are used to describe and evaluate the
original threshold secret sharing scheme, as well as the related
secure variations:

« S the original secret (a piece of confidential information);

« D;: the public ID of the i"* shareholder;

« h;: the share of S of the i shareholder;

« t: the threshold of a secret sharing scheme;
e Cos: the number of estimated cheaters;

e C4r: the number of actual cheaters;

« n: the total number of shareholders involved in a compu-
tation;

« b: the number of bits in a vector variable;

« @: the addition operator in finite fields;

« - : the multiplication operator in finite fields;

. EB: the cumulative sum operator in finite fields;

« []: the cumulative product operator in finite fields;

« ~ : the distortion of a vector;

o« MAC(): a secure message authenticating function;
o ENC(): a cryptographic encryption function;

o EtM(): an Encrypt-then-MAC function;

« K: the cryptographic key;

« ||: the concatenation operator;

« E: the encoded secret where E = EtM(S, K);

o P, the probability of failing to detect cheating in the
IoT system.

The concept of #-threshold secret sharing (TSS) was first in-
troduced by Shamir [Shamir (1979)]. He argued that all com-
putations should be carried out over Galois finite field (GF)
arithmetic, in order to maintain the information’s theoretical
security. To share a secret S, a polynomial of degree (t — 1)
is used to compute and distribute the shares, where the secret
S serves as the free or leading coefficient, and all other coeffi-
cients can be arbitrarily chosen. The shares are the evaluations
of the polynomial by each holder’s D;.

The share distribution equations when S is placed as the free
coefficients is:

hi=S@®aD;®a,D;® - ®a,_ 1D
And as the leading coefficient:
hi=ay®aiD;®a; D} ®---®SDI. (1)

where S, h;, D; € GF(2").

The ID numbers, D;, are publicly known, while the share, #;,
are kept private by shareholders.

With any subset of at least ¢ shareholders’ IDs and shares,
one can use the Lagrange interpolation formula to reconstruct
the secret.

If S is placed at the free coefficient, it can be retrieved by:

SEB,I

j 0,j#i

(D GBD)

If S is the leading coefficient, it can be retrieved by:

S = 2
@ - (DeaD,) @

Jj=0,j#i

Such a construction is (¢ — 1)-private. This means it needs at
least ¢ shareholders to reconstruct the secret and so any (r — 1)
or fewer shareholders have zero knowledge of the secret.

For computational simplicity, in this paper we choose to
place S as the leading coefficient as shown in [Eq. 1 and 2].
We also assume that the system works over finite field GF(2),
where, as in most computer systems, b = 32, 64, 128,256, - - -

The original scheme’s share distribution and secret recon-
struction procedures are shown in Fig. 3, which matches with
the Odysseus and many other IoT architectures very well in the
administrator - devices - clients three layer structure.
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Figure 3: The secret sharing and reconstruction flow. The reconstructor
can be omitted if there is no end user and every shareholder (either
device or person) has trustworthy computation capability.

Remark 2.1. Shamir’s secret sharing scheme is supposed to
work under finite field arithmetic where the field size should
be a prime or a power of a prime. Ordinary arithmetic will
be vulnerable and any secret can be retrieved by at most two
carefully selected shareholders instead of z.

In ordinary positive integer arithmetic, for instance, if a
shareholder’s ID is D; = 1, this holder’s share will be h; =
ap + a; + --- + S, namely the sum of the all coefficients of
(1). And in ordinary arithmetic, it is obvious that h; > ajla; €
{ag,ay,--- ,S}. Then, this holder can find another holder with
ID D; > h; whose share is hj. If these two shareholders work
together, they can easily uncover the secret, regardless of ¢, by
expressing /; in the radix of D;, where the most significant digit
will be S.

Howeyver, in finite field or modular arithmetic, one can never
have h; > ajla; € {ag,ay,--- ,S}ifhi=ay®a  &---®S. O

2.3. Attack Model

We define an attack model below, which is much stronger
than what the original scheme and its conventional secure vari-
ations can handle.

Definition 2.1. The attack model in this paper is described by
the following characteristics:

1. The dealer and the clients are trusted;

2. The shareholders (devices in an IoT system) are not trusted
and there is no limit to the number of compromised de-
vices or cheaters.

3. The cheaters are able to gain full control of hijacked de-
vices, meaning cheaters can read memory contents, use
IO ports, or tamper with devices.

4. The cheaters can also eavesdrop or tamper with the
communication channels between the devices, the dealer
and/or the clients.

5. The attackers have the knowledge of the system’s basic
parameters (n, z, equations [1, 2] etc.). They can work col-
laboratively.

6. The goals of the attackers are:

(a) Passive attack: to compute and acquire the original
secret stealthily;

(b) Active attack: to select their own secret and submit it
to the clients without being spotted.

Note: Besides the shares, each Odysseus board also submits
its sensor data to the clients. However, because those are source
data, their verification is another issue beyond the scope of this
paper.

When the cheaters work collectively, they are able to share
any information they hold, or to modify it according to their
common interest. We also assume that the cheaters have suffi-
cient computational power to calculate equations such as [1, 2]
and other necessary tasks.

3. The Conventional Secure Protocols for TSS

In this section, we present some of the existing secure proto-
cols and their associated passive and active attack models. We
also highlight their vulnerabilities under our attack model.

3.1. Against Passive Attacks

The key property of TSS is that it only allows ¢ or more share-
holders (devices) to retrieve the secret. Below this threshold,
the secret information is theoretically secure. Namely, ¢ — 1 de-
vices have no more knowledge of the secret than any individual
device does. However, if the cheaters have compromised ¢ or
more devices, SO ¢, > f, then the privacy of the secret is not
guaranteed, since they can use [Eq. 2] to retrieve it.

3.2. Against Active Attacks

Soon after the introduction of the Shamir’s secret sharing
scheme, it was noticed that if any number of the shareholders
participating in the secret reconstruction apply an active attack
by changing their shares to make 4; to i; # h;, the retrieved
secret will be distorted § # S according to [Eq. 2]. Therefore
the authenticity of the submitted shares or the retrieved secret
needs to be verified.

3.2.1. Share Verification

Researchers [McEliece et al. (1981); Gennaro et al. (2001);
Fitzi et al. (2006)] have proposed approaches to verify the va-
lidity of shares with a probability of 1. The common feature in
these approaches is that if the shares can be encoded to a speci-
fied error control code (ECC) codeword. The codeword’s sym-
bols, i.e., shares can be verified and corrected up to the ECC’s
capability.

Particularly, the share distribution [Eq. 1] is inherently equiv-
alent to the non-systematic encoding equation of the well-
known Reed-Solomon (RS) ECC codes. RS codes are maxi-
mum distance separable (MDS) codes which meet the Single-
ton bound with equality. With such a distribution equation,
an (n, t,d) Reed-Solomon codeword (hg, hy, - - - h,_1) is encoded
with n symbols (shares) in total, ¢ information symbols, and dis-
tance d = n—t+1, which can correct up to % (or ”T_’) erroneous
symbols with the algorithms in [Berlekamp et al. (2015); Gao
(2003)].



In the secret sharing language, with n shareholders’ IDs and
shares, we are able to tolerate up to ¢,y < ”—’ shares mali-
ciously modified by cheaters. Theoretically speakmg, the error
correction capability of RS codes can tolerate up to ¢, < n/2
cheaters if n > t. However, commonly, the assumption that
there should be c.;; < f cheaters is made, such that a group of
all cheaters have no access to the secret [Krawczyk (1993)].
Then we have

Cost < /3. 3

If n instead of ¢ shareholders are involved in the share error
correction by RS decoders, then the correctness of the retrieved
secret is ensured when [Eq. 3] holds. Consequently, the secure
secret sharing is both (# — 1)-private and (¢ — 1)-resilient; that is,
up to ¢ — 1 shareholders cannot reconstruct the secret, and up to
t — 1 cheaters cannot affect the correctness of the secret [Liu et
al. (2015)].

3.2.2. Secret Verification

Besides share verification with a share correction probability
of 1, another approach is to sign the original secret with a key
K using a message authentication code (MAC) function. Then
the original secret is shared together with its MAC (usually in a
manner of concatenation) to the holders. Denoting the encoded
secret as (S||MAC(K, S)), then [Eq. 1] becomes:

hi =ay®a\D; ® a;D? & --- & (S|IMAC(K,S)D'™'.  (4)

At the reconstructor end, after the retrieval of the possibly

distorted (S ||MA/C_’\(_I?,S )), the following authentication equa-
tion is evaluated:

MAC(R, ) 2 MAC(K,S). (5)

An inequality detects cheating. If this MAC function has a
high enough security level, such as a collision or mis-detection
probability of 2712 (or lower), then it is generally believed
that all distortions will be spotted. The secure protocol of the
Shamir’s secret sharing is shown below.

) Secret

Eq (2r w <—>{ Authentication

Client

C== MAC Key K

Figure 4: The secret sharing scheme with secret authentication in the
context of Odysseus system.

There are two common approaches for signing the original
secret: HMAC with a key and AMD codes with a random vec-
tor.

A. HMAC with a Key.
HMAUC, keyed-hashing for message authentication code, is the
most often used technique for authentication today. To sign a

secret S, the nested equation is defined as follows [Krawczyk
etal. (1997)]:

Definition 3.1. Let HMAC() be the HMAC function, K the
signing key, and K’ be derived from K by padding to the right
zeros to the block size. Also let H be a hashing function, opad
the outer padding and ipad the inner padding. Then:

HMAC(K, S) = H(K' ® opad)|H(K’ ® ipad)||S))  (6)

The client can authenticate the secret using the HMAC ver-
sion of [Eq. 5]:

HMAC(R,§) = HMAC(K,S). 7)

With SHA-2 256 or higher used for H() [Hansen et al.
(2011)], the collision rate is less than 27!28, and thus, it is con-
sidered cryptographically secure.

B. AMD with a Random Number.
[Cramer et al. (2008)] have proposed an Algebraic Manipula-
tion Detection (AMD) code to detect any modification of se-
crets with a probability close to 1. [Wang et al. (2011)] later
generalized this code with a flexible construction.

Unlike HMAGC, it operates over finite fields and its security
level is adjustable by block size . The AMD encoding is de-
fined as follows

Definition 3.2. Let K = (K1, K>, -+ , K,,), where K; € GF(2%)
is a randomly generated b-bit vector. An g”* order Generalized
Reed-Muller code (GRM) with m variables consists of all code-
words (f(0), f(1),--- , f(2P™ — 1)), where f(K) is a polynomial
of K = (K|, K3, -+, K,) of degree up to g. Let

P K, ifgisodd;
A(K) = m—1 g+1 . . .
DL, Kikf", ifgisevenandm > 1;

where €P is the accumulated sum in GF(2°). Let
BK.S) = P Vi | K
i=1

1<ji+ja+-+j1<g+1
where [, Kl’ is a monomial of R of a degree between 1 and
g+ 1. And [T, K] ¢ AB(K, S) which is defined by:

(KL KST KT, if g s odd;
{K§+],K1K§, -+, K1K5),if gis even and m > 1.

Let f(K,S) = A(K)®B(K, S), then a generalized AMD code-
word is composed of the vectors (S, K, f(K, S)), where S is the
information portion, K the random vector, and f(K, S) the re-
dundancy signature portion [Wang et al. (2011)]. |

Remark 3.1. If the attack involves a non-zero error on the in-
formation S, which is the major purpose of almost all attacks,
then in f(K, S) the term A(K) can be omitted [Bu et al. (2017)].
Furthermore, if only one random number vector is used, the



encoding equation can be simplified to

AMD(K,S) = f(K,S) = P S i K
1<ji++jit+ jm<h+1
®)
where S ;, is a b-bit block of §. u

The client can authenticate the secret using the AMD version
of [Eq. 5]

AMD(R,§) = AMD(K, S). )

The probability of mis-detecting a distortion of S in [Eq. 9]
has an upper bound, i% [Cramer et al. (2008)], where g is a
very small number in most constructions. With 128 bits (or
larger) selected as b, the security level of AMD codes will be on
the same order of HMAC (27! or less in attack mis-detection
rate).

Note: Although HMAC and AMD codes are different ap-
proaches for authenticating the retrieved secrets, there is no es-
sential difference in their design philosophy as [Eq. 7] and [Eq.
9] have shown.

It should be noted that there are two potential drawbacks to
the secret verification approach. First, no method for transmit-
ting the MAC key, K, from the dealer to the client is specified
for either approach. In addition, while these approaches can de-
tect the distortion of the secret, they cannot identify the cheaters
or restore the correct secret.

4. Vulnerabilities of the Conventional Secure TSS Schemes

In this section, we illustrate the vulnerabilities associated
with conventional secure schemes under the attack model de-
fined previously. Because of the distributed nature of IoT sys-
tems, it is not unusual to have attacks of a scale unanticipated
by designers. The demand for more secure and robust confi-
dential information sharing scheme for IoT systems is the main
motivation for the approach proposed in the next section.

4.1. Passive Attack: Acquiring the Original Secret

Usually an assumption has to be made that c.,; < t so that a
group of all cheaters cannot retrieve the secret by themselves.
However, a case with more estimated cheaters such that c,.; >

t > C.4, could exist. With any ¢ of them, it is easy to acquire the
original secret by [Eq. 2].

4.2. Active Attack: Making the Secret Unaccessible

Here we assume the IoT system’s TSS is already equipped
with a share verification module. As mentioned in Section
3.2.1, the essence of such module is to encode the shares into
a codeword, whose validity can be verified by the RS decod-
ing algorithm. Although RS codes are known for their strong
error correction (tolerating c.,, < n/3 cheaters), their encoding
procedure is linear and thus, susceptible to cheating exploits.

If the number of cheaters satisfy (n/3 < cyer < n—1+ 1),
although the RS decoder can still raise an alarm for cheating,
it is already beyond the share error correction capability of the
RS code. Therefore the system is unable to retrieve the secret
or identify the cheaters.

4.3. Active Attack: Forging a Legal Secret

If the number of cheaters satisfies (n — ¢ + 1 < ¢4y < 1), they
will be able to manipulate the entire system. For instance the
cheaters can pick a share distribution polynomial different from
[Eq. 1] with random coefficients b; and their own forged secret
S:

W, =by@®bDi®bD}®---&SD™! (10)

The new shares h; of the cheaters will be the evaluation of
[Eqg. 10] by the same IDs D;. When ¢, > n—t+1, the cheaters’
shares will form a new legal RS codeword which will never be
detected by the RS decoder. The secret reconstruction will then
submit the cheaters’ secret S to the client. If the client uses it
on his/her own important applications such as digital signatures,
the attackers can effortlessly break those applications.

Example 4.1. A secret sharing system has a secret S = 111 in
the GF(2?) finite field. It requires ¢ = 2 shareholders to recon-
struct the secret every time. The following share distribution
polynomial is used to generate the shares:

hi=ao®SD; =010 111D;.

The protocol is designed in such a way that up to 1 cheater
can be tolerated. Therefore, in the secret reconstruction stage
there will be n = 3c.; + 1 = 4 shareholders involved. Sup-
pose that in the secret reconstruction, shareholders with IDs
Dy = 001,D, = 010,D, = 011, D3 = 100 are involved. And
the shares distributed to them are hg = 101,h; = 111,h, =
010,43 = 001. These 4 shares form a legal RS codeword
v =(101,111,010,001) with distance d = n—t+ 1 = 3 and it
can correct up to 1 error.

Now all 4 of them are cheating collusively, and they have
selected their own secret S = 100 and a different share distri-
bution polynomial:

K, = by® S D; = 001 & 100D;.

Thus their shares will be maliciously changed to hy =
101,h; = 010,y = 110,h3 = 111, which is also a legal code-
word v = (101,010,110, 111) of a (n,t,d) = (4,2,3) RS code.
This codeword will unfortunately be considered as a valid code-
word by the RS decoding algorithm [Gao (2003)] and there will
be no cheating alarm. As a result, the fake secret S =100 is
retrieved by those shares under [Eq. 2]. During the entire pro-
cedure the cheating will not be detected. O

4.4. Active Attack: Framing Honest Shareholders

Another vulnerability that cheaters can exploit when (n — ¢ +
1 < c4er £ n) is to frame honest shareholders, so that the de-
coder treats the honest parties as “cheaters” and cheaters as
“honest shareholders.” If ¢, is large enough that the number
of honest shareholders is n — ¢, < ’%’, then the honest share-
holders are within the RS decoder’s error correction capabil-
ity. Since all of the cheaters’ shares are generated by the same
forged secret sharing polynomial, the honest minority will be
treated as cheaters and “corrected.” The cheaters’ fake secret

will be regarded as the valid secret as the result of [Eq. 2].



Example 4.2. Suppose that we have the same secret sharing
system as in Example 4.1. Let us have three shareholders
{Dy = 001,D; = 010, D, = 011} as cheaters, and shareholder
D3 =100 is an honest participant. The codeword for the shares
submitted to the RS decoder will be v/ = (101,010, 110,001).
V' will be decoded as (101,010, 110, 111) which is the cheaters’
codeword. Shareholder D; = 100 will be labeled as a “cheater”.
Consequently, the forged secret § = 100 (as in Example 4.1)
will be retrieved. O

4.5. Active Attack: Against Secret Verification

As mentioned above, one can design an IoT with secret ver-
ification TSS capabilities. Although such a design has a high
probability of detecting any number of share distortions, it
alone is not able to identify the cheaters nor correct the shares.
In addition, there is another problem that needs to be addressed:
how to securely pass the MAC key K from the dealer to the
client (as in Fig. 4) in order to conduct the secret authentication,
giving that the transmission channel might be eavesdropped.

There can be more types of attacks besides the ones listed
above. Especially when the number of cheaters is beyond es-
timation, the entire system can be subject to total manipula-
tion. Therefore there is a demand for a more secure and resilient
scheme to handle the severe attacks.

5. A Secure and Robust Secret Sharing Scheme for IoT

In this section, we propose a new secure and robust secret
sharing scheme for IoT systems. Compared to the current secret
sharing scheme, which has limited protection against cheaters,
the advantages of the proposed scheme are

1. The proposed scheme protects both the confidentiality and
the integrity of the secret;

2. The proposed scheme is able to detect and identify the
cheaters up to the theoretical upper bound;

3. The proposed scheme uses the Physical Unclonable Func-
tions (PUF) to ensure the security of the cryptographic key
update;

4. The proposed scheme works in an adaptive manner, such
that a more powerful module will only be activated when
the previous module fails. Thus, the scheme functions in a
cost-efficient way and consumes a minimum of resources
on average.

The following subsections are organized to present an
overview of the proposed scheme, a detailed introduction of the
modules of this scheme, and, finally, a simple numeric example
to demonstrate the scheme.

5.1. Overview of the Proposed Secure Secret Sharing Scheme

The proposed scheme has four stages to ensure the basic
functionality and authenticity of the secret sharing.

Stage 1: Dealer - Encoding and Distribution of the Secret
First, the dealer will encode the secret S with an Encryption-
then-MAC function EtM() to E = EtM(K, S), where K is ran-
domly picked from the dealer’s repository, which stores the
challenge and response pairs (CRPs) of the client’s PUF. Then
the dealer distributes E using [Eq.2] to n shareholders. The
detailed key transmission protocol will be introduced in later
subsections.

Stage 2: Client - Secret Retrieving
The client will select an arbitrary set of ¢ shareholders to partic-
ipate in the secret retrieving using [Eq. 2]. The retrieved secret
will be authenticated by [Eq. 7 or 9] by the K generated at the
client end. If the authentication claims the secret is valid, then it
is considered a successful secret reconstruction with no cheat-
ing. If not, the scheme moves to Stage 3 for share correction.

Stage 3: Client - Share Error Correction
This stage uses the Reed-Solomon error correction module in
the classic protocol. Here, n = 3¢,y + 1 shareholders will be
invited to participate in the protocol, where c,, is the number of
estimated cheaters defined by the system. The RS decoder will
try to correct the shares and then send them back to the secret
reconstruction and verification modules at the client end. If the
protocol passes both the share correction (by the RS decoder
module) and secret verification (by the authentication module),
then the secret reconstruction is successful. When c,; < n/3,
the cheater tolerance probability is 100%. If either module fails,
then the protocol ascends to its fourth stage, indicating that the
actual number of cheaters is greater than /3.

Stage 4: Client - Group Testing
This stage will be activated if the previously retrieved secret is
not legal. It will involve up to n shareholders, among whom
there are at least n/3 cheaters. The client will generate a group
testing pattern which is able to identify up to c.;; = n—t cheaters
with a minimum number of 7 honest holders. Even if there are
more than n —t cheaters, it is still able to detect the cheating, al-
though the correct secret is beyond reconstruction because there
are not enough honest holders.

The work flow of the proposed scheme is shown below.

5.2. Secret Encoding

In order to perform the obscuration and authentication of
the secret, we will apply the Encryption-then-MAC func-
tion to encode the original secret S to E = EtM(K,S) =
ENC(K, S)|IMAC(K,ENC(K,S)). The encryption function
ENC() can be the standard AES or other lightweight ap-
proaches. And the MAC() function can be either HMAC with
fixed security level P,,;,s, or AMD codes with flexible P, as
mentioned in Section 3.2.1. AMD codes are able to trade off
between the security level and hardware cost by adjusting the
vector size b, which can be an ideal choice for IoT systems with
limited resources. Therefore, AMD may be a better choice for
this class of systems.

For some distributed systems without a client end, it is not
possible to maintain the confidentiality of the secret if more
than ¢ devices are compromised. This is because the TSS
scheme for this case entrusts the secret to the devices them-
selves. However, for other IoT systems with a client end like
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Figure 5: Stage 1 and 2 are sufficient if the number of actual cheaters
caer = 0. If cheating is detected by Stage 2, then Stage 3 with RS
decoder is called under the assumption of c¢,,, < n/3. If Stage 3 fails
then Stage 4 with group testing is able to identify n/3 < ¢,y < n—t
cheaters and retrieve the correct secret. If ¢, is even beyond this scale,
an additional invitation module can be introduced to resolve the issue.

the Odysseus, it is possible to protect the privacy of the secret
even if c,; > t with the help of the client. Even if the attackers
have compromised more than ¢ devices, they will only acquire
the cipher, but not the secret’s plaintext.

However, there is a critical issue of transmitting the EtM key

to the client securely, which we discuss below.

5.3. EtM Key Transmission

The core of this proposed scheme’s security is to establish a
secure transmission channel for K that is

« Eavesdrop resistant: if the cheaters eavesdrop on the
channel, they should not acquire any knowledge of K;

« Easy to update: it should be easy and secure to update
K on both the dealer and the client sides;

» Unforgeable: a cheater should not be able to predict,
duplicate, or forge the keys;

« Unique: in the case of a multi-client secret sharing sys-
tem, different clients should have different sets of keys.

Based on the criteria above, a Physical Unclonable Function
(PUF) based approach is an excellent and fitting solution. An-
other choice is to use public and private key pairs. Considering
that the Odysseus and many other IoT systems are hardware
based, and so it is very convenient and natural to implement
PUFs on them, we will use PUFs to facilitate the transmission
of K in this paper. Although the concept of PUF has been
known since 1983 [Bauder (1983)], the term PUF only came
into wide use in 2002 [Gassend et al. (2002)]. A PUF is a piece
of hardware that produces unpredictable responses upon chal-
lenges due to manufacturing variations. PUFs are both easy to
make and hard to duplicate, even when the exact same circuit

layout and manufacturing procedure are used. A PUF can be
made from a device’s memory cells or circuits without modi-
fying the device’s architecture. Because of its attributes of ran-
domness and uniqueness, PUF provides an inexpensive and in-
tegrated solution for random number or secret key generation,
dynamic authentication, and identification [Yu et al. (2016)].

The PUF serves as a cryptographic primitive in the manner
of challenge-response pairs (CRPs). Each PUF’s output (re-
sponse) is a non-linear function of the outside input (challenge)
and the PUFs own physical, intrinsic, and unique diversity, its
“Silicon Fingerprints” [Times (2010)]. Given the same chal-
lenge, the same PUF design on different circuits will return dif-
ferent responses, which cannot be predicted by just having the
challenge vector. Therefore, PUF is an ideal choice in facilitat-
ing the transmission of K.

5.3.1. Key Transmission Protocol

Algorithm 5.1. For the k™ round of secret sharing, denote the
secret as Sy, the arbitrarily selected challenge and response of
the client’s PUF as CHL; and K} respectively. Then the EtM
key K is transmitted from the dealer to the client as follows

1. When a client registers with the dealer, the dealer chal-
lenges the client’s intrinsic PUF with a set of inputs and
stores its CRPs;

2. Before Sy is distributed, the dealer selects an arbitrary
CRP and uses its response K to encode the secret with
EtM() to E;. At the same time, the challenge CHL; takes
the position of the share distribution polynomial’s free co-
efficient. Therefore [Eq. 1] becomes:

hi = CHL, ® a\D; ® a;D? & --- ® E; D\, (11)

Then the encoded secret Ej is distributed in the form of
shares to the devices of the [oT system;

3. When S needs to be retrieved, ¢ holders will turn in their

IDs and shares to the client;

4. The client uses [Eq. 2] to retrieve the encoded secret Ej,
and by another Lagrange interpolation formula the client
calculates CHL;:

t—1

CHL; = @ =

i=0 11j=0,j%i

Di - . (12)

(D;® D))

5. The client takes CHL; to its PUF and regenerates the cor-
responding response K, which is the same key used by
dealer to EtM S ;. This K} is used to authenticate and de-
crypt the retrieved encoded secret Ej. |

The Odysseus system (or other IoT systems) equipped with
the proposed scheme will have the workflow shown in Fig. 6.

The advantage of this protocol is that CHL; leaks no infor-
mation about K;. Even if there are ¢ or more cheaters calculate
CHL,, they are still not able to acquire the corresponding Kj
because the CRPs of a PUF are not predictable. Moreover, if
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Figure 6: The dealer now shares both the encoded secret and the chal-
lenge to the devices. Once the client retrieves the secret, stage 2 to 4
in Section 5.1 will be performed to identify the cheaters (if any).

the PUF module generates an erroneous K; due to aging, tem-
perature variations or device instability, the fuzzy extractor is
able to correct the error using its ECC feature.

‘When a new secret S is about to be distributed, the dealer can
select another CRP of the PUF to EtM the secret, and embed the
new challenge CHL,; to [Eq. 11]. This makes the update of the
key to K; simple and secure.

5.3.2. The Selection of PUFs for Secret Sharing

Based on where the variation comes from, there are multiple
types of PUFs. Delay PUFs and memory PUFs are the two pop-
ular implementations. A delay PUF uses the random variation
in delays of wires and gates, and their race condition to gener-
ate the response bits. A memory PUF is based on the random
initial state (1 or 0) of each memory cell.

Based on the size of the challenge-response pairs, there are
weak and strong PUFs, which have different applications in se-
curity. Weak PUFs’ CRP size grows linearly with the PUF size,
while strong PUFs’ CRPs grow exponentially.

In our design, we consider the frequent updates of the key (up
to one key per secret). Thus, we have selected the delay PUFs
because of their large sets of CRPs. We use FPGAs to imple-
ment the secret sharing system with both the Ring Oscillator
(RO) PUF based on the race condition of two ROs, and the Ar-
biter PUF based the delay difference between two MUX chains
[Morozov et al. (2010)]. We also improved the design of both
to increase the Hamming distance among the responses, while
developing a design automation tool (introduced in Section 6).

5.4. Cheater Identification by Group Testing

In Section 3.2.2 we pointed out that secret verification alone
does not identify the cheaters nor help to retrieve the correct se-
cret. Therefore in this paper we propose adaptive group testing,
which works together with secret verification for cheater iden-
tification. It can locate up to c.;; = n — t number of cheaters,
which is the theoretical upper bound. This means that in a #-
threshold secret sharing scheme, among all the n shareholders
participating in our scheme, our scheme needs as few as ¢ hon-
est parties to retrieve the correct secret. The test construction
follows.

Construction 5.1. For any #-threshold secret sharing scheme,
suppose among n holders there are ¢ attackers where 0 < ¢ <
n —t. A test pattern to identify the honest holders and attackers

can be constructed as a binary matrix M of size T X n, where
T is the number of tests needed at most. The rows of M con-
sist of all of the different n-bit vectors with exactly ¢ 1’s and so
T = ('t') Each column of the matrix therefore has (’;:11) number
of 1’s. The 1’s in each row (test) correspond to the sharehold-
ers participating in that particular test. Each test is a two-step

procedure:

1. A secret reconstruction using [Eq. 2] to retrieve the secret
E with its specific participants;

2. An authentication using [Eq. 7 or 9] over E to verify the
validity of the retrieved secret.

The test syndrome is a T-bit binary vector u, where 0’s in u
indicate the equality of [Eq. 7 or 9], and 1’s the inequality. W

Then the cheater identification algorithm is:

Algorithm 5.2. For any #-threshold secret sharing scheme and
its corresponding group testing matrix M there are n sharehold-
ers participating in the tests indexed by H = {0,1,2,--- ,n — 1}

Among the n shareholders there are c.; cheaters where
n/3 < cey < n—t. Letw = (wo,wy,--- ,w,_1) be a n-digit
vector and w = u' X M, where u is the T-bit binary test syn-
drome and X is the multiplication of regular arithmetic. The
cheaters’ indexes belong to the set {I| w; = (’;:11)} and the rest
of the holders are honest. |

However, the testing technique above requires (';) tests in to-
tal to identify the cheaters. This can be a large number when n
and ¢ are large. Therefore, its adaptive form, given below, dras-
tically reduces the average number of tests to a linear formula.

Algorithm 5.3. For a test pattern M of size T X n generated
by Construction 5.1, AT is the number of tests needed to find
the first 0 (equality of [Eq. 7 or 9]) in the test syndrome.
The n shareholders are indexed by H = {0,1,2,--- ,n — 1}.
The t honest holders identified by this test are indexed by
I = {ip, i1, -+ ,ii—1}. The system only needs to run at most
n —t more tests whose participants are {iy, i1, - ,i;—2, j}, Where
J € H\I. Each test’s syndrome indicates holder j as an attacker
or not by 1 or 0. The total number of tests needed to identify all
holders is then at most AT + (n — 1). |

5.5. Extra Invitation Module

If the group testing module in Stage 4 cannot successfully
identify the ¢, cheaters in the system, where n — f < c,4¢; < 1,
then the number of honest shareholders is less than .

At this point, our scheme will still raise the cheating alarm
based on the secret authentication. Moreover, the protocol is
adaptive enough to be extended to a further stage to include
an invitation module. This module can pull in the execution
of the protocol additional participants and perform new rounds
of group testing. From the hardware perspective, the invitation
module can be power-gated and disabled when not in use.

Algorithm 5.4. Let the number of honest shareholders in the
current group testing be At and 0 < Af < t. Suppose the system



is able to identify an extra set of ¢ honest shareholders from an-
other group. Then these ¢ honest parties can be combined into
the current group with the modified group testing matrix of size
(”;”) X (n+1). With this new test pattern, the Az + ¢ honest share-
holders can be identified and the rest will be properly labeled as
cheaters. |

5.6. Numeric Examples

Here we present two illustrative examples to demonstrate the
security of the proposed protocol. The first one will be under a
passive attack and the second one under an active attack.

Example 5.1. For an Odysseus system equipped with the pro-
posed secret sharing scheme, there are ¢ cheaters who want to
compute the original secret S stealthily. However, they can only
acquire £ = EtM(K,S) and CHL. Without the client’s PUF,
they are not able to have the response K to CHL. Therefore, S
still remains unknown to the 7 curious cheaters. g

In the second example, for simplicity we will not perform the
encryption function ENC() in the EtM. For the MAC function,
we will use AMD(), since it is able to work with very short
vectors. Thus, this numeric example will be relatively small
and easy to follow.

Example 5.2. We start with a share distribution among the
boards of a seven-board Odysseus system configuration. We
deploy on the system the proposed secure TSS scheme which is
t-threshold and ¢ = 3. The original secret is a digital signature
S € GF(2'?) where § = 001111110000 = 0x3F0. The RS
decoder in this scheme is constructed under the assumption that
there are at most 2 cheaters. However, in the actual scenario
there 4 devices which have been compromised by the cheaters.
Stage 1: Secret Encoding and Share Distribution
The original secret 0x3FO0 is first encoded by the AMD encod-

ing equation [Eq. 8]. Using Definition 3.2 we choose b = 4
such that the encoding and decoding are over GF(2%), m = 1
such that the random vector has only one symbol, and g = 3

such that § is partitioned into 3 symbols S = (S¢,S1,S52) where
So = 0x3,5; = OxF, and S, = 0x0. Suppose the dealer has
chosen a response from the client’s PUF which is K = 0x0006
whose corresponding challenge is CHL 0xAAAA. The
original secret will be encoded to an AMD codeword E
AMD(K,S) by:

AMD(K,S) = SoK ® S 1K*® S,K> = 0x1 = E = (0x3F01).
Then with the share distribution polynomial:
h; = CHL® a\D; ® ED;}

where a; = 0x5555 is an arbitrarily chosen coefficient and
CHL,a,,E € GF(2'%), this encoded secret is shared to seven
Odysseus boards with IDs and shares {D; : h;} = {1 : 0xCOFE},
{2 : OxFC04}, {3 : 0x9650}, {4 : OxOF B4}, {5 : Ox65E0},
{6 : Ox591A}, {7 : 0x334E}.

However, devices {3,4,6,7} have been compromised by
cheaters and they have selected another secret § = 0xABCD
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and forged another share distribution polynomial:
h; = 0xAAAA & 0x7777D; & 0xABCD - D?.

By their IDs, their shares are changed to: {3 : 0x2686}, {4 :
OxDBAF}, {6 : 0x9A2F}, {7 : 0x4695}.

Stage 2: Secret Reconstruction and Verification
First, let us assume that Odysseus devices {2, 3, 4} are selected
to reconstruct the secret, of which {3,4} are cheaters. By the
secret reconstruction [Eq. 2] the retrieved secret is

E = 0x5522.

The reconstructed secret will be verified by the AMD de-

coder using [Eq. 9]: AM/D\(ES) Z AMD(K,S). Through the
computation over GF(2*) we have the following inequality:

AMD(K, S) # [AMD(K,S) = SoKk & S, K* @ S,K°].

Thus, cheating is detected and Stage 3 will be initiated under
the assumption of c,;; = 2 cheaters.

Stage 3: Share Error Correction
Under the RS decoder, n = 3¢, + 1 = 7 shareholders will be
involved and up to 2 shares can be corrected using an (n,t,d) =
(7,3,5) RS code. However, there is a total number of c¢,.; = 4
cheaters {3,4, 6,7}, which is beyond the capability of this RS
decoder. Therefore, the protocol moves to its fourth stage upon
the failure of error correction.

Stage 4: Group Testing
This stage is designed under the assumption that among all the 7
Odysseus boards from Stage 3, only # = 3 are not compromised
by cheaters. The group testing matrix M of size T X n can be
constructed with Construction 5.1, where T = ('t’) =35n="17.
To save space M is listed in its transposed form M™:
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Each test involves 3 boards and the secret retrieved by them
is to be verified by [Eq. 9]. Since boards {1,2, 5} are not com-
promised by cheaters, test 7 is the first test with syndrome 0.

Based on the adaptive Algorithm 5.3, AT = 7. The system
will only need to run the tests of {1, 6, 8,9} whose participants
are boards {1, 2, j} where j € H\I = {3,4,6,7}. Thus only tests
{8, 9} are left to run. The actual number of implemented tests
arethen 9 < AT + (n — k) < (Z) = 35.

In this way, the Odysseus boards that have been hijacked
by cheaters are identified as {3,4,6,7}. The functional boards
{1,2,5} will be able to retrieve the encoded legal secret E =
0x3F01 and, therefore, the correct digital signature S = 0x3F0.
O

6. Design Evaluation and Automation

In this section we will evaluate the proposed scheme and of-
fer a design automation tool for it.



6.1. Mis-detection Probability

In the previous example, the AMD code works over GF 2%,
where the error mis-detection probability is P = % in the
worst case. To increase the security level, one can simply have
the protocol work over a larger field. If the system uses HMAC
as the MAC() function, then P, is a fixed value close to 0.
Therefore, we will only test the performance of the AMD() un-
der different block sizes.

In our experiments, n/3 < cur <

< n —t. The sizes of
the encoded secret E are set to {8, 16,32,48,64, 80,96, 128}
bits, which are the cases for most real-world applications.
Therefore, the AMD codes are over GF(2") fields where b €
{2,4,8,12,16,20,24,32}. A comparison is made between the
experimental P,,;s; (under 4 - 2” rounds of attack and defense)
and the theoretical P,,;;;.

Experimental Pmask vs. Theoretical Pmask

80.00%
70.00%
60.00%
50.00%
Prask 40.00%
30.00%
20.00%
10.00% K
0.00% b gy A —— A
0 20 40 60 80 100 120 140
|E]|
—A—Experimental Theoretical

Figure 7: The experimental P,,;,; matches the theoretical upper bound
Poiss = 2% The experimental results are usually better than the upper
bound because [Eq. 9] does not always have / solutions in the finite
field. Also when b > 32 the experiments did not miss a single attack.

6.2. Hardware and Runtime Overheads

In this subsection we evaluate the complexity of the proposed
scheme under c,; < n/3 and n/3 < ¢,y < n —t, and the hard-
ware and runtime overheads between these two settings. The
hardware cost is measured on a Xilinx Vertex 7 XC7VX330T
FPGA board, and the timing on an Intel® Core™ i7-6700 @
3.4GHz and 8 GB memory machine running Linux OS.

Table 1: Hardware and Runtime Evaluations

E Hardware (Slices) Timing (10° clock cycles)
(bits) || caer <n/3 | caer = n/3 | Overhead || coer <n/3 | cuer = n/3 | Overhead
8 521 828 0.59 0.47 3.50 7.38
16 1492 2256 0.51 0.56 5.13 9.17
32 3977 6164 0.55 1.36 14.65 10.75
48 6114 9462 0.55 1.89 22.34 11.81
64 8462 12749 0.51 2.55 27.37 10.75
80 9895 15804 0.59 3.18 32.47 10.21
96 11873 18918 0.59 3.68 40.90 11.12
128 17842 27695 0.55 4.79 50.05 10.44

! With only 60% of the hardware overhead, the the cheater tolerance capability can be drasti-
cally improved.
' The timing overhead is efficiently reduced by Algorithm 5.3.
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6.3. Design Automation

Although one can manually make a secret sharing system
with PUF on FPGA:s, it still involves a good amount of work
between writing the HDL code, fixing the routing and place-
ment of PUF’s basic elements, configuring the bitstream, and
so forth. Also, with a change in one parameter, the entire sys-
tem may need to be modified. Therefore, we have designed
an automation tool that simply takes the user’s inputs of four
parameters (secret size, security level (for AMD only, HMAC
default as 27128), total number of holders n, threshold ¢, and
MAC function). In addition, we also provide a PUF automation
tool to generate the PUFs based on user specified response and
challenge sizes.

In this tool, the system’s HDL codes and PUF’s fixed-routing
configuration are pre-written in a folder named “Templates.”
The tool will generate the system according to user specified
parameters based on the files in this folder. For any future mod-
ification of the system, only the templates need to be adjusted,
and the generator tool can stay unchanged.

Generator

File Edit Options Help

PUF Generator

File Edit Options Help

Size of secret:

Security Level:

N:

CHL:

Holder Number:
Generate RO: [ Generate RO
Threshold:
[~ Generate Arbiter

Exit

Generate Arbiter:

Generate

MAC:

Generate

Figure 8: The GUIs for the secret sharing system generator (left) and
the PUF generator (right). With this tool any research can generator his
own customized secret sharing system in a few clicks to assist his/her
researches on secret sharing and PUF.

" HMAC
 AMD

7. Conclusion

In this paper we have proposed a secure and robust scheme
to share confidential information in IoT systems. This scheme
uses Threshold Secret Sharing (TSS) to split the information
into shares to be kept by all devices in the system, so that the
malfunction of a single device will not harm the security of the
entire system. In case of more erroneous or rogue devices, this
scheme ensures both the privacy and integrity of that piece of
information even when there is a large number of sophisticated
and coordinated attackers hijacking the devices. The scheme
is able to identify all of the compromised devices, while still
keeping the secret unknown to, and unforgeable by, the attack-
ers. In contrast, earlier secure schemes suffer from the leakage
of secrets, the forgery of fake secrets, or even the misidentifi-
cation of the honest devices as cheaters. This scheme works
in an adaptive manner, such that a more powerful (and power-
consuming) security module will only be activated when the
previous modules fail. Therefore, the average power consump-
tion is minimized. This scheme also applies to other [oTs with
a structure similar to the Odysseus.
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