
A Survey on Hardware Security Techniques
Targeting Low-Power SoC Designs

Alan Ehret
Adaptive and Secure Computing

Systems (ASCS) Laboratory
Department of Electrical and

Computer Engineering
Boston University
ehretaj@bu.edu

Karen Gettings
MIT Lincoln Laboratory

Lexingon, United States of
America

karen.gettings@ll.mit.edu

Bruce R. Jordan Jr.
MIT Lincoln Laboratory

Lexingon, United States of
America

bruce.jordan@ll.mit.edu

Michel A. Kinsy
Adaptive and Secure Computing

Systems (ASCS) Laboratory
Department of Electrical and

Computer Engineering
Boston University
mkinsy@bu.edu

Abstract—In this work, we survey hardware-based security
techniques applicable to low-power system-on-chip designs.
Techniques related to a system’s processing elements, volatile
main memory and caches, non-volatile memory and on-chip
interconnects are examined. Threat models for each subsystem
and technique are considered. Performance overheads and other
trade-offs for each technique are discussed. Defenses with similar
threat models are compared.

Keywords—Hardware Security, System-on-Chip, Secure

Enclave, PUF, Network-on-chip, Oblivious RAM

I. INTRODUCTION
Modern computing systems support more computation on

smaller devices than ever before. The integration of memory,
CPU cores, and hardware accelerators on a single die has led to
System-on-Chip (SoC) designs suitable for a plethora of
embedded systems and mobile devices. For example,
interconnected sensor devices, i.e. the internet-of-things (IoT),
are often engineered to be deployed in large numbers to cover
and relay user commands over a large area. These microsystems
may be located outside a secure perimeter (e.g., outdoor public
places) and may require an additional level of security to prevent
attacks that can compromise their operation. However, securing
an SoC against particular threats can carry a high overhead,
which is sometimes difficult to fulfill in power-constrained
embedded and mobile systems. Additionally, threats faced by
SoCs may not be possible to mitigate with software solutions
alone. Attacks such as power and timing side-channels or
memory probing will require hardware based defenses. To
examine which hardware defenses are suitable for low-power
SoC designs, we survey a variety of common hardware based
security techniques.

The scope of this work covers hardware-based security
techniques related to System-on-Chip (1) processing elements
including general purpose CPU cores and dedicated hardware
accelerators, (2) volatile memory, such as caches and main
memory, (3) non-volatile memories and (4) on-chip
interconnects such as, Networks-on-Chip (NoC). We examine
which threat models are covered by each technique, how the
threats are mitigated, and the reported overheads associated with
each technique. Additionally, we discuss how each technique

may apply to low-power SoC systems. A comparison of
techniques and threats each mitigates is presented.

II. PROCESSING ELEMENT TECHNIQUES
In this section, we examine hardware-based techniques to

defend processing elements in a SoC against a variety of threat
models. In this context, any non-memory component (we
consider caches to be memory for the purposes of this survey)
connected to a SoC interconnect (such as a bus or NoC) can be
considered a processing element. Common processing elements
include general purpose CPU cores or dedicated hardware
accelerators for tasks such as encryption. System-on-Chip
processing elements face a variety of threat models, including
malicious software running on trusted processing elements and
outside attackers attempting to reveal secret information through
power or timing side-channels.

A. Secure Enclaves
Secure enclaves defend against a variety of threats with

physical isolation. Physical isolation protects secret data and
computation from side-channel attacks as well as direct,
unauthorized access. Hardware resources are dedicated to
security critical functions, such as encryption or authentication.
Low-power SoCs can utilize secure enclaves for tasks that
demand the highest level of security. An enclave can operate in
a low-power state when it is not in use. Several commercial
secure enclave implementations exist.

Apple’s Secure Enclave Processor (SEP) [1] is a co-
processor that utilizes memory encryption and hardware-based
random number generation to carry out cryptographic functions
for a main Application Processor (AP). SEP creates a logical
wall between untrusted software and sensitive security functions
so that untrusted software cannot gain access to sensitive data
such as fingerprints and keys. The basic architectural design of
SEP is the separation of computation between the AP and SEP
processors. In addition to the hardware random number
generator, SEP also contains an isolated boot ROM and crypto
engine. Despite this aggressive separation, SEP is still a 32-bit
processor that coordinates with the AP to share external
memory. During its boot process, SEP will wait for AP to
configure a region of memory. Communication between AP and
SEP is achieved through an interrupt-driven secure mailbox. All
data originating from the SoC must go through the secure
mailbox to be used by the SEP. Once SEP has initialized secure
memory regions, its isolation protects it from software-based
attacks. Furthermore, after initialization, applications that wish

DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited. This material is based upon work supported by the Under
Secretary of Defense for Research and Engineering under Air Force Contract
No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

to interact with the encrypted data guarded by SEP must use a
bootstrap server that can enforce access and privilege rules for
different functionalities, such as a secure key generation service.

The ARM TrustZone technology [2] is a single core secure
processor technology that uses a security approach similar to
Apple’s Secure Enclave Processor. ARM TrustZone uses
separation based on the concept of least privilege; software or
hardware should only have access to the compute resources that
it needs and nothing more. To implement this secure model,
TrustZone creates two logical zones: secure world and non-
secure world; the secure world houses the security subsystem,
while the non-secure world contains everything else. This allows
a chain of trust to be established. Separation of zones is based
on secure and non-secure memory partitions.

Intel’s Trusted Execution Technology (TXT) [3] is a
hardware-based technology to examine the authenticity of the
operating system and its running environment. It relies on the
Trusted Platform Module (TPM) to provide functionalities such
as secure storage. The purpose of the TXT is to provide a trusted
mechanism to load and execute system software, e.g., Operating
System kernel or Virtualization Machine Monitor (VMM), even
on machines with malicious software and malware.

Secure enclaves offer strong protection, but generally limit
performance of security critical functions when compared to the
performance of their system’s main processor. For example,
enclaves based on ARM TrustZone that are external to a SoC
(such as a smart card or a phone’s SIM card) are generally
limited to a clock frequency of 5-20MHz [3]. Such a clock
frequency is often not suitable for high-performance systems
with clock frequencies of several gigahertz. However, low-
power SoC systems (such as IoT devices) generally have lower
clock frequencies. The lower performance associated with low-
power SoC systems means secure enclaves can reasonably be
included in low-power SoC designs without drastically
restricting SoC performance or violating power/area budgets.

B. Execution Obfuscation
The execution of security critical algorithms, such as

encryption, can be undermined by the leakage of information
through side-channels. Previous works have demonstrated
attacks related to timing, power, electro-magnetic (EM), and
fault-based side-channel attacks [4] [5] [6]. The threat model for
side-channel attacks varies slightly, depending on the side-
channel exploited. Attacks that exploit power or EM side-
channels often require direct physical control of a device.
Meanwhile, timing attacks are not dependent on the same level
of direct access or physical control necessary for power and EM
based side-channel attacks, but do require some level of remote
control over a system. For example, the Spectre and Meltdown
class of attacks execute entirely in software and can be exploited
without physical access to a system [7] [8].

Execution obfuscation-based techniques attempt to mitigate
side-channels without the overhead of the physical isolation
used in secure enclaves. One example, a co-processor named
Ascend [9], operates on encrypted user inputs with trusted or
untrusted programs in a semi-honest server. In the threat model
used by the authors, a semi-honest server will correctly execute
a given program with the given encrypted user inputs but may
also attempt to leak information about the inputs by running
other programs with them. The authors describe this semi-honest

model as “honest but curious”. Figure 1 shows a high-level view
of Ascend’s computation process.

The Ascend processor uses public/private key pairs to share
symmetric keys used to decrypt user inputs and program
binaries, preventing the server from directly observing their
contents. Power and I/O side-channels are obfuscated by
activating major architectural components (cache, memory
interface, register file, etc.) for each instruction, whether or not
the component is needed. Oblivious RAM, covered in Section
III-A, is used to obscure the timing, I/O, and power side-
channels related to off-chip memory. In order to mask timing
information related to program runtime, Ascend receives a time
and power budget from the user. The encrypted program state is
returned only after Ascend exhausts the given time and power
budget. The program execution may be incomplete if the time
and power budget is not large enough. Otherwise, the program
results are returned in the program state. Keeping the results
encrypted prevents the semi-honest server from learning
anything about the plain text of the user input or final result of
the program. The semi-honest server only has an estimate of
how long a user’s operation took to execute. Previous work has
shown this to be the smallest possible amount of information to
leak about a program execution [10]. The authors evaluate
Ascend with several SPEC06int benchmarks and report an
average of 13.5x slowdown compared to an equivalent non-
obfuscated architecture.

Fig. 1. The flow of Ascend’s secret computation process.

Fig. 2. The hardware/software compiliation and execution flow of Sphinx.

A different architecture, Sphinx [11], supports obfuscation
with a hardware-software co-design approach. Sphinx prevents
attackers from leaking side-channel information with support for
binary obfuscation and a runtime-reconfigurable level of
execution flow obfuscation. To obfuscate execution, the
compilation flow used by Sphinx inserts random instructions in
the binary and provides an encrypted mask that reveals which
instructions are real. Reconfiguration allows users to trade-off
obfuscation and performance by executing, but not committing,
a user defined level of obfuscation instructions in the binary.
Multiple compilation runs with the same source will produce a
unique binary for each run, preventing attackers from applying
knowledge leaked from one deployment to another. Figure 2
outlines the hardware/software flow used by Sphinx. Sphinx
provides a weaker but more flexible obfuscation than Ascend,
i.e. Ascend is guaranteed to obfuscate most side-channels at all
times, while Sphinx will only obfuscate side-channels with a
sufficiently high number of executed obfuscation instructions.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

However, Sphinx allows users to determine an appropriate
obfuscation level (and therefore the difficulty in exploiting side-
channels) based on their requirements and maintain much of the
performance of un-obfuscated execution. Additionally, the
hardware-software co-design approach and customized binaries
used by Sphinx provide obfuscation unique to each deployment.
Knowledge gained by an attacker about one Sphinx deployment
cannot be applied to another deployment.

C. Physical Unclonable Functions
A Physical Unclonable Function (PUF) creates a unique

identification for each implementation of the same design. The
uniqueness of most PUFs results from distinct physical
properties of the implementation that cannot be recreated with
existing manufacturing techniques. The unique outputs of PUFs
can be used for authentication or secret key storage. A PUF’s
precise output is only retrievable with an input and the physical
characteristics of the PUF itself. Although the PUF concept has
been known since 1983 [12] [13], the term PUF only came into
existence in 2002 [14]. PUF-based technology is a promising
technique for silicon device fingerprinting [15] [16].
Researchers are studying and developing different types of
PUFs and their implementations.

There are three main classes of physical unclonable
functions (PUFs), namely, strong PUFs [14] [17] [18],
controlled PUFs [19] [20], and weak PUFs or physically
obfuscated keys (POKs) [21, 22]. Each class has its own
application target domain and security features. A PUF can be
categorized as an explicitly-introduced randomness PUF or
intrinsic randomness PUF, based on how the randomness is
introduced in [23]. For explicitly-introduced randomness PUFs,
optical PUFs (non-electrical) and coating PUFs are the two main
sub-classes [24] [25]. Intrinsic randomness PUFs are used more
often, because they can be included in a design without
modifications to the manufacturing process [26].

A secure PUF must be unpredictable, unclonable, and
tamper detectable. Unfortunately, due to implementation
challenges or flaws, many PUFs have succumbed to some sort
of attack [27][28][29]. Many attacks try to acquire information
on the PUF inputs and outputs, known as challenge-response
pairs (CRPs). For example, in 2013 several researchers showed
that it is possible to clone a SRAM weak PUF by reading the
SRAM memories out through either standard on-chip channels
or laser stimulation [30] [31]. Strong PUFs allow anyone to hold
a large subset of the CRPs; thus, they are vulnerable to modeling
attack. Researchers, e.g., [32], [29] [33], have used machine
learning techniques to model Arbiter and Ring Oscillator PUFs
and have had good success in predicting the PUF’s unknown
CRPs. Researchers have also studied the information leakage
from the PUF’s public helper data [34]. In recent works, there
have been attempts to combine both modeling and side-channel
attacks to improve an attack’s effectiveness [35]. This type of
attack has successfully modeled some strong and secure PUFs
such as XOR Arbiter PUFs and Lightweight Secure PUFs,
achieving a 99% successful prediction rate. Besides passive
learning attacks, PUFs can also be tampered with physically to
alter the response behavior permanently and noticeably.

Despite these shortcomings, PUFs allow authentication or
secret storage to be rooted in hardware. Many of the PUF attacks
described above are more difficult to exploit (requiring invasive
attacks on the hardware itself) than attacks on alternative

software-based authentication and key storage schemes.
Additionally, the simplicity of PUFs makes their area and power
overheads minimal. For these reasons, PUFs provide a suitable
option for low-power SoC systems in need of secret key storage
or device authentication schemes.

III. VOLATILE MEMORY SYSTEM TECHNIQUES
Next, we examine hardware-based security techniques

focused on volatile memory systems on SoCs. Volatile memory,
such as a cache or main memory, will frequently store secret
information, such as encryption keys or decrypted data. Storing
such sensitive data makes non-volatile memories valuable
targets for attackers. The scope of this paper is limited to cache
and on- or off-chip main memory systems. A variety of previous
works have demonstrated attacks on these systems. Side-
channel attacks such as the Spectre family of attacks, target
access-based timing side-channels in cache subsystems [7].
Attacks focused on main memory range from cold-boot attacks
[36], targeting off-chip DRAM, to timing and access pattern
side-channels in both on-chip and off-chip memories.

A. Oblivious RAM
Oblivious RAM (ORAM) obfuscates the access pattern of a

memory visible to an attacker in order to prevent information
leakage. Oblivious RAM was first proposed in [37] and was
built upon by [38] and [39]. The threat model for ORAMs
assumes an attacker has access to the memory and bus or is
otherwise able to observe the memory content, accessed
addresses, and operations (read/write). However, in the threat
model, attackers cannot probe the internal state of the system
issuing the memory requests. Security focused SoCs have
leveraged ORAM to prevent attackers with physical access to a
processor and its off-chip memory from learning anything about
the program being executed or the data it is executing on [9].

A variety of ORAM implementations have been proposed.
One implementation, Path ORAM [39], uses a binary tree
structure in the ORAM memory to split data into buckets of a
small constant size. Buckets of data are encrypted to hide their
contents from attackers. To obscure the bucket being accessed,
whole paths of the binary tree (from root to leaf) are read and
written for each operation. Path ORAM’s use of the binary tree
structure and the reading of whole paths result in a simple and
efficient ORAM scheme suitable for hardware implementation.
A memory controller on a host processor must maintain a
position map to track which data is mapped to which bucket in
the tree. The position map is stored in the processor’s on-chip
memory which is assumed to be out of reach for attackers. A
relatively small amount of processor-side storage is used to hold
blocks of data during read and write operations.

Path ORAM implements oblivious RAM with a required
bandwidth of ������� for � blocks of data in the ORAM
memory. The authors describe a recursive implementation of
Path ORAM to reduce the required client-side storage at the cost
of increased bandwidth between the client and ORAM memory.
Client-side storage is reduced by storing the position map of the
Path ORAM in a smaller Path ORAM memory. Position maps
are recursively stored in smaller Path ORAMs until a constant
sized position map can be stored on client storage.

Another implementation, described in [38], uses a
randomized shell sort [40] and cuckoo hashing [41] to

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

implement an ORAM scheme. The main advantage of the
scheme presented in [38] is the ���� storage size. This storage
size means that the entire ORAM memory is used to store useful
data. This is not the case in Path ORAM, where some ORAM
memory may be used to store the recursive position maps. Use
of the entire memory comes at the expense of increased
bandwidth requirements.

The complexity and overhead of current ORAM schemes
often mean that ORAM cannot practically be incorporated into
many systems, especially power constrained systems, such as
the low-power SoCs focused on in this survey. Battery powered
devices, in particular, are often susceptible to threats defended
against by ORAM, i.e., an attacker with physical access to a
device’s memory in an uncontrolled environment. However, the
inclusion of ORAM would often lead to unacceptably short
intervals between battery recharges. While new ORAM
implementations, such as Path ORAM [39] improve on the
complexity or overhead of other implementations, more
research must be completed before ORAM is suitable for most
battery powered devices. Future research could focus on
improving the efficiency of existing ORAM implementations or
developing new techniques to obscure content and access
patterns to a memory system.

B. Memory Encryption
Encrypting memory (either on-chip or off-chip) used by a

processor offers less protection than ORAM but incurs
significantly lower power, performance, and area overhead.
Memory encryption is sufficient for protecting memory against
an attacker capable of observing data in a memory but not its
access pattern. For such attack models, either the access pattern
is not considered secret or the attacker is assumed to be unable
to interpret it. Attackers are usually assumed to have physical
access to the to the memory.

Memory encryption is relatively simple to implement
compared to existing ORAM schemes. The two techniques are
compared in Figure 3. Generally, memory encryption is
achieved with a hardware encryption module placed between a
processing element and the vulnerable memory interface to
encrypt blocks of data as they exit the security boundary and
decrypt them as they enter it. AES based encryption is frequently
used for main memory encryption [9] [42]. ORAM schemes
require both the encryption module and an additional controller
to manage the ORAM and return the appropriate read data.

Fig. 3. ORAM scheme and memory encryption block diagrams.

The main challenge of implementing secure memory
encryption is adequate protection of the encryption key. The
volatile nature of most main memories means that encryption
keys only need to last the duration of a system’s powered on
state. The ability to use a new key at each system restart removes
the significant challenge of protecting encryption keys when the

system is powered off. The tradeoff is that a cryptographically
secure random number generator must be present in the system
to generate new keys each startup. With new keys used at each
startup, users are not required to know or store a password and
neither is the system, removing the possibility of the password
being stolen while the machine is off.

Memory encryption systems implemented by AMD utilize
an isolated ARM microcontroller and hardware random number
generator to generate new random keys at each system reset
[42]. The generated encryption key is stored in dedicated
registers. The microcontroller and encryption key are not
accessible to software running on the CPU. However,
safeguards must be implemented to prevent attacks on the
random key generation at system startup. Any firmware used to
generate or manage the keys must not be readable or writeable
by untrusted parties with physical access to the device.

C. Cache Architecture
Memory encryption and ORAM schemes can be applied to

a SoC’s main memory but they do not defend against cache-
based side-channels such as the Spectre family of attacks [7].
Many cache-based side-channels measure the timing of memory
accesses. Information is communicated to an attacker based on
the length of their memory access. One such side-channel is the
Prime+Probe cache side-channel discussed in [43].

In order to execute a cache side-channel attack based on a
Prime+Probe side-channel, an attacker must have the ability to
execute arbitrary code on a CPU sharing a cache with the victim.
No physical access is required for a successful attack. The ability
to execute cache-based timing side-channel attacks without
physical access makes Virtual Machines (VM) running
alongside other VMs on a cloud provider’s hypervisor
particularly vulnerable to these attacks.

Recent research has focused on mitigating or eliminating
cache-based side-channel attacks. In one such example, the
authors develop a non-monopolizable (NoMo) cache
architecture that partitions shared caches between threads of
execution on a simultaneous multithreaded (SMT) processor
[44]. This prevents a victim and attacker from evicting each
other’s cache line. The NoMo cache architecture reserves at
least one way of the cache for each thread. However, not every
way must be reserved. A 4-way cache shared between two
hardware threads could reserve one way for each hardware
thread and share the other two ways between them. Information
cannot be leaked from reserved cache ways because an attacker
cannot influence a victim’s reserved cache. However,
information can be leaked through the shared cache ways. Most
known access-based cache timing side-channels could be
completely eliminated by assigning each way to a thread,
effectively creating multiple isolated, unshared caches dedicated
to a hardware thread. However, in practice, this would carry a
high-performance overhead, as the whole cache capacity would
never be available to a single thread.

Another cache architecture to mitigate side-channel attacks
is Janus [45]. Janus allows programs vulnerable to cache-based
side-channel attacks to enable or disable arbitrary cache blocks
to create timing and power behavior that is dynamic and difficult
to extract information from. The Janus cache architecture is fully
associative and uses a Least Recently Used (LRU) replacement
policy. Each block in the cache is marked with an additional flag
to indicate if the cache block is considered active or inactive.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

When a cache block is considered inactive, it will retain its data
but all memory requests to that block automatically miss.
Disabling blocks in a fully associative cache gives vulnerable
programs control over the effective hit rate of the cache, because
all data will remain cachable while at least one cache line is
enabled. The state of each cache block (active or inactive) is
controlled with an activate and deactivate instruction. Programs
vulnerable to side-channel attacks can execute these instructions
to obscure their side-channels. The Janus cache architecture is
evaluated with several benchmark programs and the variations
in execution time for different activations of blocks is examined.
Although it defends against different side-channels, Janus could
be designed to prevent access-based cache timing side-channels,
such as Prime+Probe, by requiring a high privilege level to run
the custom instructions. A trusted OS could execute the activate
and deactivate instructions transparently to user level programs.

Eliminating cache-based side-channel attacks is an area of
active research and will undoubtedly receive continued focus in
future works. While the Janus and NoMo cache architectures
can significantly reduce the likelihood of a successful cache-
based timing side-channel attack, stronger isolation is needed to
guarantee no such side-channels exist. For cases that require
such guarantees, eliminating shared caches or including a secure
enclave (Section II-A) is likely necessary.

IV. NON-VOLATILE MEMORY SYSTEM TECHNIQUES
Embedded systems and low power SoCs are often in

uncontrolled environments where an attacker could have
physical access to a device’s non-volatile memory (NVM).
These systems store sensitive data including programs,
operating systems or encryption keys in their NVM. With access
to a system’s NVM, an attacker could read or modify the
contents, allowing them to steal keys or write malicious software
to the device. To counter such attacks, researchers have
developed encryption and authentication techniques for non-
volatile memory. New technologies such as nanoelectro-
mechanics, offer the possibility of new non-volatile memory
architectures with an additional focus on security.

A. Full Disk Encryption
One of the simplest ways to protect a system’s non-volatile

memory is with full disk encryption. Full disk encryption
prevents an attacker with physical access to a lost or stolen NVM
device from reading its contents. Generally full disk encryption
is handled with software, encrypting and decrypting data as it is
read and written to the disk [36]. Some drives handle full disk
encryption in the drive’s hardware and software (firmware)
freeing the host CPU from the encryption task. These drives are
known as self-encrypting drives (SED). While handling
encryption on a drive eliminates successful cold boot attacks on
the system’s main memory, these drives are often vulnerable to
similar attacks on their own internal memory. The authors of
[46] demonstrate that some SEDs are vulnerable to hot-plug
attacks where the decryption password is given by the host PC
before the SED’s serial advanced technology attachment
(SATA) cable is removed and attached to an attacker’s system.
The authors found that many SEDs do not check if the SATA
cable has been removed and, therefore, remain decrypted as long
as they are connected to power.

B. Limited-Use Memory
In hardware and circuit design, minimizing the effects of

circuit or device wearout is often a key goal of designers. After
a new technology is created, generally, researchers focus on
improving the technology’s endurance to create practical
products. However, the authors of [47] take a different approach.
They propose a design that leverages the limited endurance of
nanoelectromechanics (NEMS) switches to develop devices
resistant to brute force password attacks. Their threat model
assumes a mobile device, such as a smart phone or other
embedded system, has been fabricated and programmed by a
trusted party (i.e. an attacker cannot use a backdoor to attack the
device). As the device is considered mobile, an attacker is
assumed to have physical access to it. The attacker’s goal is to
unlock the device with a brute force password attack, gaining
access to its protected data.

To prevent this, the authors design NEMS switches with an
endurance to match the lifespan of the device. For example,
NEMS switches could be included in the read logic of the
password hash memory on a smartphone. The NEMS switch
circuit could be designed to support 50 reads (phone unlocks)
per day for the lifetime of the device. Assuming a lifetime of
five years yields 91,250 reads. Each phone unlock requires the
NEMS switches to activate, increasing the chance of their
failure. After the switches fail, the read logic of the memory will
no longer function. Limiting the endurance of the read logic
allows a user to unlock the device for the entire expected
lifespan but prevents most brute force attacks on a reasonably
complex password. The key challenge with designing NEMS
switches for a given endurance is ensuring the minimum and
maximum number of device operations is supported. Generally,
the endurance of a single switch cannot be controlled with the
precision needed to ensure it fails shortly after the device’s end-
of-life. The NEMS switches examined by the authors fail after
less than 1,000 cycles for low endurance switches or after
millions of cycles for high endurance switches. In order to
achieve the desired minimum and maximum bounds, the authors
propose the use of multiple NEMS switches. Several low
endurance switches can be placed in parallel, providing
functional read logic while at least one switch is still working.
Alternatively, several high endurance switches can be placed in
series to provide reliable read logic while all switches are
functional. Figure 4 shows series and parallel implementations
of NEMS switches. To further control the bounds of reliability,
the authors propose using Shamir’s secret-sharing scheme [48]
to produce a parallel structure where k out of n switches must
remain functional for the memory to be reliably read.

Fig. 4. Series high endurace switches (a), parallel low endurance switches (b).

The NEMS based circuits proposed in [47] show a promising
technique to root the security of non-volatile memory in the
physical properties of the technology it is built with. The authors
note that their research is an early work and focus on
demonstrating effective control of the minimum and maximum
wearout bounds for switch designs. The implementation of a
memory utilizing the proposed switch designs is left for future

(b)(a)

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

work. More research must be completed before a practical
implementation can be created.

V. NETWORK-ON-CHIP INTERCONNECT TECHNIQUES
In System-on-Chip (SoC) designs of sixteen or more

processing elements, Network-on-Chip (NoC) has become the
preferred communication interconnect architecture [49]. Since
the interactions between processing elements in these systems
happen in the NoC, it has been a fertile ground for attacks.

In general, NoC-based communication architectures are
vulnerable to three types of attacks [50]. The first is On-Chip
Denial of Service (OC-DoS) attacks: where a rogue PE injects a
deluge of useless packets into the network, blocking another PE
from accessing a needed resource or severely degrading the
system performance. The second is Virtual Channel (VC)
attacks: the router’s VCs can be plowed, allowing malicious
flows to build their packet contents out of other flows' residual
data. The third is physical memory attacks: traditional security
features built in the Memory Management Unit (MMU) or the
Direct Memory Access (DMA) can be circumvented. In these
architectures, memory modules tend to be distributed shared
resources servicing both local and remote PEs. The security
mechanisms implemented between the local PE and the memory
module are often more defined. Remote accesses through
network are more vulnerable.

Most NoC focused security features attempt to provide some
level of isolation in the NoC. Given the latency sensitive nature
of NoC communication, techniques such as encryption and
authentication frequently carry too high an overhead for most
systems, especially the low-power SoC systems focused on here.

A variety of techniques have been proposed to prevent or
mitigate the NoC attacks described above. Wassel et al.
implement a non-interfering scheme for secure NoC in SurfNoC
[51]. Sajeesh and Kapoor have highlighted in [52] some of the
advantages of implementing security policies at the network
interface level in NoC based systems for secure communication
among such IP cores. In [53], Porquet et al. introduce a solution
for co-hosting different protection domains on the same shared
memory multiprocessor SoC using a NoC architecture.

Kinsy et al. have proposed a framework for a secure many-
core computing architecture where different trust level cores can
be integrated onto the same chip [54] [55]. Their proposed
design includes (1) a processing-element-oblivious secure
network interface architecture, (2) a programmable, efficient,
and distributed group key management algorithm, and (3) a
hardware-supported, security-aware on-chip routing. The area
overhead of the framework is 17% for the benchmarked system.

Modern SoC designs frequently leverage IP from a variety
of third parties. Adding security features to the interconnect
between them can prevent a malicious IP from disrupting the
entire system. While the overheads of systems such as [54] and
[52] can be moderate or high, the defenses they provide will
become more and more important as SoCs are increasingly built
with untrusted IP cores.

VI. TECHNIQUE COMPARISON
In this section, we summarize which hardware-based

security techniques can mitigate the various attacks mentioned
in this survey. Secure enclaves can mitigate data theft and
access-based cache side-channels with physically isolated

hardware but do not prevent power-based side-channels without
purpose built features such as ORAM or execution obfuscation.
While execution obfuscation can mitigate on-chip side-
channels, it does not directly protect off-chip memory. For that,
memory encryption or ORAM are needed. Protecting non-
volatile memory generally requires disk encryption, but
encrypted drives can be vulnerable to brute force attacks.
Memory designed for a limited number of uses could prevent
such attacks if reliability challenges can be overcome.

It is clear that no single technique is adequate to defend
against each of the attacks faced by low-power IoT devices. The
attacks described here cover only a small portion of all possible
attacks. The attacks mitigated for each technique discussed in
this survey are shown in Table 1.

Modern attacks faced by computing systems have made it
apparent that software based security alone is not sufficient.
Systems in uncontrolled environments are vulnerable to attacks
leveraging physical access, in addition to remotely exploitable
side-channels and software vulnerabilities. To mitigate these
threats, the security of vulnerable systems can be rooted in
hardware. PUFs and limited use memory offer examples of this
hardware rooted security. By combining several hardware-based
security techniques in low-power SoC systems, designers can
target their protection to match their threat model. Continued
research focused on reducing overheads of existing techniques
and the development of new ones will enable SoC designs to
mitigate a larger number of attacks.

TABLE I. ATTACKS MITIGATED BY EACH TECHNIQUE.

VII. CONCLUSION
In this survey, we have examined hardware security-based

techniques suitable for low-power SoC designs. Given the
uncontrolled environments that low-power SoC based
embedded and mobile systems often operate in, techniques to
mitigate threats based on physical access or remote side-
channels were explored. Attacks faced by low-power SoCs
target all aspects of the system including processing elements,
volatile memory, non-volatile memory, and NoCs. As such, we
have explored security techniques related to each of these major
SoC subsystems. Advantages and disadvantages of each, as they
relate to low-power SoCs, were discussed. Comparisons of the
mitigated threats demonstrate that no single technique can defeat
the numerous attacks faced by low-power SoCs deployed in
uncontrolled environments. To secure their systems, designers
must leverage several techniques to mitigate the most prevalent
threats faced by their systems.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

REFERENCES
[1] Apple, “Ios security,” apple.com/business/docs/iOS Security Guide.pdf.
[2] A. ARM, “Security technology building a secure system using trustzone

technology (white paper),” ARM Limited, 2009.
[3] J. Greene, “Intel trusted execution technology,” Intel Technology White

Paper, 2012.
[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The

sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, Feb 2006.

[5] J. Fan and I. Verbauwhede, “An updated survey on secure ecc imple-
mentations: Attacks, countermeasures and cost,” in Cryptography and
Security: From Theory to Applications. Springer, 2012, pp. 265–282.

[6] E. Hess, N. Janssen, B. Meyer, and T. Schu �tze, “Information leakage
attacks against smart card implementations of cryptographic algorithms
and countermeasures–a survey,” in EUROSMART Security Conference,
vol. 130. Citeseer, 2000.

[7] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S.
Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” CoRR, vol. abs/1801.01203, 2018.

[8] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P.
Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” CoRR,
vol. abs/1801.01207, 2018.

[9] C.W.Fletcher, M.v.Dijk, and S.Devadas, “A secure processor architecture
for encrypted computation on untrusted programs,” in Proceedings of the
seventh ACM workshop on Scalable trusted computing. ACM, 2012, pp.
3–8.

[10] C. W. Fletcher, M. Van Dijk, and S. Devadas, “Compilation techniques
for efficient encrypted computation.” IACR Cryptology EPrint Archive,
vol. 2012, p. 266, 2012.

[11] M. A. Kinsy, D. Kava, A. Ehret, and M. Mark, “Sphinx: A Secure
Architecture Based on Binary Code Diversification and Execution Ob-
fuscation,” Boston Area Architecture 2018 Workshop (BARC18), Feb.
2018.

[12] D. Bauder. An anti-counterfeiting concept for currency systems. Research
report PTK-11990. Sandia National Labs, 1983.

[13] K. Lofstrom, W. R. Daasch, and D. Taylor. Ic identification circuit using
device mismatch. In 2000 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (Cat. No.00CH37056), pages
372–373, Feb 2000

[14] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon physical
random functions. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS ’02, pages 148–160, New
York, NY, USA, 2002.

[15] NXP Strengthens SmartMX2 Security Chips with PUF Anti-Cloning
Technology.
http://www.nxp.com/news/press-releases/2013/02/nxp-strengthens-
smartmx2-security-chips-withpuf-anti-cloning-technology.html.

[16] E. Times. NXP Strengthens SmartMX2 Security Chips with PUF Anti-
Cloning Technology. UBM Tech Electronics, 2010. (Referenced on page
D-6.)

[17] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede. A survey on
lightweight entity authentication with strong pufs. ACM Comput. Surv.,
48(2):26:1–26:42, Oct. 2015.

[18] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way
functions. Science, 297(5589):2026–2030, 2002.

[19] B. Gassend, M. V. Dijk, D. Clarke, E. Torlak, S. Devadas, and P. Tuyls.
Controlled physical random functions and applications. ACM Trans. Inf.
Syst. Secur., 10(4):3:1–3:22, Jan. 2008.

[20] M. Tehranipoor and C. Wang. Introduction to Hardware Security and
Trust. Springer Publishing
Company, Incorporated, 2011.

[21] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls. FPGA intrinsic PUFs
and their use for IP protection. In Cryptographic Hardware and Embedded
Systems (CHES), pages 63–80, 2007.

[22] D. Holcomb, W. Burleson, and K. Fu. Initial SRAM state as a fingerprint
and source of true random numbers for RFID tags. In Proceedings of the
Conference on RFID Security, 2007.

[23] U. Ruhrmair, S. Devadas, and F. Koushanfar. Security based on physical
unclonability and disorder. In M. Tehranipoor and C. Wang, editors,
Introduction to Hardware Security and Trust, chapter 4, pages 65–102.
Springer, 2012.

[24] B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls. Information-theoretic
analysis of capacitive physical unclonable functions. Journal of Applied
Physics, 100(2):024902, 2006.

[25] P. Tuyls, G.-J. Schrijen, B. �Skori´c, J. van Geloven, N. Verhaegh, and R.
Wolters. Read-proof hardware from protective coatings. In Proceedings
of the 8th International Conference on Cryptographic Hardware and
Embedded Systems, CHES’06, pages 369–383, Berlin, Heidelberg, 2006.
Springer-Verlag.

[26] D. Holcomb, W. Burleson, and K. Fu. Power-up SRAM state as an
identifying fingerprint and source of true random numbers. IEEE
Transactions on Computers, 58(9):1198–1210, September 2009.

[27] D. Karakoyunlu and B. Sunar. Differential template attacks on puf
enabled cryptographic devices. In 2010 IEEE International Workshop on
Information Forensics and Security, pages 1–6, Dec 2010.

[28] A. Mahmoud, U. R¨uhrmair, M. Majzoobi, and F. Koushanfar. Combined
modeling and side channel attacks on strong PUFs. Cryptology ePrint
Archive, Report 2013/632, 2013.

[29] U. R¨uhrmair, F. Sehnke, J. S¨olter, G. Dror, S. Devadas, and J.
Schmidhuber. Modeling attacks on physical unclonable functions. In
Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 237–249, New York, NY,
USA, 2010. ACM.

[30] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert. Cloning
physically unclonable functions. In IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pages 1–6, 2013.

[31] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit. Invasive puf
analysis. In Proceedings of the 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC ’13, pages 30–38, Washington, DC,
USA, 2013. IEEE Computer Society.

[32] G. Hospodar, R. Maes, and I. Verbauwhede. Machine learning attacks on
65nm arbiter pufs: Accurate modeling poses strict bounds on usability. In
2012 IEEE International Workshop on Information Forensics and
Security (WIFS), pages 37–42, Dec 2012. (Referenced on page D-7.)

[33] U. Ruhrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G.
Dror, J. Schmidhuber, W. Burleson, and S. Devadas. Puf modeling attacks
on simulated and silicon data. Trans. Info. For. Sec., 8(11):1876–1891,
Nov. 2013.

[34] G. T. Becker. Robust fuzzy extractors and helper data manipulation
attacks revisited: Theory vs practice. Cryptology ePrint Archive, Report
2017/493, 2017. http://eprint.iacr.org/2017/493.

[35] J. Delvaux and I. Verbauwhede. Side channel modeling attacks on 65nm
arbiter pufs exploiting cmos device noise. In 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pages
137–142, June 2013.

[36] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: Cold-boot attacks on encryption keys,” Commun. ACM, vol.
52, no. 5, pp. 91–98, May 2009.

[37] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp. 431–
473, 1996.

[38] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Annual Cryp-
tology Conference. Springer, 2010, pp. 502–519.

[39] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S.
Devadas, “Path oram: an extremely simple oblivious ram protocol,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 299–310.

[40] M. T. Goodrich, “Randomized shellsort: A simple oblivious sorting
algorithm,” in Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’10. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2010, pp. 1262–
1277.

[41] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol.
51, no. 2, pp. 122 – 144, 2004.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

[42] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White
paper, 2016.

[43] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-
channel attacks are practical,” in 2015 IEEE Symposium on Security and
Privacy, May 2015, pp. 605–622.

[44] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 8, no. 4, p. 35, 2012.

[45] H. Hosseinzadeh, M. Isakov, M. Darabi, A. Patooghy, and M. A. Kinsy,
“Janus: An uncertain cache architecture to cope with side channel
attacks,” in 2017 IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS), Aug 2017, pp. 827–830.

[46] T. Muller, T. Latzo, and F. C. Freiling, “Self-encrypting disks pose self-
decrypting risks,” in the 29th Chaos Communinication Congress, 2012,
pp. 1–10.

[47] Z. Deng, A. Feldman, S. A. Kurtz, and F. T. Chong, “Lemonade from
lemons: Harnessing device wearout to create limited-use security
architectures,” SIGARCH Comput. Archit. News, vol. 45, no. 2, pp. 361–
374, June 2017.

[48] A. Shamir, “How to share a secret,” Communications of the ACM, vol.
22, no. 11, pp. 612–613, 1979.

[49] N. E. Jerger and L.-S. Peh, “On-chip networks,” Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–141, 2009.

[50]] L. Fiorin, C. Silvano, and M. Sami, “Security aspects in networks-on-
chips: Overview and proposals for secure implementations,” in Digital
System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th
Euromicro Conference on, Aug 2007, pp. 539–542.

[51] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T.
Chong, and T. Sherwood, “Surfnoc: A low latency and provably non-
interfering approach to secure networks-on-chip,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA ’13. New York, NY, USA: ACM, 2013, pp. 583–594.

[52] Sajeesh, K.; Kapoor, H.K. An Authenticated Encryption Based Security
Framework for NoC Architectures. In Proceedings of the 2011
International Symposium on Electronic System Design, Kochi, India, 19–
21 December 2011; pp. 134–139.

[53] Porquet, J.; Greiner, A.; Schwarz, C. NoC-MPU: A secure architecture
for flexible co-hosting on shared memory MPSoCs. In Proceedings of the
2011 Design, Automation & Test in Europe, Grenoble, France, 14–18
March 2011; pp. 1–4.

[54] M. A. Kinsy, S. Khadka, M. Isakov and A. Farrukh, "Hermes: Secure
heterogeneous multicore architecture design," 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), McLean,
VA, 2017, pp. 14-20.

[55] M. A. Kinsy, L. Bu, M. Isakov and M. Mark: "Designing Secure
Heterogeneous Multicore Systems from Untrusted Components".
Cryptography, vol. 2, iss. 3, no. 12, 2018.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

