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Abstract—In this work, we survey hardware-based security 
techniques applicable to low-power system-on-chip designs. 
Techniques related to a system’s processing elements, volatile 
main memory and caches, non-volatile memory and on-chip 
interconnects are examined. Threat models for each subsystem 
and technique are considered. Performance overheads and other 
trade-offs for each technique are discussed. Defenses with similar 
threat models are compared. 
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I. INTRODUCTION 
Modern computing systems support more computation on 

smaller devices than ever before. The integration of memory, 
CPU cores, and hardware accelerators on a single die has led to 
System-on-Chip (SoC) designs suitable for a plethora of 
embedded systems and mobile devices. For example, 
interconnected sensor devices, i.e. the internet-of-things (IoT), 
are often engineered to be deployed in large numbers to cover 
and relay user commands over a large area. These microsystems 
may be located outside a secure perimeter (e.g., outdoor public 
places) and may require an additional level of security to prevent 
attacks that can compromise their operation.  However, securing 
an SoC against particular threats can carry a high overhead, 
which is sometimes difficult to fulfill in power-constrained 
embedded and mobile systems. Additionally, threats faced by 
SoCs may not be possible to mitigate with software solutions 
alone. Attacks such as power and timing side-channels or 
memory probing will require hardware based defenses. To 
examine which hardware defenses are suitable for low-power 
SoC designs, we survey a variety of common hardware based 
security techniques. 

The scope of this work covers hardware-based security 
techniques related to System-on-Chip (1) processing elements 
including general purpose CPU cores and dedicated hardware 
accelerators, (2) volatile memory, such as caches and main 
memory, (3) non-volatile memories and (4) on-chip 
interconnects such as, Networks-on-Chip (NoC). We examine 
which threat models are covered by each technique, how the 
threats are mitigated, and the reported overheads associated with 
each technique. Additionally, we discuss how each technique 

may apply to low-power SoC systems. A comparison of 
techniques and threats each mitigates is presented. 

II. PROCESSING ELEMENT TECHNIQUES 
In this section, we examine hardware-based techniques to 

defend processing elements in a SoC against a variety of threat 
models. In this context, any non-memory component (we 
consider caches to be memory for the purposes of this survey) 
connected to a SoC interconnect (such as a bus or NoC) can be 
considered a processing element. Common processing elements 
include general purpose CPU cores or dedicated hardware 
accelerators for tasks such as encryption. System-on-Chip 
processing elements face a variety of threat models, including 
malicious software running on trusted processing elements and 
outside attackers attempting to reveal secret information through 
power or timing side-channels.  

A. Secure Enclaves 
Secure enclaves defend against a variety of threats with 

physical isolation. Physical isolation protects secret data and 
computation from side-channel attacks as well as direct, 
unauthorized access. Hardware resources are dedicated to 
security critical functions, such as encryption or authentication. 
Low-power SoCs can utilize secure enclaves for tasks that 
demand the highest level of security. An enclave can operate in 
a low-power state when it is not in use. Several commercial 
secure enclave implementations exist. 

Apple’s Secure Enclave Processor (SEP) [1] is a co-
processor that utilizes memory encryption and hardware-based 
random number generation to carry out cryptographic functions 
for a main Application Processor (AP). SEP creates a logical 
wall between untrusted software and sensitive security functions 
so that untrusted software cannot gain access to sensitive data 
such as fingerprints and keys. The basic architectural design of 
SEP is the separation of computation between the AP and SEP 
processors. In addition to the hardware random number 
generator, SEP also contains an isolated boot ROM and crypto 
engine. Despite this aggressive separation, SEP is still a 32-bit 
processor that coordinates with the AP to share external 
memory. During its boot process, SEP will wait for AP to 
configure a region of memory. Communication between AP and 
SEP is achieved through an interrupt-driven secure mailbox. All 
data originating from the SoC must go through the secure 
mailbox to be used by the SEP. Once SEP has initialized secure 
memory regions, its isolation protects it from software-based 
attacks. Furthermore, after initialization, applications that wish 
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to interact with the encrypted data guarded by SEP must use a 
bootstrap server that can enforce access and privilege rules for 
different functionalities, such as a secure key generation service. 

The ARM TrustZone technology [2] is a single core secure 
processor technology that uses a security approach similar to 
Apple’s Secure Enclave Processor. ARM TrustZone uses 
separation based on the concept of least privilege; software or 
hardware should only have access to the compute resources that 
it needs and nothing more. To implement this secure model, 
TrustZone creates two logical zones: secure world and non-
secure world; the secure world houses the security subsystem, 
while the non-secure world contains everything else. This allows 
a chain of trust to be established. Separation of zones is based 
on secure and non-secure memory partitions. 

Intel’s Trusted Execution Technology (TXT) [3] is a 
hardware-based technology to examine the authenticity of the 
operating system and its running environment. It relies on the 
Trusted Platform Module (TPM) to provide functionalities such 
as secure storage. The purpose of the TXT is to provide a trusted 
mechanism to load and execute system software, e.g., Operating 
System kernel or Virtualization Machine Monitor (VMM), even 
on machines with malicious software and malware. 

Secure enclaves offer strong protection, but generally limit 
performance of security critical functions when compared to the 
performance of their system’s main processor. For example, 
enclaves based on ARM TrustZone that are external to a SoC 
(such as a smart card or a phone’s SIM card) are generally 
limited to a clock frequency of 5-20MHz [3]. Such a clock 
frequency is often not suitable for high-performance systems 
with clock frequencies of several gigahertz. However, low-
power SoC systems (such as IoT devices) generally have lower 
clock frequencies. The lower performance associated with low-
power SoC systems means secure enclaves can reasonably be 
included in low-power SoC designs without drastically 
restricting SoC performance or violating power/area budgets. 

B. Execution Obfuscation 
The execution of security critical algorithms, such as 

encryption, can be undermined by the leakage of information 
through side-channels. Previous works have demonstrated 
attacks related to timing, power, electro-magnetic (EM), and 
fault-based side-channel attacks [4] [5] [6]. The threat model for 
side-channel attacks varies slightly, depending on the side-
channel exploited. Attacks that exploit power or EM side-
channels often require direct physical control of a device. 
Meanwhile, timing attacks are not dependent on the same level 
of direct access or physical control necessary for power and EM 
based side-channel attacks, but do require some level of remote 
control over a system. For example, the Spectre and Meltdown 
class of attacks execute entirely in software and can be exploited 
without physical access to a system [7] [8]. 

Execution obfuscation-based techniques attempt to mitigate 
side-channels without the overhead of the physical isolation 
used in secure enclaves. One example, a co-processor named 
Ascend [9], operates on encrypted user inputs with trusted or 
untrusted programs in a semi-honest server. In the threat model 
used by the authors, a semi-honest server will correctly execute 
a given program with the given encrypted user inputs but may 
also attempt to leak information about the inputs by running 
other programs with them. The authors describe this semi-honest 

model as “honest but curious”. Figure 1 shows a high-level view 
of Ascend’s computation process. 

The Ascend processor uses public/private key pairs to share 
symmetric keys used to decrypt user inputs and program 
binaries, preventing the server from directly observing their 
contents. Power and I/O side-channels are obfuscated by 
activating major architectural components (cache, memory 
interface, register file, etc.) for each instruction, whether or not 
the component is needed. Oblivious RAM, covered in Section 
III-A, is used to obscure the timing, I/O, and power side-
channels related to off-chip memory. In order to mask timing 
information related to program runtime, Ascend receives a time 
and power budget from the user. The encrypted program state is 
returned only after Ascend exhausts the given time and power 
budget. The program execution may be incomplete if the time 
and power budget is not large enough. Otherwise, the program 
results are returned in the program state. Keeping the results 
encrypted prevents the semi-honest server from learning 
anything about the plain text of the user input or final result of 
the program. The semi-honest server only has an estimate of 
how long a user’s operation took to execute. Previous work has 
shown this to be the smallest possible amount of information to 
leak about a program execution [10]. The authors evaluate 
Ascend with several SPEC06int benchmarks and report an 
average of 13.5x slowdown compared to an equivalent non-
obfuscated architecture. 

 
Fig. 1. The flow of Ascend’s secret computation process. 

 
Fig. 2. The hardware/software compiliation and execution flow of Sphinx. 

A different architecture, Sphinx [11], supports obfuscation 
with a hardware-software co-design approach. Sphinx prevents 
attackers from leaking side-channel information with support for 
binary obfuscation and a runtime-reconfigurable level of 
execution flow obfuscation. To obfuscate execution, the 
compilation flow used by Sphinx inserts random instructions in 
the binary and provides an encrypted mask that reveals which 
instructions are real. Reconfiguration allows users to trade-off 
obfuscation and performance by executing, but not committing, 
a user defined level of obfuscation instructions in the binary. 
Multiple compilation runs with the same source will produce a 
unique binary for each run, preventing attackers from applying 
knowledge leaked from one deployment to another. Figure 2 
outlines the hardware/software flow used by Sphinx. Sphinx 
provides a weaker but more flexible obfuscation than Ascend, 
i.e. Ascend is guaranteed to obfuscate most side-channels at all 
times, while Sphinx will only obfuscate side-channels with a 
sufficiently high number of executed obfuscation instructions. 
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However, Sphinx allows users to determine an appropriate 
obfuscation level (and therefore the difficulty in exploiting side-
channels) based on their requirements and maintain much of the 
performance of un-obfuscated execution. Additionally, the 
hardware-software co-design approach and customized binaries 
used by Sphinx provide obfuscation unique to each deployment. 
Knowledge gained by an attacker about one Sphinx deployment 
cannot be applied to another deployment. 

C. Physical Unclonable Functions 
A Physical Unclonable Function (PUF) creates a unique 

identification for each implementation of the same design. The 
uniqueness of most PUFs results from distinct physical 
properties of the implementation that cannot be recreated with 
existing manufacturing techniques. The unique outputs of PUFs 
can be used for authentication or secret key storage. A PUF’s 
precise output is only retrievable with an input and the physical 
characteristics of the PUF itself. Although the PUF concept has 
been known since 1983 [12] [13], the term PUF only came into 
existence in 2002 [14]. PUF-based technology is a promising 
technique for silicon device fingerprinting [15] [16]. 
Researchers are studying and developing different types of 
PUFs and their implementations.  

There are three main classes of physical unclonable 
functions (PUFs), namely, strong PUFs [14] [17] [18], 
controlled PUFs [19] [20], and weak PUFs or physically 
obfuscated keys (POKs) [21, 22]. Each class has its own 
application target domain and security features. A PUF can be 
categorized as an explicitly-introduced randomness PUF or 
intrinsic randomness PUF, based on how the randomness is 
introduced in [23]. For explicitly-introduced randomness PUFs, 
optical PUFs (non-electrical) and coating PUFs are the two main 
sub-classes [24] [25]. Intrinsic randomness PUFs are used more 
often, because they can be included in a design without 
modifications to the manufacturing process [26].  

A secure PUF must be unpredictable, unclonable, and 
tamper detectable. Unfortunately, due to implementation 
challenges or flaws, many PUFs have succumbed to some sort 
of attack [27][28][29]. Many attacks try to acquire information 
on the PUF inputs and outputs, known as challenge-response 
pairs (CRPs). For example, in 2013 several researchers showed 
that it is possible to clone a SRAM weak PUF by reading the 
SRAM memories out through either standard on-chip channels 
or laser stimulation [30] [31]. Strong PUFs allow anyone to hold 
a large subset of the CRPs; thus, they are vulnerable to modeling 
attack. Researchers, e.g., [32], [29] [33], have used machine 
learning techniques to model Arbiter and Ring Oscillator PUFs 
and have had good success in predicting the PUF’s unknown 
CRPs. Researchers have also studied the information leakage 
from the PUF’s public helper data [34]. In recent works, there 
have been attempts to combine both modeling and side-channel 
attacks to improve an attack’s effectiveness [35]. This type of 
attack has successfully modeled some strong and secure PUFs 
such as XOR Arbiter PUFs and Lightweight Secure PUFs, 
achieving a 99% successful prediction rate. Besides passive 
learning attacks, PUFs can also be tampered with physically to 
alter the response behavior permanently and noticeably. 

Despite these shortcomings, PUFs allow authentication or 
secret storage to be rooted in hardware. Many of the PUF attacks 
described above are more difficult to exploit (requiring invasive 
attacks on the hardware itself) than attacks on alternative 

software-based authentication and key storage schemes. 
Additionally, the simplicity of PUFs makes their area and power 
overheads minimal. For these reasons, PUFs provide a suitable 
option for low-power SoC systems in need of secret key storage 
or device authentication schemes. 

III. VOLATILE MEMORY SYSTEM TECHNIQUES 
Next, we examine hardware-based security techniques 

focused on volatile memory systems on SoCs. Volatile memory, 
such as a cache or main memory, will frequently store secret 
information, such as encryption keys or decrypted data. Storing 
such sensitive data makes non-volatile memories valuable 
targets for attackers. The scope of this paper is limited to cache 
and on- or off-chip main memory systems. A variety of previous 
works have demonstrated attacks on these systems. Side-
channel attacks such as the Spectre family of attacks, target 
access-based timing side-channels in cache subsystems [7]. 
Attacks focused on main memory range from cold-boot attacks 
[36], targeting off-chip DRAM, to timing and access pattern 
side-channels in both on-chip and off-chip memories.  

A. Oblivious RAM 
Oblivious RAM (ORAM) obfuscates the access pattern of a 

memory visible to an attacker in order to prevent information 
leakage. Oblivious RAM was first proposed in [37] and was 
built upon by [38] and [39]. The threat model for ORAMs 
assumes an attacker has access to the memory and bus or is 
otherwise able to observe the memory content, accessed 
addresses, and operations (read/write). However, in the threat 
model, attackers cannot probe the internal state of the system 
issuing the memory requests. Security focused SoCs have 
leveraged ORAM to prevent attackers with physical access to a 
processor and its off-chip memory from learning anything about 
the program being executed or the data it is executing on [9]. 

A variety of ORAM implementations have been proposed. 
One implementation, Path ORAM [39], uses a binary tree 
structure in the ORAM memory to split data into buckets of a 
small constant size. Buckets of data are encrypted to hide their 
contents from attackers. To obscure the bucket being accessed, 
whole paths of the binary tree (from root to leaf) are read and 
written for each operation. Path ORAM’s use of the binary tree 
structure and the reading of whole paths result in a simple and 
efficient ORAM scheme suitable for hardware implementation. 
A memory controller on a host processor must maintain a 
position map to track which data is mapped to which bucket in 
the tree. The position map is stored in the processor’s on-chip 
memory which is assumed to be out of reach for attackers. A 
relatively small amount of processor-side storage is used to hold 
blocks of data during read and write operations. 

Path ORAM implements oblivious RAM with a required 
bandwidth of �������  for �  blocks of data in the ORAM 
memory. The authors describe a recursive implementation of 
Path ORAM to reduce the required client-side storage at the cost 
of increased bandwidth between the client and ORAM memory. 
Client-side storage is reduced by storing the position map of the 
Path ORAM in a smaller Path ORAM memory. Position maps 
are recursively stored in smaller Path ORAMs until a constant 
sized position map can be stored on client storage. 

Another implementation, described in [38], uses a 
randomized shell sort [40] and cuckoo hashing [41] to 

 
978-1-7281-5020-8/19/$31.00 ©2019 IEEE



implement an ORAM scheme. The main advantage of the 
scheme presented in [38] is the ���� storage size. This storage 
size means that the entire ORAM memory is used to store useful 
data. This is not the case in Path ORAM, where some ORAM 
memory may be used to store the recursive position maps. Use 
of the entire memory comes at the expense of increased 
bandwidth requirements. 

The complexity and overhead of current ORAM schemes 
often mean that ORAM cannot practically be incorporated into 
many systems, especially power constrained systems, such as 
the low-power SoCs focused on in this survey. Battery powered 
devices, in particular, are often susceptible to threats defended 
against by ORAM, i.e., an attacker with physical access to a 
device’s memory in an uncontrolled environment. However, the 
inclusion of ORAM would often lead to unacceptably short 
intervals between battery recharges. While new ORAM 
implementations, such as Path ORAM [39] improve on the 
complexity or overhead of other implementations, more 
research must be completed before ORAM is suitable for most 
battery powered devices. Future research could focus on 
improving the efficiency of existing ORAM implementations or 
developing new techniques to obscure content and access 
patterns to a memory system. 

B. Memory Encryption 
Encrypting memory (either on-chip or off-chip) used by a 

processor offers less protection than ORAM but incurs 
significantly lower power, performance, and area overhead.  
Memory encryption is sufficient for protecting memory against 
an attacker capable of observing data in a memory but not its 
access pattern. For such attack models, either the access pattern 
is not considered secret or the attacker is assumed to be unable 
to interpret it. Attackers are usually assumed to have physical 
access to the to the memory. 

Memory encryption is relatively simple to implement 
compared to existing ORAM schemes. The two techniques are 
compared in Figure 3. Generally, memory encryption is 
achieved with a hardware encryption module placed between a 
processing element and the vulnerable memory interface to 
encrypt blocks of data as they exit the security boundary and 
decrypt them as they enter it. AES based encryption is frequently 
used for main memory encryption [9] [42]. ORAM schemes 
require both the encryption module and an additional controller 
to manage the ORAM and return the appropriate read data. 

 
Fig. 3. ORAM scheme and memory encryption block diagrams. 

The main challenge of implementing secure memory 
encryption is adequate protection of the encryption key. The 
volatile nature of most main memories means that encryption 
keys only need to last the duration of a system’s powered on 
state. The ability to use a new key at each system restart removes 
the significant challenge of protecting encryption keys when the 

system is powered off. The tradeoff is that a cryptographically 
secure random number generator must be present in the system 
to generate new keys each startup. With new keys used at each 
startup, users are not required to know or store a password and 
neither is the system, removing the possibility of the password 
being stolen while the machine is off. 

Memory encryption systems implemented by AMD utilize 
an isolated ARM microcontroller and hardware random number 
generator to generate new random keys at each system reset 
[42]. The generated encryption key is stored in dedicated 
registers. The microcontroller and encryption key are not 
accessible to software running on the CPU. However, 
safeguards must be implemented to prevent attacks on the 
random key generation at system startup. Any firmware used to 
generate or manage the keys must not be readable or writeable 
by untrusted parties with physical access to the device.  

C. Cache Architecture 
Memory encryption and ORAM schemes can be applied to 

a SoC’s main memory but they do not defend against cache-
based side-channels such as the Spectre family of attacks [7]. 
Many cache-based side-channels measure the timing of memory 
accesses. Information is communicated to an attacker based on 
the length of their memory access. One such side-channel is the 
Prime+Probe cache side-channel discussed in [43].  

In order to execute a cache side-channel attack based on a 
Prime+Probe side-channel, an attacker must have the ability to 
execute arbitrary code on a CPU sharing a cache with the victim. 
No physical access is required for a successful attack. The ability 
to execute cache-based timing side-channel attacks without 
physical access makes Virtual Machines (VM) running 
alongside other VMs on a cloud provider’s hypervisor 
particularly vulnerable to these attacks. 

Recent research has focused on mitigating or eliminating 
cache-based side-channel attacks. In one such example, the 
authors develop a non-monopolizable (NoMo) cache 
architecture that partitions shared caches between threads of 
execution on a simultaneous multithreaded (SMT) processor 
[44]. This prevents a victim and attacker from evicting each 
other’s cache line. The NoMo cache architecture reserves at 
least one way of the cache for each thread. However, not every 
way must be reserved. A 4-way cache shared between two 
hardware threads could reserve one way for each hardware 
thread and share the other two ways between them. Information 
cannot be leaked from reserved cache ways because an attacker 
cannot influence a victim’s reserved cache. However, 
information can be leaked through the shared cache ways. Most 
known access-based cache timing side-channels could be 
completely eliminated by assigning each way to a thread, 
effectively creating multiple isolated, unshared caches dedicated 
to a hardware thread. However, in practice, this would carry a 
high-performance overhead, as the whole cache capacity would 
never be available to a single thread. 

Another cache architecture to mitigate side-channel attacks 
is Janus [45]. Janus allows programs vulnerable to cache-based 
side-channel attacks to enable or disable arbitrary cache blocks 
to create timing and power behavior that is dynamic and difficult 
to extract information from. The Janus cache architecture is fully 
associative and uses a Least Recently Used (LRU) replacement 
policy. Each block in the cache is marked with an additional flag 
to indicate if the cache block is considered active or inactive. 
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When a cache block is considered inactive, it will retain its data 
but all memory requests to that block automatically miss. 
Disabling blocks in a fully associative cache gives vulnerable 
programs control over the effective hit rate of the cache, because 
all data will remain cachable while at least one cache line is 
enabled. The state of each cache block (active or inactive) is 
controlled with an activate and deactivate instruction. Programs 
vulnerable to side-channel attacks can execute these instructions 
to obscure their side-channels. The Janus cache architecture is 
evaluated with several benchmark programs and the variations 
in execution time for different activations of blocks is examined. 
Although it defends against different side-channels, Janus could 
be designed to prevent access-based cache timing side-channels, 
such as Prime+Probe, by requiring a high privilege level to run 
the custom instructions. A trusted OS could execute the activate 
and deactivate instructions transparently to user level programs. 

Eliminating cache-based side-channel attacks is an area of 
active research and will undoubtedly receive continued focus in 
future works. While the Janus and NoMo cache architectures 
can significantly reduce the likelihood of a successful cache-
based timing side-channel attack, stronger isolation is needed to 
guarantee no such side-channels exist. For cases that require 
such guarantees, eliminating shared caches or including a secure 
enclave (Section II-A) is likely necessary. 

IV. NON-VOLATILE MEMORY SYSTEM TECHNIQUES 
Embedded systems and low power SoCs are often in 

uncontrolled environments where an attacker could have 
physical access to a device’s non-volatile memory (NVM). 
These systems store sensitive data including programs, 
operating systems or encryption keys in their NVM. With access 
to a system’s NVM, an attacker could read or modify the 
contents, allowing them to steal keys or write malicious software 
to the device. To counter such attacks, researchers have 
developed encryption and authentication techniques for non-
volatile memory. New technologies such as nanoelectro-
mechanics, offer the possibility of new non-volatile memory 
architectures with an additional focus on security.  

A. Full Disk Encryption 
One of the simplest ways to protect a system’s non-volatile 

memory is with full disk encryption. Full disk encryption 
prevents an attacker with physical access to a lost or stolen NVM 
device from reading its contents. Generally full disk encryption 
is handled with software, encrypting and decrypting data as it is 
read and written to the disk [36]. Some drives handle full disk 
encryption in the drive’s hardware and software (firmware) 
freeing the host CPU from the encryption task. These drives are 
known as self-encrypting drives (SED). While handling 
encryption on a drive eliminates successful cold boot attacks on 
the system’s main memory, these drives are often vulnerable to 
similar attacks on their own internal memory. The authors of 
[46] demonstrate that some SEDs are vulnerable to hot-plug 
attacks where the decryption password is given by the host PC 
before the SED’s serial advanced technology attachment 
(SATA) cable is removed and attached to an attacker’s system. 
The authors found that many SEDs do not check if the SATA 
cable has been removed and, therefore, remain decrypted as long 
as they are connected to power. 

B. Limited-Use Memory 
In hardware and circuit design, minimizing the effects of 

circuit or device wearout is often a key goal of designers. After 
a new technology is created, generally, researchers focus on 
improving the technology’s endurance to create practical 
products. However, the authors of [47] take a different approach. 
They propose a design that leverages the limited endurance of 
nanoelectromechanics (NEMS) switches to develop devices 
resistant to brute force password attacks. Their threat model 
assumes a mobile device, such as a smart phone or other 
embedded system, has been fabricated and programmed by a 
trusted party (i.e. an attacker cannot use a backdoor to attack the 
device). As the device is considered mobile, an attacker is 
assumed to have physical access to it. The attacker’s goal is to 
unlock the device with a brute force password attack, gaining 
access to its protected data. 

To prevent this, the authors design NEMS switches with an 
endurance to match the lifespan of the device. For example, 
NEMS switches could be included in the read logic of the 
password hash memory on a smartphone. The NEMS switch 
circuit could be designed to support 50 reads (phone unlocks) 
per day for the lifetime of the device. Assuming a lifetime of 
five years yields 91,250 reads. Each phone unlock requires the 
NEMS switches to activate, increasing the chance of their 
failure. After the switches fail, the read logic of the memory will 
no longer function. Limiting the endurance of the read logic 
allows a user to unlock the device for the entire expected 
lifespan but prevents most brute force attacks on a reasonably 
complex password. The key challenge with designing NEMS 
switches for a given endurance is ensuring the minimum and 
maximum number of device operations is supported. Generally, 
the endurance of a single switch cannot be controlled with the 
precision needed to ensure it fails shortly after the device’s end-
of-life. The NEMS switches examined by the authors fail after 
less than 1,000 cycles for low endurance switches or after 
millions of cycles for high endurance switches. In order to 
achieve the desired minimum and maximum bounds, the authors 
propose the use of multiple NEMS switches. Several low 
endurance switches can be placed in parallel, providing 
functional read logic while at least one switch is still working. 
Alternatively, several high endurance switches can be placed in 
series to provide reliable read logic while all switches are 
functional. Figure 4 shows series and parallel implementations 
of NEMS switches. To further control the bounds of reliability, 
the authors propose using Shamir’s secret-sharing scheme [48] 
to produce a parallel structure where k out of n switches must 
remain functional for the memory to be reliably read. 

 
Fig. 4. Series high endurace switches (a), parallel low endurance switches (b). 

The NEMS based circuits proposed in [47] show a promising 
technique to root the security of non-volatile memory in the 
physical properties of the technology it is built with. The authors 
note that their research is an early work and focus on 
demonstrating effective control of the minimum and maximum 
wearout bounds for switch designs. The implementation of a 
memory utilizing the proposed switch designs is left for future 

(b)(a)
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work. More research must be completed before a practical 
implementation can be created. 

V. NETWORK-ON-CHIP INTERCONNECT TECHNIQUES 
In System-on-Chip (SoC) designs of sixteen or more 

processing elements, Network-on-Chip (NoC) has become the 
preferred communication interconnect architecture [49]. Since 
the interactions between processing elements in these systems 
happen in the NoC, it has been a fertile ground for attacks. 

In general, NoC-based communication architectures are 
vulnerable to three types of attacks [50]. The first is On-Chip 
Denial of Service (OC-DoS) attacks: where a rogue PE injects a 
deluge of useless packets into the network, blocking another PE 
from accessing a needed resource or severely degrading the 
system performance. The second is Virtual Channel (VC) 
attacks: the router’s VCs can be plowed, allowing malicious 
flows to build their packet contents out of other flows' residual 
data. The third is physical memory attacks: traditional security 
features built in the Memory Management Unit (MMU) or the 
Direct Memory Access (DMA) can be circumvented. In these 
architectures, memory modules tend to be distributed shared 
resources servicing both local and remote PEs. The security 
mechanisms implemented between the local PE and the memory 
module are often more defined. Remote accesses through 
network are more vulnerable. 

Most NoC focused security features attempt to provide some 
level of isolation in the NoC. Given the latency sensitive nature 
of NoC communication, techniques such as encryption and 
authentication frequently carry too high an overhead for most 
systems, especially the low-power SoC systems focused on here. 

A variety of techniques have been proposed to prevent or 
mitigate the NoC attacks described above. Wassel et al. 
implement a non-interfering scheme for secure NoC in SurfNoC 
[51]. Sajeesh and Kapoor have highlighted in [52] some of the 
advantages of implementing security policies at the network 
interface level in NoC based systems for secure communication 
among such IP cores. In [53], Porquet et al. introduce a solution 
for co-hosting different protection domains on the same shared 
memory multiprocessor SoC using a NoC architecture. 

Kinsy et al. have proposed a framework for a secure many-
core computing architecture where different trust level cores can 
be integrated onto the same chip [54] [55]. Their proposed 
design includes (1) a processing-element-oblivious secure 
network interface architecture, (2) a programmable, efficient, 
and distributed group key management algorithm, and (3) a 
hardware-supported, security-aware on-chip routing. The area 
overhead of the framework is 17% for the benchmarked system. 

Modern SoC designs frequently leverage IP from a variety 
of third parties. Adding security features to the interconnect 
between them can prevent a malicious IP from disrupting the 
entire system. While the overheads of systems such as [54] and 
[52] can be moderate or high, the defenses they provide will 
become more and more important as SoCs are increasingly built 
with untrusted IP cores. 

VI. TECHNIQUE COMPARISON 
In this section, we summarize which hardware-based 

security techniques can mitigate the various attacks mentioned 
in this survey. Secure enclaves can mitigate data theft and 
access-based cache side-channels with physically isolated 

hardware but do not prevent power-based side-channels without 
purpose built features such as ORAM or execution obfuscation. 
While execution obfuscation can mitigate on-chip side-
channels, it does not directly protect off-chip memory. For that, 
memory encryption  or ORAM are needed. Protecting non-
volatile memory generally requires disk encryption, but 
encrypted drives can be vulnerable to brute force attacks. 
Memory designed for a limited number of uses could prevent 
such attacks if reliability challenges can be overcome. 

It is clear that no single technique is adequate to defend 
against each of the attacks faced by low-power IoT devices. The 
attacks described here cover only a small portion of all possible 
attacks. The attacks mitigated for each technique discussed in 
this survey are shown in Table 1. 

Modern attacks faced by computing systems have made it 
apparent that software based security alone is not sufficient. 
Systems in uncontrolled environments are vulnerable to attacks 
leveraging physical access, in addition to remotely exploitable 
side-channels and software vulnerabilities. To mitigate these 
threats, the security of vulnerable systems can be rooted in 
hardware. PUFs and limited use memory offer examples of this 
hardware rooted security. By combining several hardware-based 
security techniques in low-power SoC systems, designers can 
target their protection to match their threat model. Continued 
research focused on reducing overheads of existing techniques 
and the development of new ones will enable SoC designs to 
mitigate a larger number of attacks. 

 
TABLE I.  ATTACKS MITIGATED BY EACH TECHNIQUE. 

VII. CONCLUSION 
In this survey, we have examined hardware security-based 

techniques suitable for low-power SoC designs. Given the 
uncontrolled environments that low-power SoC based 
embedded and mobile systems often operate in, techniques to 
mitigate threats based on physical access or remote side-
channels were explored. Attacks faced by low-power SoCs 
target all aspects of the system including processing elements, 
volatile memory, non-volatile memory, and NoCs. As such, we 
have explored security techniques related to each of these major 
SoC subsystems. Advantages and disadvantages of each, as they 
relate to low-power SoCs, were discussed. Comparisons of the 
mitigated threats demonstrate that no single technique can defeat 
the numerous attacks faced by low-power SoCs deployed in 
uncontrolled environments. To secure their systems, designers 
must leverage several techniques to mitigate the most prevalent 
threats faced by their systems. 
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