Journal of Hardware and Systems Security
https://doi.org/10.1007/541635-018-0047-0

@ CrossMark

SRASA: a Generalized Theoretical Framework for Security
and Reliability Analysis in Computing Systems

Lake Bu' © . Jaya Dofe? - Qiaoyan Yu? - Michel A. Kinsy'

Received: 15 February 2018 / Accepted: 27 August 2018
© Springer Nature Switzerland AG 2018

Abstract

Although there is a pressing need for highly secure and reliable computing systems, there is a glaring lack of formalism
under which the properties of reliability and security can be jointly designed into these systems. This gap can primarily
be attributed to the evolution of the two subfields. In the work, we introduce a unified generalized theoretical framework,
called security and reliability aware state automaton (SRASA), to formally describe the specifications of a computer system
that cover both security and reliability. SRASA is a 22-tuple finite state machine model that encompasses both physical and
abstract states of the system, which may suffer from passive and active attacks. Three case studies illustrate the interpretation
and application of the proposed SRASA theoretical framework. Our analysis and experimental results show that a non-
physical attack may exploit unspecified or untested states to implement the malicious purpose, rather than introducing a
new state to the system. To the best of our knowledge, this is the first attempt to bridge the current design specification gap
between secure and reliable computing systems using a unified automaton approach. A general yet complete methodology
that will encompass all aspects of system design, from the functional level specification to the gate level design at any system
granularity, may not be feasible or it may be beyond the scope of a single work. Therefore, we aim in this work to (1) give
an overview of the current landscape of reliability and security in systems design, (2) introduce a generalized framework to
specify and reason about both reliability and security in the system design process, and finally (3) be general enough in the
framework specification that it can be adopted or customized to more specific or concrete design instances.

Keywords Hardware - Reliability - Security - State machine - Testing - Evaluation

1 Introduction at an astonishing frequency, scale, and sophistication. This

problem will only exacerbate as we go deeper in the Internet
The problem of secure and reliable computer system design of Things (IoT) era. IoT is growing three times faster than
is now a pressing issue. Cybersecurity incidents are happening traditional computing platforms. Recent studies suggest that
as many as 50 billion IoT devices will be installed by
2020 [30]. In fact, cybersecurity and reliability are now
critical concerns in a wide range of embedded computing

This research is partially supported by the NSF CAREER grant modules, communications systems, and connected devices.
(No. CNS- 1652474) and NSF grant (No. CNS-1745808). The traditional design approach of examining the security
4 Lake Bu and reliability properties of a computing system in a two-
bulake@bu.edu step procedure is no longer viable because of their interplay.
Jaya Dofe Currently, there is a glaring lack of formalism under which
jhs49 @wildcats.unh.edu the properties of reliability and security can be jointly
Qiaoyan Yu designed into computer systems.
Qiaoyan.Yu@unh.edu In this work, we define “reliability”” as the property of keep-
Michel A. Kinsy ing the computing system in a known/functional/accepted
mkinsy @bu.edu set of states. Any deviation from this set of states due to
1 Department of Electrical and Computer Engineering,
Adaptive and Secure Computing Systems Laboratory,
Boston University, Boston, USA B University of New Hampshire, Durham, NH, USA

Published online: 12 September 2018 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-018-0047-0&domain=pdf
http://orcid.org/0000-0002-9450-6533
mailto: bulake@bu.edu
mailto: jhs49@wildcats.unh.edu
mailto: Qiaoyan.Yu@unh.edu
mailto: mkinsy@bu.edu

J Hardw Syst Secur

random events or designer errors, i.e., a larger set of oper-
ations, will be deemed unreliable. In the case of “security,”
we define it to be a harmful attempt to either (1) create a
deviation from the accepted set of states or (2) exploit the
limitations of the functional set of states. This definition of
security covers both active and passive attacks, direct state
manipulation, and non-interfering information analysis.

From these definitions, one can already discern key
similarities and differences between security and reliability.
For example, non-interfering information analysis concerns
in security do not extend to reliability. On the other hand,
for state space deviations, although causes may be different,
the system effects’ manifestations may be similar.

Therefore, in this work, we will restrict our exploration of
reliability, security, and derivation of quantifiable evaluation
metrics to system state set analysis. It is fair to label this
restriction as idealistic. Needless, we view this fencing of the
problem a good starting point to explore these two concepts,
reliability and security, from a mathematical analysis point
of view.

Although, the formalism of finite state automata/machines
under which computing systems are built is well understood,
implementation considerations often betray this formalism.
Attacks on these systems generally tend to exploit this
gap between the formal specification and implementation.
Practically, one cannot design an infinite state computing
system. The state space is determined by the variables in
the system which all have finite ranges, e.g., communication
bus wires. Because of this physical implementation
constraint, one can neglect to clearly separate these
three aspects of the system: (1) formal specification—
mathematical description of the system function, behavior,
and properties; (2) functional specifications—capabilities
and interfaces; and (3) functional implementation—hard or
soft realization of the structure to carry out the function.

The organization for this work is organized as follows.
Sections 2 and 3 provide the overview of computer system
reliability and security, respectively. Section 4 summarizes
the overlap of system security and reliability. In Section 5,
we formalize the security and reliability in a unified general-
ized framework. Three case studies illustrate the proposed
framework in Section 6. We conclude this work in Section 7.

2 Overview of Computer System Reliability

In this section, we explore the system reliability issues
through the error models and solutions a reliable system
usually is able to deal with. We will also study the limitation
of those approaches. In this section, we refer the original

@ Springer

source data and system states, as the information a system
holds.

2.1 Brief Overview of Reliability

Due to the flimsy nature of the early computing systems,
the concepts of the availability and reliability quickly
became front and center design and specification issues.
For example, the Harvard Mark I [1], built in 1944 in IBM
Endicott laboratories, broke down once a week. The system
weighed 5 tons and had 750,000 components. Consequently,
the early definition of reliability in these systems took a very
operational view. Reliability was defined as the conditional
probability that the system would remain operational during
the time interval [0, ¢], given that it is functional at time r =
0. This definition has led to the widely used notion of Mean
Time to Failure (MTTF) or Between Failures (MTBF). The
process that addresses system reliability is further broken
down into few steps: (1) fault monitoring via detection;
(2) fault mitigation through confinement, masking, and
correction; and (3) fault recovery by system reconfiguration
and state restoring.

2.2 Error Models for Reliability Problems

Since reliability cares mostly about a system being properly
functional for a specific period of time, thus the non-
invasive abnormalities, such as information leakage, will
not be considered as a problem that concerns a reliable
system.

Reliability issues are essentially loss of functionality
problems. This usually appears as either the loss of data
integrity or erroneous system state transitions. The two can
be closely related to each other. For instance, a distortion of
a variable value may lead to a wrong conditional jump, or
inappropriate memory read may result in the change of data
in memory cells.

2.2.1 Error Types

If we treat both the data and the state as the necessary
information that a system holds in order to operate, then
there are commonly two representative error types leading
to the loss of functionality:

1. Missing of part of the information;
2. Distortion of the information.

Both can be spotted by error detection in a system.
To restore the system functionality, the former requires
information regeneration based on the remaining known

J Hardw Syst Secur

information, and the latter information correction, which is
more challenging. Both can lead to either an error that can
be handled by a reliable system, or a system failure.

2.2.2 Error Characteristics

Reliability does not address all the problems. For the errors
that a reliable system can deal with, some of their common
characteristics are:

1. Observable: the errors can be observed by comparing
the distorted information with the original. Reliability
rarely addresses information leakage problems.

2. Random: the errors should be caused by randomly
generated faults due to the system’s own instability
(such as manufacturing flaws or aging), or external
environment factors (such as unstable power supply,
change of temperature, etc.).

3. Finite: the errors are usually bounded by limited
magnitude and number. The reliability design of a
system is usually based on the experience of the
observed errors in the past, or the estimation of
predictable instability.

In contrast, in a secure system, more problems should
be taken into consideration: the errors can be carefully
chosen and injected by the attackers, the attacks can be non-
invasive such as side-channel, there may not be a limitation
to the errors’ frequency or multiplicity. The secure system
designers have to go beyond the past experience and strive
for the solutions for the more (or the most) grave situations
a system can encounter.

2.3 Solutions for Reliability Problems

Altogether, the goals of a reliable system can be classified
as (i) error prevention, (ii) error monitoring, and (iii) error
recovery (cf., Sections 2.2.1 and 2.2.2). Generally, extra
resources (storage, power, delay, hardware, etc.) can be
added to the design to attain the abovementioned reliability
features.

2.3.1 Error Prevention

One approach to achieve reliability is to prevent the system
being harmed by its design flaws or instability before any
fault could happen. For example, the hardened storage cells
for memory [29] and hazard-free circuit for logic design
can efficiently prevent some common faults or glitches from
happening, such as single-event upset (SEU), single-event
transients (SET), or other types of logical hazards.

2.3.2 Error monitoring

It is not uncommon for errors to happen in a system
designed with error avoidance. Therefore, another important
aspect of reliability design will be error detection. Usually
this is attained by monitoring the system for the error types
in Section 2.2.1 by both offline and online testings.

The offline testing uses a large set of random tests
to apply to the system when it is not running any tasks
(i.e., at idle state) and compares the results with the
pre-stored reference results. Usually, exhaustive tests are
hard to accomplish because of the limitations of cost and
time. Therefore, the system designer and user should have
an agreement on the trade-off between the desired test
coverage and the cost.

The online testing runs the test during the system
operation and generates real-time signatures to verify
the correctness of the system’s functionality. It requires
additional hardware, software, or time redundancies in order
to monitor the errors in operation.

Tests can be applied to different levels of a system, from
as low as electronic components, circuits, and subsystem to
system level. It helps a system discover its instability and
builds confidence of its functionality.

One widely seen example of error detecting scheme is
the duplication subsystem [25], where two systems with
identical functionality will perform the same operations,
and the results of which will be compared. An inequality
indicates an error detected on either of the two systems.

2.3.3 Error Recovery

The greater need, other than detecting the errors, is to
recover the functionality when errors truly happen to the
system.

A self-checking or self-healing scheme needs to meet at
least but not limited to these criteria:

1. It does not affect the functionality of the original
system;

2. It generates real-time signatures corresponding to the
system operations;

3. The signatures enable the system to detect and correct
(or mask, mitigate) errors.

This scheme usually consists of a real-time signature
generator and a verifier which takes both the original
system’s information and its corresponding signature for
self-healing.

The triplication scheme is both an error detection and
correction subsystem with fault tolerance. Instead of two

@ Springer

J Hardw Syst Secur

identically functional systems, it involves three in each
computation task. One system’s output can be viewed as
the original information, the other two’s the signature. A
majority voting will be carried out among the three to
tolerate the malfunction of a single system [23].

It is notable that in order to enhance the reliability of
a system, except some approaches such as memory cell
size increasing, most of the techniques hold the nature of
linearity. This is because linear functions are easier to scale,
compress, and reverse, making them befitting the demands
of reliability-oriented designs in testing, error locating,
information restoration, etc.

2.4 Limitations of Reliability-Oriented Designs

Although reliability-oriented designs can settle most ran-
dom factor-caused problems, there are certain intrusions
beyond its capability.

2.4.1 Excessive Random Errors

As stated previously, the design of a reliable system is
usually based on the past experience of the most common
observed errors. Therefore, when the random errors exceed
the capability of the system, it will result in misdetection of
errors or failure of system.

2.4.2 Injected Errors from Attackers

If a reliable system is designed with linear functions in
order to restore its distorted integrity, then attackers can
take advantage of it to inject invisible errors, which will
never be spotted by the system. In addition, unlike security-
oriented designs, the reliable designs usually have no secret
(encryption key, digital signature, etc.) hidden from anyone,
making it easier for the attackers to exploit the system.

The excessive random errors and injected errors from
attackers usually can appear in a similar pattern: both could
be invisible or uncorrectable to the reliable systems. How
to draw a line between the two is worth discussion. One
reasonable assumption one could make is that the excessive
random errors should appear neither too frequently nor in a
great density. A probability bound of the excessive random
errors can be set such that once those errors are observed in a
frequency or density above this bound, it can be categorized
into attacks.

2.4.3 Non-Invasive Attacks
While a reliable system aims to maintain its functionality, it
is not resistant to non-invasive attacks which do not affect

the system operation, but only acquire system information
stealthily. For example, eavesdropping, side-channel, or

@ Springer

man-in-the-middle are all beyond what a reliable system can
handle.

3 Overview of Computer System Security
3.1 Security Threats

The security of the system is mainly defined by confiden-
tiality, non-repudiation, integrity, availability, and resilience
to physical attacks. Confidentiality ensures that sensitive
information is protected from unauthorized entities. Ensur-
ing confidentiality is ensuring that those who are authorized
to access information are able to do so and those who are not
authorized are prevented from doing so. Non-repudiation is
the assurance that an entity cannot deny its involvement in
the action that it took part of. Integrity includes maintain-
ing the consistency, accuracy, and trustworthiness of data
or resources. To maintain the integrity, data and resources
cannot be modified by the adversary or third party with-
out authorization of a legitimate user. Availability refers
as access to the information and other important resources
without undue delay and on demand by an authorized entity.
To maintain the availability, the system should perform the
rigorous maintenance of the hardware and system resources
to ensure the smooth operations. Physical attacks like bus
probing, timing analysis, fault induction, power analysis,
and electromagnetic analysis have been demonstrated to be
powerful in easily breaking the security.

In this work, we will focus on integrity and availability
attacks as these attacks share common ground for the
reliability and security.

3.1.1 Integrity and availability attacks

The attacker’s objective can range from stealing private
information (confidentiality/privacy), destroying the system
(availability), or tampering the system states or data
(integrity) for other than its intended purpose.

Integrity is compromised when the intruder modifies
or deletes the important data or tampers the resources
to fulfill his/her malicious intentions. Availability attacks
disrupt the normal functioning of the system by misusing
system resources so that they are not accessible for
normal operation. Integrity and availability attacks require
interfering with the system in some manner; hence, they
need active participation of the attacker. We listed the
following attacks which harm the integrity and availability
of the system.

Integrity and availability objectives can be thought of as
common grounds for security and reliability of the system.
These objectives essentially spoke for the security aspect of
the systems.

J Hardw Syst Secur

1. Man in the middle (MITM) attack: MITM attack
is one of the most common type of security attacks
[11] which threatens integrity and availability of the
system. MITM attack risks the integrity by intercepting
the communication between two end points and
modifying the data. It also threatens the availability of
communication by intercepting and destroying data or
modifying data to seize the communication.

2. Denial of service (DoS) attack: The goal of the DoS
attacks limit the availability of the system.

3. Attacks due to Virus/Trojan horse/Worms: A
malicious software may carry virus, Trojan horse, or
worms. A common feature of these malware is that they
all have undesirable, potentially harmful functionality
which will infect the system in a destructive way.
These attacks can manipulate the sensitive data or
processes harming the integrity as well as denying
access to system resources threatening the availability.

4. Fault injection attack: Fault injection attacks rely on
changing the external parameters and environmental
conditions of a system and can be performed by delib-
erate injection in system’s component with the help
of white light, laser beam, voltage/clock glitch, and
temperature control, radiation, etc. [3]. Fault injection
attacks can obstruct availability of the system. Faults
can be inserted in the system to disturb the normal
function, e.g., set the bus lines to constant value [33].
This attack can cause integrity concerns where adver-
sary can inject the faults to corrupt the data or code
stored in the system components like memories.

5. Hardware Trojans: Hardware integrity can be chal-
lenged through malicious additions, i.e., hardware
Trojans (HTs) in Network on Chip (NoC) [7]. The
inserted hardware Trojans can pose Denial-of-Service
(DoS) threats which will cause network degradation
and eventually availability issues in the systems. Hard-
ware Trojans can be used to inject faults [44] to further
reduce the integrity of the device.

Fig. 1 Integrity and availability
attacks

Attacks

Software =

Hardware--

Hardware Trojan

Fault Injection

Figure 1 shows an illustration of these attack domains
and their grouping.

3.1.2 Confidentiality Attacks

Although there do exist invasive attacks to break a
system’s confidentiality, such as injecting errors to AES
stages in order to steal the secret key, confidentiality
attacks are usually non-invasive. Unlike integrity and
availability, confidentiality is a problem that usually does
not concern reliability-oriented systems since it does not
affect the functionality of a system. A system can be
reliable in carrying out its operations, but leaking important
information to the attackers at the same time. Some of the
ways to break a system’s confidentiality are:

1. Eavesdropping: for example, MITM can intercept the
information sent between two terminals;

2. Side-channel: for example, power analysis;

3. Unauthorized readout: for example, reading out the
unprotected content in memory cells.

3.2 Existing Hardware Infrastructures for Security

The existing system security features rely on protecting the
system components by modifying the hardware infrastruc-
ture. In computing devices, traditional operating systems
and the services are becoming so large and complex that
the task of securing them is increasingly harder. To fill
this gap, the hardware-based trusted execution environments
(TEEs) were developed. TEE on a device is isolated from
its main operating environment by using hardware security
features. The trusted execution environment can be realized
in different ways, but the overall concept stays the same.
Hardware-based trusted execution environments offer iso-
lated execution, secure storage, remote attestation, secure
provisioning, and trusted path. However, none of the TEE
considers the reliability concerns at the system level. With-

Attack Goal

@ Springer

J Hardw Syst Secur

out the awareness of the impact from unreliability, the
system security will be undermined. Some of the TEEs are
summarized below:

The ARM TrustZone [2] for enable trusted computing is
based on a trusted platform, wherein a hardware architecture
supports and implements a security infrastructure through-
out the system, rather protecting dedicated hardware block.
The TrustZone methodology is the concept of secure and
non-secure worlds. These worlds are separated by the hard-
ware, wherein non-secure software do not have direct access
to secure resources.

Intel’s Software Guard Extensions (SGX) [12] protect
selected code and data from modification or revelation.
The trusted hardware establishes enclave (secure container)
and the remote computation service. The user uploads the
desired computation and data into the enclave. Enclaves are
protected areas of execution. The trusted hardware protects
the confidentiality and integrity of data under process.

The Capability Hardware Enhanced RISC Instructions
(CHERI) architecture [42] extends the commodity 64-
bit MIPS Instruction-Set Architecture with new security
primitives. These primitives help the software to efficiently
implement fine-grained memory protection and an object
capability security model. CHERI adds a new capability
coprocessor that supports granular memory protection
within address spaces in existing RISC CPU.

LowRISC is a fully open-source SoC based on the 64-bit
RISC-V instruction set architecture. In the lowRISC- tagged
memory implementation, every memory address is appended
with tag bits. In this way, the lowRISC implementation
supports basic process isolation. To protect against memory
corruption of the return address, table pointers, and code
pointers on the stack/heap, the compiler is modified to
generate instructions to mark vulnerable locations.

Reliability and security have emerged as two distinct
directions for many years. However, reliability and security
can be strongly interdependent: one can be a condition to the
other and they share many commonalities. Even though the
abovementioned TEE can stop some of the security threats
at the system level, they do not address the underlined
issues related to reliability. If the reliability concerns can
not be considered while designing the security objective, the
security can be compromised.

4 System Reliability and Security

4.1 Interleaving of Reliability and Security Issues
The positive and negative impacts of reliability issues on the
circuit/system security are coexisting. Process/voltage/

temperature variation phenomena and the causes of unre-
liability have been widely leveraged to design security

@ Springer

primitives. Thus, we do not necessarily require managing
the reliability challenges at the physical level, as those unre-
liable features may be exploited to strengthen the resistance
against security attacks. Measurements from device aging
tests provide a good clue to identify counterfeit chips. This
is another benefit we can obtain by leveraging reliability
study. Hardware Trojan horse is one of the negative impacts
from the reliability domain.

4.1.1 Leveraging the Sources of Unreliability to Design
Security Primitives

The design of well-known physical unclonable functions
(PUFs) [16, 17, 21, 35] relies on the unpredictable physical
characteristics that are unique to each fabrication process.
PUFs receive increasing attentions due to its theoretical
unpredictability and low cost for the purpose of hardware
metering. In contrast, the presence of process variation
typically requires chip designers to increase the design
margin so that the potential process variation-induced
reliability issues can be tolerated.

Noises originating from transistor thermal activities,
power supply, clock jitter, and the discrete nature of
electric charge (i.e., shot noise, flicker noise) are exploited
as entropy sources to generate random bits through
random number generators (TRNGs) [10, 24, 28]. If noise
mitigation methods are applied to the system, the entropy
that is beneficial to TRNGs will be eliminated as well.
A system designer should carry the awareness of the
coexisting measures for reliability and security.

4.1.2 Leveraging the Sources of Unreliability to Detect
Counterfeit Chips

Bias temperature instability (BTI) [18], electromigration
(EM) [39], hot carrier injection (HCI) [37], and time-
dependent dielectric breakdown (TDDB) [8] are the common
reasons to cause device aging or to wear out. The BTI,
EM, HCI, and TDDB mechanisms used to be the interest
for the reliability community that are now helping security
community detect the counterfeit chips. The counterfeit
chips may be induced from the one who recycles the worn-
out devices back to the chip market. The testing methods
aiming for BTI, EM, HCI, and TDDB detection have been
utilized to detect counterfeit chips. However, the methods
that can extend device lifetime may not be ideal to prevent
the counterfeit devices from returning back to the IC market.

4.1.3 Leveraging the Sources of Unreliability to Hide
Hardware Trojan Horses

Hardware Trojan horses refer to malicious modification
to the original hardware design, from netlist to layout

J Hardw Syst Secur

level. To evade testing-based screening, a large number of
hardware Trojans activate the Trojan trigger by accelerating
the speed of hardware wearing out, rather than waiting for
the arrival of a specific logic input combination. Another
type of Trojans, i.e., parametric Trojans, is created during
the fabrication stage, where the physical geometry of a
transistor or a metal wire is altered. The changes on
transistor width, dopant concentration, and interconnect
pitch will lead to some phenomena similar to device defects.
Trojan horses based on unreliable causes will confuse
the reliability measures. Typically, methods for reliability
provide the optimal protection regarding random defects,
but those methods may not be sufficient to combat the
“defects” induced by security attacks, which may be in burst
and consistent. If the methods for reliability are not designed
with special caution for upper limits, the system may be
interrupted too often by security attacks, thus seriously
affecting the system performance and wasting resources.

4.1.4 Trade Off or Collaborate for Reliability and Security
Need?

When we treat unreliability causes, we may take advantage
of those phenomena for security purpose. So, it is a trade-off.
A system designer should be aware of coexisting measures
for reliability and security (Fig. 2). Enhancing the reliability
may lose the system’s attack resistance. Methods that are
externally applied to the device/circuit to assure reliability
can be re-used for some security purposes, for instance,
counterfeit chip detection. However, the mechanism built
into the device/circuit (at least low physical level) will
expand the live space for counterfeit chips.

4.2 lllustrative Case: Rowhammer Attack

High-density DRAM is more likely to suffer from
disturbance in which different cells interfere with each
other. Due to the closeness of cells, the voltage fluctuations
while activating a row are more likely to affect adjacent
rows and finally result in bit flips. This phenomenon of
causing the disturbance is called Rowhammer attack [15,
27]. Several studies [15, 19, 32, 36] have observed that
Rowhammer can be exploited to mount an attack and bypass
most of the established software security and trust. This

Fig.2 Reliability and security

objective overlap Reliability

Security

Availability

Availability

attack has been identified as a security and reliability threat
[15, 32]. By repeatedly accessing the same memory row
(aggressor row), an attacker can generate enough distur-
bance in neighboring rows (victim rows) to cause a bit flip.

The Rowhammer DRAM bit-flipping attack [5, 19, 34,
36] is an example of a different class of software attacks
that exploit design defects in the computer’s hardware. In
[27], authors demonstrated that malicious software can take
advantage of the CLFLUSH instruction, which flushes the
cache line that contains a given DRAM address. CLFLUSH
is envisioned to extract better performance out of the
cache hierarchy and is available to software running at all
privilege levels. Seaborn et al. implemented Rowhammer
exploits [36] in native code with the CLFLUSH instruction:
a privilege escalation on a Linux system caused by a
bit flip in a page table and an escape from the Google
Native Client sandbox caused by a bit flip in indirect
jumps. The method in [5] combines knowledge of reverse
engineering of last level cache (LLC) slice and DRAM
addressing with timing side-channel to determine the bank
in which the secret key resides. In this approach, timing-
based technique is used to learn where the secret keys
are stored in the bank in order to flip their bits and then
activate the bug on the specific bank and to produce a flip
bit of the row’s secret data. The Rowhammer attacks target
special memory management features deduplication (an OS
feature widely deployed in production) and virtualization
[34, 43]. Memory deduplication allows an attacker to
reverse-map any physical page into a virtual page if
he/she knows the page’s contents. Hence, the OS can
be tricked to map a victim owner memory page on the
attacker-controlled physical memory pages. In [43], authors
exploited cross-VM settings where bit flips are induced by
Rowhammer attacks to crack memory isolation enforced
by virtualization. This type of exploit bypasses password
authentication on an OpenSSH (SSH: Secure Shell) server.

5 Security and Reliability Formulations
In this section, we introduce the SRASA (security and
reliability aware state automaton) model of computation,

which is an abstraction of the system transitions among
the unprotected state, reliable state, secure state, vulnerable

Integrity

i# Maintainability

Integrity

A Non-
i Confidentiality

@ Springer

J Hardw Syst Secur

state, restored state, etc. This abstraction helps the system
designers achieve a trustworthy design, or the testing team
to evaluate a given design or implementation under desired
reliability or security (or both) criteria.

SRASA treats any system as a state machine. The
state machine consists of trusted states, unknown states,
vulnerable states, etc. SRASA defines multiple functions,
which transit the state machine from one type of state to
another. These functions are equivalent to the approaches
preventing or restoring a system from random errors or
malicious attacks, or instability and vulnerability caused by
hostile environments. The specified functionality and data
processing behaviors of the system are the alphabets and
operations on the states.

With this mathematical abstraction, SRASA provides a
systematic approach for reasoning about the trustworthiness
of the system under design. The capability to maintain a
system in the reliable or secure states, or restore a system
from the vulnerable states, can be evaluated by both system de-
signers or testers, thus making improvement to the system.

Figure 3 shows how SRASA packages and unpacks a
system figuratively.

However, it is worth noting that the user of the system
ultimately only cares about its functionality, not the details
in achieving reliability and security. Thus, the reliability-
or security-oriented designs should not impact the system’s
original functionality.

In the following subsections, we formally introduce our
proposed security and reliability aware state automaton.

5.1 Preliminary Definitions

One of the general assumptions often made is the state
space of the three aspects of the system perfectly fits.
Although the functional implementation defines this finite
set, both formal specification and functional specifications

Fig.3 A figurative illustration
of SRASA: A trustworthy
purchase (design) of a vase (a
system) is firstly protected by
bubble wraps against possible
damage (reliability against
random errors). Then, it is put
into a box to preserve privacy
(security against non-invasive
attacks). There may be
additional shipping services to
ensure authenticity and
non-repudiation, i.e., at the
receiver (user) end, the customer
checks the sending certificate
(security against tampering or
spoofing) to verity its
authenticity and signs it to
acknowledge the delivery

@ Springer

could define infinite sets—this is the main principle around
which strong encryption is built. In fact, the overlay of these
state space creates three distinctive sets of states that we
denote in the work as X,, X, and X,.

X, is a countable set of states that implements the
system’s functional specifications. X, is a countable set
of states in the system that falls outside the functional
specification, but is covered by the formal specification and
therefore tested for reliability issues. X, is a countable set
of vulnerable states in the system that are implementation
by-products; they could even fall outside both formal and
functional specifications. X, includes the vulnerable states
that a system can be driven into due to reliability issues. X,
is the easiest set of states for an attacker to push the system
into to bypass design and development analyses.

In terms of cardinality of the state space, we have the
following:

Where n(A) denotes the cardinality of the countable set A.

As shown in Fig. 4, X, is a set of states outside of the
X, set and X, is outside both X and X,. A state classified
under X is simply deemed secure as per the functional
specification. A user may specify an unsecured/vulnerable
or unreliable state to minimize system complexity, cost, or
deployment constraints. Not explicitly highlighted on the
figure for simplicity is the set of states at the intersection of
X and X,. We denote these states X; as the set of highly
dependable states (both reliable and secure).

The notion of dependable set of states (X4) focalizes
the desired properties of next-generation computer systems,
where reliability and security features are seamlessly
integrated. An illustration of this notion is the case where
a customer orders an antique vase online. The vase is
wrapped with bubble wraps to protect it from damage,
attached with a certificate of authenticity to prove it is

&.

‘\\\\\\\\\\‘

s

J Hardw Syst Secur

Fig.4 Functional set of states X, deemed reliable set of states outside
functional states X, and vulnerable states that fall outside functional
and reliable states X,

not a counterfeit, and packed with a non-transparent box
for privacy. This parcel covers both reliability (danger of
damage) and security (counterfeit, loss of confidentiality)
issues. However, the customer only cares that the genuine
antique vase is delivered intact and safe, rather than how
the store has packed it. Similarly, a computer system user
should mostly care about the functionality ¥; of the system.
On the other hand, in addition to the functional specification
of system, designers should consider its secure and reliable
properties.

One key deduction of the theoretically infinite state
behavior of computing systems is (1) states could be
countable infinite—i.e., we know at every point/state how
(rules under which) the system transitions, and yet we
do not know all the states; and (2) guardian or guard
state is the state up to which system behavior/state space
(states and state transitions) is defined, fully explored,
and tested. Between the initial and guard states, the
system properties are fully defined: (a) determinism, (b)
closure/boundedness, (c) convergence, (d) observability,
and (e) coverability. Another direct implication of this
concept is the initialization of state of the system.

5.2 Security and Reliability Aware State Automaton

Formally, SRASA model of computation is a 22-tuple
state machine (%, Ziq, Zip, X, X, X5, X, Xy, Xa, fs,
Irs fos fsrs frss frus fors Sfoss fsvs X0, Fs, Fr, Fv) where I;
is a countable set of legal alphabet symbols—from a system
point of view, an alphabet symbol is an input datum or data
or action like “power on,” “start,” and “stop”;

Y, is a countable set of illegal active alphabet
symbols—an active alphabet symbol is an input that
manipulates either data or state processes in the system;

Yip 1s a countable set of illegal passive alphabet
symbols—a passive alphabet symbol is one that reads either
main output data of system, i.e., through direct system I/O
or secondary outputs like “heat dissipation”;

X is a countable set of states that implements the
system’s functional specifications—X, is the mirror set of
Xy

X, is a countable set of states in the system due to
implementation glut with no functional use, but tested for
reliability issues—X ; is the mirror set of X, ;

X, is a countable set of vulnerable states in the system—
these are states where an attacker will try to push the system
into;

Xg is the dependable set of states and represents the
intersection of X and X, sets;

fs 1is the state transition function for secure system
execution: fs : X5 X X = Xj;

fr is the state transition function for reliable system
execution: f : X, X ¥ —> X,

fv is the state transition function for unsecure system
execution: fy : Xy X (ZiqlZip) = Xo;

fsr 1s the state transition function that moves the system
execution from a secure state to a dependable state: f, :
Xy x X — Xy

frs 1s the state transition function that moves the system
execution from a reliable state to a secure and reliable state:
frs : X x ¥; = Xy—a more conservative function will be
Jrs 1 Xp X) —> Xé;

frv 1s the state transition function that moves the system
execution from a reliable state to a vulnerable state: f;, :
X, x (Eia|2ip) — Xy,

for 1s the state transition function that moves the system
execution from a vulnerable state to a reliable state: f,, :
Xy X (Zig|ZiplZp) — X;;

fsv 1s the state transition function that moves the system
execution from a secure and reliable state to a vulnerable
state: fyy @ X5 X (Eia|2ip) — Xy

fus 18 the state transition function that moves the system
execution from a vulnerable state to a a secure and reliable
state: fug 1 Xy X (Zial Zip|Zp) — X3

This formulation encapsulates the notation that a
reliability bug or an attack introduces no new state to

Fig. 5 Security and reliability aware state automaton (SRASA)
overview

@ Springer

J Hardw Syst Secur

the computing system. An attack or reliability bug simply
transitions the system from a well-specified state to a less
known or desirable state (Figs. 5 and 6).

5.3 Positive and Negative Functions

We categorize the functions which implement the reliability
and security as positive functions. These functions are
usually added by the system designer at the design stage, or
carried out by the system at its operation.

1. During system design or operation: f;, fs;
2. When faults, errors, or attacks occur: fy,, fus;
3. To enhance the system with addition feature: fg, fs,.

It should be emphasized that there is an important
functional distinction between f,; and fi, state transitions,
although they both may lead to a dependable state. These
state transitions are as follows:

Srs = fr(fs);
fsr = fs(fr)

Although f;, and f,; both provide both security and relia-
bility to the system, their order of applying reliability and
security functions to the system is different. Consequently,
the security or reliability guarantees of the system may
be vastly different. For example, to render a piece of data
resilient to both eavesdropping and random errors, the cor-
rect order is to first encrypt it (e.g., using AES), then encode
it with some ECC technique. If the piece of data is encoded
before encryption, then there is no protection against ran-
dom errors, since altering a single bit of the cipher text may
change all the bits in the decrypted plain text, making it
uncorrectable by the ECC technique applied.

Fig.6 SRASA state partitioning

@ Springer

We categorize the functions which attempt to harm
a system’s functionality as negative functions. These
functions are applied by either environmental or artificial
abnormality.

1. To attempt to harm an unprotected system: f;
2. To attempt to harm a protected system: f,y, fsy.

5.3.1 Relationship Between These Functions

If fus, fuor are to restore the system to its normal
functionality from an erroneous or insecure state, then we
may have the following relationships:

fos = 11,)
fvr = f;]- (3)

The ~! superscript does not stand for a strict mathemat-
ical reverse. It means functionally to trace back, restore, or
verify the right-hand side functions.

For instance, f,, can be the decoding function for
random error tolerance in a system protected by an
encoding function f, at its operation. And, f,s can be
the authentication function to detect any tampering of a
system’s data securely hashed by f;.

5.4 lllustration of the Functions in Phases

In this section, we will show how the functions affect a
system in different operation phases. All these functions
are state-transitioning functions, with the help of alphabets,
either legal ones or illegal ones. If the positive functions
can achieve their mission to stabilize and secure the system
against negative functions, then we should be able to have
the following relationships between them:

e Phase 1 - Preparation: Moving the system to a reliable
or secure state by positive functions. It needs to be done
before the system is exposed to errors or attacks.

fr(Z) = X “
fs (X)) = X ®)

Examples encoding, signing, or encrypting piece of
information before transmission, duplicating, or tripli-
cating a system before running a task, etc.

Besides, f and f; can also be treated as the
protection added in the design stage, that the designer
of a system decides to integrate certain redundant
submodules in order to empower the system with
reliable and secure features.

e Phase 2 - Intrusion: Moving the system to a vulnerable
state by negative functions through random errors (%;,)

J Hardw Syst Secur

Fig.7 SRASA reliability view

or attacks (X;q|Z;p). It happens during the system Examples: error correcting or authenticating a distorted
operation. message, or checking the timestamp of an operation
against replay attacks.

Jro(Xy) = Xo; (6) e Phase3.b - System Failure: System unable to be moved
fso(X5) = X,. @) back to a reliable or secure state by positive functions.
Examples: random errors, aging, injected errors, eaves- Jor(Xp) = X3 (10)
dropping, man-in-the-middle, DOS attack, etc. These fos(Xy) = Xy (11)

faults, errors, or attacks will tempt to harm the function-
ality of a system, in an either invasive or non-invasive
manner. They can be handled by the system’s reliability
or security submodules prepared in Phase 1, or they can
lead to a system failure.

e Phase 3.a - Restoration: Moving the system back to a
reliable or secure state by positive functions. It happens
after the system is distorted, either actively or passively. Now, it is worth to fully describe what is a mirror

state. In a mirror state, consisting of internal state data
for(Xy) = X, or X}; ®) and processes, that looks identical to the state, both the
fos(Xy) = X5 or X (9) contexts of execution have changed. Either the system has

Examples: errors exceed the system error tolerance
capability, a successful collision attack to authentica-
tion, a 0-day exploit on the vulnerabilities unknown to
the designer, etc. For these types of errors or attacks, the
system either cannot detect handle it, leaving the system
always stuck at the X, state.

Fig.8 SRASA system view

Inputs

Outputs

Process

@ Springer

J Hardw Syst Secur

transitioned back into the state after visiting a vulnerable
or weak reliability state or it has sustained a non state
modifying attack, i.e., a passive attack, e.g., a side-channel
attack. In the X;, we have the subset X,. This is the set of
guard states.

SRASA provides formalism for key established security
features. For example, the transition from a weak reliability
or vulnerable state to a mirror state in the X provides
non-repudiation guarantees. Similarly, the mirror states
themselves give the formulation integrity checking support.

Figure 7 shows the reliability view of the SRASA
formulation. An attempt to classify or count all the state will
not be practical, even for the set of states deemed secure
and reliable. Therefore, the reliability view is to anchor
key states and use conventional reliability techniques (e.g.,
error detection and correction) to coalesce states born out of
small and normal system variations into these anchor states.
In essence, this is one of the main functions of reliability
support in a computing system. Figure 8 depicts the concrete
system view of the states.

Although our definitions of system, data, and process
are simple, they are complete in description a computer
system of any scale and complexity and its operation. For
example, the process definition is compositional as shown
in Fig. 9. It is both clocked synchronous (e.g., Processes A’
and A”) and asynchronous (e.g., Process A”’). It supports
both parallelism (e.g., Processes A’ and A”) and sequence
compositions (e.g., Processes A’ and A”’). The feedback
loop operation is illustrated in Process A”.

—T= [=
— —H—
Inputs ° © Outputs
. Process .
Process A
Process A’
— (?
@ [| Process A"’
Logic >
Process A” R
»n X Q
Lol (> Q) —
& Logic

Data _—
(Memory)

Fig.9 SRASA system process view

@ Springer

5.5 Applying SRASA to the System Design
and Evaluation Processes

A general yet complete methodology that will encompass all
aspects of system design, from the functional level specification
to the gate level design at any system granularity, may not
be feasible or it may be beyond the scope of a single work.
Therefore, we aim in this work to introduce a generalized
framework to specify and reason about both reliability
and security in the system design process. SRASA is a
mathematical abstraction of a system’s transition among
different states (unprotected, vulnerable, restored, etc.). It
is general enough to be adopted or customized for different
specific and concrete design instances.

5.5.1 SRASA for System Design and Testing

For SRASA’s application to specific system designs,
different flows or procedures can be espoused. One such
design flow is presented in [45]. In the research, the authors
proposed a four-step design flow based on the SRASA
concepts. Firstly, the designers can choose a reliable

Evaluate

Step 1: Separate Evaluation
Random errors to test Intentional errors to

if test if
Slfn(X) = X, Sis(fo(XD) = X;

Step 2: Cross Evaluation

Intentional errors to Random errors to test
test if if

Sulfo X)) =X, Sis(f(X)) = X,

Step 3: Superimposed Evaluation

Both intentional and random errors
to test if f,,and f;, can restore the system
from £, and f,,

Step 4: Conclusion

System passes all
evaluations:
Trustworthy

System fails of any
evaluation:
Vulnerable

Fig. 10 The test procedure verifies if a given system is trustworthy on
both reliable and secure issues

J Hardw Syst Secur

function f, and secure function f; based on the desired
system trustworthiness. Then, pitfalls of f. under security
vulnerabilities and side effects of f; to create reliability
issues should be studied. Based on the step above, the
designers can determine if f, and f; have overlaps or need
a trade-off. In the end, various decisions can be made such
as merging two methods, adjusting two methods, or no joint
effort needed.

Another example of SRASA-based procedure to test
and evaluate a given system is shown in Fig. 10. In this
procedure, firstly, the reliability and security features are
tested separately with known faults. Then, a cross evaluation
is carried out to examine if the intentional attacks will go
beyond the system’s error tolerance capability, or if random
errors will jeopardize its security capability. This step is
necessary because there have been many proposals to inject
“invisible” errors to bypass a system’s reliability module,
and approaches to acquire important information by side-
channel attack from a system when random errors affect the
outputs. Then, both random and intentional faults should
be applied to the system to test its capability of restoration
under grave situations.

5.5.2 Scalability and Complexity of the SRASA Formulation

The SRASA framework supports different abstraction views
of the system. To curtail (1) state explosion or (2) countably
infinite state set problems, one can fuse certain states
together as a way to reduce the number of states to explore
or to focus on specific sets of states deemed important
or sensitive. The state-based approach of the SRASA
formulation also lends itself to provable and systematic state
transformations and reductions. For example, one can use
the concept of non-distinguishable states to combine states
that cannot be distinguished from one another for any input
from the alphabet. These transformations have been shown
to (1) maintain functional and correctness correspondence
[6, 22] and (2) be performed in O (knlogn) time complexity

Start

n

using O(logn) processors [38, 40]. The guard states S, are
also interface states and can be used fusion boundaries.
Figure 11 illustrates such state fusion operations.

The following section provides practical and detailed
examples on how SRASA can be used to guide the design
and testing of a system.

6 lllustrative Design Cases of the Proposed
Framework

In this section, we provide three case studies to illustrate the
practical meanings for the states formulated in Section 5.
Three case studies have different focuses: Case study 1: how
the linearity of a reliability-oriented design can be leveraged
by attackers; Case study 2: new system states reflected
on hardware cost and power consumption; Case study 3:
passive attack as an external force to trigger the system state
transition, respectively.

6.1 Case Study of Error Detection Schemes
for the S-Box of AES

Firstly, we present an example to use SRASA on testing
and comparing two different designs to detect errors in
the outputs of the S-BOX in AES. We show how the first
design’s linearity can be easily leveraged by an adversary
[31], which is not the case in the second design.

Table 1 lists the physical meaning of each variable to
formulate the problem.

For convenience, some terms are defined as follows:

® q; : the element located at the i"" row and j/ column
of v;

e b, j: the element located at the i’ row and j/ column

of u;

b: the number of bits in a byte;

G F (): the Galois finite field;

®: the finite field multiplication;

Fig. 11 SRASA state representation fusion operations. The automaton representation goes to So, S; states depending on the system input symbol,
but they can be fused to an equivalent single state, giving the automaton a smaller set of states

@ Springer

J Hardw Syst Secur

Table1 Terminology meanings

in this S-Box case study Symbol

Physical meaning in this study

>
Yia
XS
Xy
XU

Inputs to the S-Box

Additive faults or injected errors to the S-Box
S-Box properly functional under secure protections
S-Box properly functional under reliable protections

Errors propagate to the outputs without being detected

@: the finite field addition;

SsubBytes: the SubBytes function;

e: the additive error injected by attackers;

~: the distortion symbol, e.g., l;i,j =bij®ep ;.

6.1.1 The S-Box (SubBytes) Stage in AES

The SubBytes is the only stage which provides non-linearity
to AES. It is usually referred to as the S-box. The S-box
works over the Galois finite field of G F(2%) on each byte
of the state. It firstly applies a multiplicative inverse to
an element of v over the finite field, and then an affine
transformation. Although the S-box is usually implemented
by a 16 x 16 lookup table, it can be abstracted to the
mathematical function below:

bij = fsubBytes (@i, j) = Miny ® aj j & Myyy, (12)

where matrices M;,, and M,s; perform an affine transfor-
mation to g;, ; over GF(2%).

6.1.2 To Protect S-Box with Reliable or Secure Functions

There have been many research efforts which have proposed
protection schemes for the S-Box (and other stages of
AES) using the self-checking checkers (SCC) based on
error control codes (ECC). The common ground of these
techniques is to add a parallel module named the “Predictor”
to the original function module, which generates the
corresponding check bits at the same time when an AES
stage generates its output using fsubBytes- Then, both the
output of this stage and its check bits are verified by a
“Decoder” for error detection, or correction. Together, the
Predictor and Decoder form an SCC system.

Figure 12 illustrates the functional blocks of the SCC
system. f denotes the S-Box function (12), the predictor
function is represented by P (), the predictor’s output is R,
and the decoding function is H ().

Here, two designs based on Fig. 12 are evaluated. One
using Hamming codes to build P() and its corresponding
H() for the SCC, and another using a security-oriented
Robust codes. The Hamming codes require at least 4 bits
of redundancy produced by R, and Robust codes 8 bits.
Therefore, there can be 212 possible errors for the Hamming

@ Springer

codes-based design, and 216 errors for the Robust codes
version.

Since Hamming codes are mostly used to address
reliability issues, we denote such protection over S-Box as
using a reliable function f,,, and so Robust code using f.
If they are able to function properly under > ia, then we
have the following equations:

fr Q14D ia) =X, (13)

fos Q1+ Y ia) = Xy (14)

Based on the suggested evaluation flow in Fig. 10, both
designs will be examined by random errors, intentional
errors, and both. Here, we have found that although the
predictor based on Hamming code has the capability of
detecting all single and double bit errors, while correcting
all single bit errors (SEC-DED), there is a fatal vulnerability
to it: invisible errors.

Due to the linearity of the Hamming codes based SCC,
P(f () and H() are all linear functions. Particularly, they
are matrix multiplications. Thus, we have:

H(Rp, b) = H(Ry®eg,, b®ep) = H(Rp, b)® H (eg,, ep).
(15)

Faults

AES Stage b
SO

Decoder — b

Faults

H((b, Ry))

Ry —Error?

Predictor

P(f())

Fig. 12 The predictor applies a combined function of P(f()) over the
state element a, which will result in f(a) = b’s check bits. Both b and
Ry, could be erroneous and will be verified by the decoding function
H (). If H() is evaluated as 0 by vector (b, R},), then it is considered as
error free, otherwise an error detected

J Hardw Syst Secur

Fig. 13 The Hamming
code-based SCC provides 100%
of error detection on S-Box
under single and double bits 100%
errors, while its performance 95%
drops drastically when the
multiplicity increases. The
non-linear Robust codes SCC

Hamming (Reliability)

90%
85%
has a high probability (> 99%) 80%
of detection of all errors 5
75%
70%
65% II
60%

1234567 8 9101112

Robust (Security)

1234567 8910111213141516

100.00%
95.00%
90.00%
85.00%
80.00%
75.00%
70.00%
65.00%

60.00%

Therefore, if there exists e = {eg,, e,} which satisfies
H(eg,, ep) = 0, then we have:

H(Rp, b) = H(Ry, b) ® H(er,.e,) =000=0. (16)

Namely, this error distorts the output of the S-box,
while making itself invisible to the self-checking checker
regardless of the input. For a (12, 8, 3); Hamming code
used in this example, there are totally 28 such invisible
errors, which is the same size of this Hamming code’s
codeword. This type of errors can get the system stuck at
state X, from being restored to X, or Xj.

In other words, the set size of the invisible errors to make
the following equation always true is |ej,yi| = 28 1 (the
error of all O is excluded). This shows that there exists this
many errors that can fail the design in Step 2 of Fig. 10 when
intentional errors are injected to the Hamming code-based
SCC.

forQ 1+ ia) =X, (17)

However, for the second design using a Robust code [41]
based SCC, since it is non-linear, there does not exist such a
relationship in Eq. 16, and so there is no error masking itself
to all the S-box inputs. In other words, the set size of the

Fig. 14 Moreover, there are in
total 28 — 1 invisible errors in
the Hamming code-based
protection scheme. These errors
can be easily calculated given
the Hamming code’s primitive
polynomial, which are usually
not confidential. Once any of
these errors appear in the
S-BOX, no matter what the input
value will be, its output will
always be considered as legal by
the self-checking checker

ROBUST 0

HAMMING

invisible errors to make the following equation always true
[9]1s |einvil = 0.

fos Q1+ ia) =X, (18)

Thus, this design will pass the evaluation Steps 1, 2, and 3
in Fig. 10 since it detects both random and intentional errors
with almost equal probability.

In addition, although with higher cost in hardware, the
security-oriented SCC decoder using Robust codes provide
better error detection probability in some multiplicities of
errors as shown in the figure below (x-axis is the multiplicity
of errors, and y-axis the error detection probability).

Therefore, now we can see the differences between
the two protections over S-box (Fig. 13). The former
guarantees up to double error detection, while its error
detection probability drops drastically when the multiplicity
of errors increases. The latter’s detection probability stays
at a satisfying leveling regardless of the number of errors.
More importantly, the Hamming code-based design has a
critical vulnerability of the invisible errors, which could be
leveraged easily by attackers to put the system at X, at all
time, while the Robust code-based design does not (Fig. 14).
Therefore, the latter should be adopted as the SCC design
when there is a high demand of security in the S-BOX.

Invisible Errors

@ Springer

J Hardw Syst Secur

Table 2 Hardware overhead

comparison Stages Py (H, %) Pyet (R, %) Overhead (H, %) Overhead 212 (R, %)
AddRoundKey 69.2 99.4 22.1 56.3
SubBytes 70.4 99.3 23.7 63.7
ShiftRows 65.3 99.6 30.5 80.3
MixColumns 68.8 99.6 35.6 77.9

T Per: average probability of error detection under all multiplicity of errors;
Ig. Hamming code-based scheme, and R: Robust code-based scheme

However, better trustworthiness always comes with more
cost. Here, we extend the scheme to all four stages of AES,
and the hardware overhead of Hamming code-based scheme
and Robust code-based are compared by:

Stage + SCC !

HardwareOverhead =
Stage

It can be seen from the following table that although the
Robust code-based protection provides much higher error
detection probability, its hardware overhead is also 2 to
3 times of the Hamming code-based version. Therefore,
usually designers should also look into the performance and
cost trade-off to make the proper decision (Table 2).

6.2 Case Study of Fault Attacks on SIMON

In this example, we used a lightweight cipher, SIMON [4]
with a 64-bit plain text and 96-bit key as a case study
to analyze the impact of different types and numbers of
faults on the system states. It is not necessary to enumerate
all possible system states. We used power consumption to
differentiate diverse system states. In this case study, we
implemented SIMON in an iterative fashion. The Verilog
HDL code of SIMON was synthesized, placed, and routed
in the Xilinx ISE 14.1 design suite. The power consumption
was measured by the tool XPower Analyzer. We injected
single-bit, 32-bit, and 64-bit faults. Three types of faults,
Stuck-at-0, stuck-at-1, and Bit flip faults, are emulated for
different bit width faults. All the faults were placed in
the registers used by the last round state of SIMON. The
power consumption after the last round computation was
measured. The results of this experiment are demonstrated
in Fig. 15.

As explained in the Section 5.2, if the random intrusions
> ia or Y ia + > ip happen then the normal state will
transition to vulnerable state X, as depicted in (19). If
the system is operating normally, then the system’s power
consumption is 1.113 W. However, on random intrusion, the
power consumption will change. For example, if the single
Stuck-at-0 fault happens, then the power consumption is
reduced by nearly half. The different power consumption
shown in the Fig. 15 represents the different state transitions

@ Springer

to vulnerable states X, because of the diverse faults induced
in the SIMON state register:

fs Q1+ O ia+ Y ip) = X, (19)

This will indicate a disqualification in the SRASA
evaluation flow in Step 2 of Fig. 10, or a pitfall found out by
SRASA design flow [45] that designers should avoid.

The next experiment we conducted is to detect the
intrusion in SIMON using five different fault detection
methods. The five fault detection methods are double
modular redundancy (DMR) [13], inverse function [26],
XORing two masking vectors (i.e., DuoMask), permutation
(i.e., PermDeperm) [20], and combination of masking
and permutation (i.e., Permutation and Masking) [14]. All
these methods were implemented in gate level and the
corresponding HDL code was synthesized in the Xilinx ISE
14.1 design suite. The hardware cost of intrusion detection is
listed in Table 3. The second, third, and fourth columns also
indicate the system enters different states when different f,,
functions are activated in the system. The Permutation and
Masking [14] fault detection method cost 28.5%, 38.4%,
and 11.9% more slice registers, slice LUTs and occupied
slices respectively compared to that of the most efficient
fault detection method—inverse function [26]. However,
the fault bypass rate for random faults (stuck-at-O and bit

=14 ‘ ‘ ‘
=3 IlNo Fault [llStuck-at-0 [llStuck-at-1[_Bit flip)
cl12f 1
S - — _
S 1l |
€ 1
3
208}]
S
Cosf]
s
204! :
o
0.2 1
° ‘ N

1 32 64

No. of Faults

Fig. 15 Comparison of total power in different fault insertion
scenarios

J Hardw Syst Secur

Table 3 Hardware cost in

FPGA Design

No. of slice registers ~ No. of slice LUTs No. of occupied slices

Baseline
DMR
Inverse
DuoMask
PermDeperm

Permutation and masking

174 193 51
349 456 141
175 221 96
180 240 95
241 309 116
245 359 109

flip) and symmetric faults is much better than the inverse
function [26].

6.3 Case Study of Side-Channel Attacks on AES

In this experiment, we defined the different states of the
AES gate-level implementation by analyzing the correlation
coefficient verses number of power traces required to
retrieve the secret key. We assume that an AES hardware
module is attacked by an intrusion function f,, which
causes the leakage of the side-channel information—power
in this case study. For the baseline AES (no protection
against the power-based side-channel attacks), as shown in
correlation analysis in Fig. 16a, all key bytes are recovered
in 2500 power traces (red lines above the green area (wrong
key guesses) show that the guessed subkeys match with

—— Correct SubKey Guess

+ 020 —— Wrong SubKey Guess
()

o]

E 015

(]

o

O

< 0.10

o

&

2 0.05

—

—

o

© 0.00

500 1000 1500 2000 2500
No. of Power Traces
(a)AES baseline

2 020 | — Correct SubKey Guess
(] 8 I

S Wrong SubKey Guess
fE 0.15

[}

8

= 0.10

(o]
&
o 0.05

—

—_

(o]

O 0.00

500 1000 1500
No. of Power Traces

2000 2500

(b) AES protected through masking

Fig. 16 Correlation coefficients for AES with or without protection
against side-channel attack

the actual key) shown by the blue oval. Hence, this AES
implementation is in a vulnerable state X,. As the side-
channel attack is passive, it will not cause any change in
the output and it is impossible to restore the original state
to X (secure state). We carried the similar analysis on the
AES that is protected against power analysis using masking
function. The results are displayed in Fig. 16, and we can
notice that no Subkey is retrieved within 2500 power traces.
In this scenario, the vulnerable state X, can be restored to
the secure state X.

7 Conclusions and Future Work

In this work, first, we provide brief overviews of security
and reliability in computing systems at different abstraction
levels. Second, we compare and contrast the salient
features of reliability and security. Finally, we introduce
a generalized theoretical framework, called security and
reliability aware state automaton (SRASA), to formally
reason concurrently about the security and reliability
aspects of computer systems. We use three case studies to
introduce and illustrate the SRASA framework, a 22-tuple
finite state machine model that encompasses both physical
and abstract states of the system and covers both passive
and active attacks. Future work will consist of (a) robustness
analysis of the SRASA framework, (b) its application to a
wider range of concrete design cases, and (c) refinement
of the framework. We also plan to develop an open-source
software tool to automate the process of mapping a design
specification and implementation to the SRASA framework.

References

1. [n. d.]. ([n. d.]). http://www.columbia.edu/cu/computinghistory/
ascc.html

2. [n. d.]. ARM Security Technology — Building a Secure System
using TrustZone Technology (2009) http://infocenter.arm.com/
help/topic/com.arm.doc.prd29genc009492c¢/PRD29GENC009492
C_trustzone_security _whitepaper.pdf. ([n. d.])

3. Bar-El H, Choukri H, Naccache D, Tunstall M, Whelan C (2006)
The sorcerer’s apprentice guide to fault attacks. Proc IEEE 94
2:370-382. https://doi.org/10.1109/JPROC.2005.862424

@ Springer

http://www.columbia.edu/cu/computinghistory/ascc.html
http://www.columbia.edu/cu/computinghistory/ascc.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29\discretionary {-}{}{}genc\discretionary {-}{}{}009492c/PRD29\discretionary {-}{}{}GENC\discretionary {-}{}{}009492C_ trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29\discretionary {-}{}{}genc\discretionary {-}{}{}009492c/PRD29\discretionary {-}{}{}GENC\discretionary {-}{}{}009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29\discretionary {-}{}{}genc\discretionary {-}{}{}009492c/PRD29\discretionary {-}{}{}GENC\discretionary {-}{}{}009492C_trustzone_security_whitepaper.pdf
https://doi.org/10.1109/JPROC.2005.862424

J Hardw Syst Secur

10.

11.

12.

14.

15.

16.

18.

19.

20.

. Bhattacharya S, Mukhopadhyay D (2016) Curious

. Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B,

Wingers L (2015) The SIMON and SPECK lightweight block
ciphers. In: Proceedings of the 52nd annual design automation
conference (DAC ’15). ACM, New York, Article 175, p 6.
https://doi.org/10.1145/2744769.2747946

case
of rowhammer: flipping secret exponent bits using timing
analysis. Springer Berlin Heidelberg, Berlin, pp 602-624.
https://doi.org/10.1007/978-3-662-53140-2_29

. Bjorklund H, Martens W ([n. d.]). The Tractability Frontier for

NFA Minimization AEE([n. d.])

. Boraten T, Kodi AK (2016) Mitigation of denial of service

attack with hardware Trojans in NoC architectures. In: 2016
IEEE international parallel and distributed processing symposium
(IPDPS), pp 1091-1100. https://doi.org/10.1109/IPDPS.2016.59

. Boyko KC, Gerlach DL (1989) Time dependent dielectric

breakdown at 210 Aring; oxides. In: 27th annual proceed-
ings., International reliability physics symposium, pp 1-8.
https://doi.org/10.1109/RELPHY.1989.36309

. Bu L, Karpovsky M (2016) A hybrid self-diagnosis mechanism

with defective nodes locating and attack detection for parallel
computing systems. In: Proceedings of IEEE on-line testing
symposium (IOLTS)

Cherkaoui A, Fischer V, Aubert A, Fesquet L (2013) A self-
timed ring based true random number generator. In: 2013
IEEE 19th international symposium on asynchronous circuits
and systems, pp 99-106. https://doi.org/10.1109/ASYNC.2013.
15

Conti M, Dragoni N, Lesyk V (2016) A survey of man in the
middle attacks. IEEE Commun Surv Tutorials 18(3):2027-2051.
https://doi.org/10.1109/COMST.2016.2548426

Costan V, Devadas S (2016) Intel SGX explained. cryptology
ePrint Archive Report 2016/086. http://eprint.iacr.org/2016/086

. Di Natale DMRG, Doulcier M, Flottes ML, Rouzeyre B (2009)

A reliable architecture for parallel implementations of the
advanced encryption standard. J Electron Test 25(4):269-278.
https://doi.org/10.1007/s10836-009-5106-6

Dofe J, Frey J, Pahlevanzadeh H, Yu Q (2015) Strength-
ening SIMON implementation against intelligent fault attacks.
IEEE Embed Syst Lett 7(4):113—116. https://doi.org/10.1109/LES.
2015.2477273

Fournaris AP, Fraile LP, Odysseas K (2017) Exploiting hardware
vulnerabilities to attack embedded system devices: a survey of
potent microarchitectural attacks. Electronics 6(3):2079-9292.
https://doi.org/10.3390/electronics6030052

Gassend B, Clarke D, van Dijk M, Devadas S (2002) Silicon
physical random functions. In: Proceedings of the 9th ACM
conference on computer and communications security (CCS
’02). ACM, New York, pp 148-160. https://doi.org/10.1145/
586110.586132

. Gassend B, Lim D, Clarke D, van Dijk M, Devadas S

(2004) Identification and authentication of integrated circuits:
research articles. Concurr Comput Pract Exper 16(11):1077-1098.
https://doi.org/10.1002/cpe.v16:11

Grasser T, Kaczer B, Goes W, Reisinger H, Aichinger T, Hehen-
berger P, Wagner PJ, Schanovsky F, Franco J, Roussel P, Nel-
hiebel M (2010) Recent advances in understanding the bias tem-
perature instability. In: 2010 international electron devices meet-
ing, pp 4.4.1-4.4.4. https://doi.org/10.1109/IEDM.2010.5703295

Gruss D, Maurice C, Mangard S (2015) Rowhammer.js: a
remote software-induced fault attack in JavaScript. CoRR
arXiv:http://arxiv.org/abs/1507.06955

Guo X, Karri R (2013) Recomputing with permuted operands
a concurrent error detection approach. IEEE Trans Comput-
Aided Des Integr Circ Syst, 32. https://doi.org/10.1109/TCAD.

2013.2263037

@ Springer

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Herder C, Yu MD, Koushanfar F, Devadas S (2014) Physical
Unclonable functions and applications: a tutorial. Proc IEEE
102:1126-1141. https://doi.org/10.1109/JPROC.2014.2320516
Holzer M, Kutrib M (2011) Descriptional and computational
complexity of finite automata: AAATA survey. Inf Comput
209(3):456-470. https://doi.org/10.1016/].ic.2010.11.013 Special
Issue: 3rd International Conference on Language and Automata
Theory and Applications (LATA 2009)

Huang P-T, Fang W-L, Wang Y-L, Hwang W (2008) Low power
and reliable interconnection with self-corrected green coding
scheme for network-on-chip. In: Second ACM/IEEE international
symposium on Networks-on-Chip

Jiteurtragool N, Wannaboon C, Masayoshi T (2015) True
random number generator based on compact chaotic oscil-
lator. In: 2015 15th international symposium on communi-
cations and information technologies (ISCIT), pp 315-318.
https://doi.org/10.1109/ISCIT.2015.7458370

Johnson Jonathan, Howes W, Wirthlin M, McMurtrey DL, Caffrey
M, Graham P, Keith M (2008) Using duplication with compare
for on-line error detection in FPGA-based designs. Aerospace
Conference

Karri R, Wu K, Mishra P, Kim Y (2002) Concurrent error detec-
tion schemes for fault-based side-channel cryptanalysis of sym-
metric block ciphers. IEEE Trans Comput-Aided Des Integr Circ
Syst 21:1509-1517. https://doi.org/10.1109/TCAD.2002.804378
Kim Y, Daly R, Kim J, Fallin C, Lee JH, Lee D, Wilk-
erson C, Lai K, Mutlu O (2014) Flipping bits in mem-
ory without accessing them: an experimental study of DRAM
disturbance errors. In: 2014 ACM/IEEE 4lst international
symposium on computer architecture (ISCA), pp 361-372.
https://doi.org/10.1109/ISCA.2014.6853210

Kocher P (1999) The Intel A8 random number generator
cryptography research, Inc. White Paper Prepared for Intel
Corporation

Lin S, Kim Y-B, Lombardi F (2011) A 11-transistor nanoscale
CMOS memory cell for hardening to soft errors. In: IEEE
transactions on very large scale integration (VLSI) systems
Nordrum A (2016) Popular Internet of Things Forecast
of 50 Billion Devices by 2020 Is Outdated. Available at, http://
spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-
things-forecast-of-50-billion-devices-by-2020-is-outdated

Piret G, Quisquater J-J (2003) A Differential fault attack
technique against SPN structures, with application to the AES and
KHAZAD. In: International workshop on cryptographic hardware
and embedded systems. Springer, Berlin

Qiao R, Seaborn M (2016) A new approach for rowhammer
attacks. In: 2016 IEEE international symposium on hardware
oriented security and trust (HOST), pp 161-166. https://doi.org/10.
1109/HST.2016.7495576

Ravi S, Raghunathan A, Chakradhar S (2004) Tamper resistance
mechanisms for secure embedded systems. In: Proceedings of
the 17th international conference on VLSI design, pp 605-611.
https://doi.org/10.1109/ICVD.2004.1260985

Razavi K, Gras B, Bosman E, Preneel B, Giuffrida C, Bos H, Shui
FF (2016) Hammering a needle in the software stack. In: 25th
USENIX security symposium (USENIX Security 16). USENIX
Association, Austin, pp 1-18

Rithrmair U, Xu X, Solter J, Mahmoud A, Majzoobi M,
Koushanfar F, Burleson W (2014) Efficient power and timing
side channels for physical unclonable functions. Springer, Berlin,
pp 476-492. https://doi.org/10.1007/978-3-662-44709-3_26
Seaborn M, Dullien T (2016) Exploiting the DRAM rowhammer
bug to gain kernel privileges. https://www.blackhat.com/docs/us-
15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-
Bug-To-Gain-Kernel-Privileges.pdf

https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/978-3-662-53140-2_29
https://doi.org/10.1109/IPDPS.2016.59
https://doi.org/10.1109/RELPHY.1989.36309
https://doi.org/10.1109/ASYNC.2013.15
https://doi.org/10.1109/ASYNC.2013.15
https://doi.org/10.1109/COMST.2016.2548426
http://eprint.iacr.org/2016/086
https://doi.org/10.1007/s10836-009-5106-6
https://doi.org/10.1109/LES.2015.2477273
https://doi.org/10.1109/LES.2015.2477273
https://doi.org/10.3390/electronics6030052
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://doi.org/10.1002/cpe.v16:11
https://doi.org/10.1109/IEDM.2010.5703295
http://arxiv.org/abs/1507.06955
https://doi.org/10.1109/TCAD.2013.2263037
https://doi.org/10.1109/TCAD.2013.2263037
https://doi.org/10.1109/JPROC.2014.2320516
https://doi.org/10.1016/j.ic.2010.11.013
https://doi.org/10.1109/ISCIT.2015.7458370
https://doi.org/10.1109/TCAD.2002.804378
https://doi.org/10.1109/ISCA.2014.6853210
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://doi.org/10.1109/HST.2016.7495576
https://doi.org/10.1109/HST.2016.7495576
https://doi.org/10.1109/ICVD.2004.1260985
https://doi.org/10.1007/978-3-662-44709-3_26
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

J Hardw Syst Secur

37.

38.

39.

40.

41.

42.

Takeda E, Suzuki N (1983) An empirical model for device
degradation due to hot-carrier injection. IEEE Electron Device
Lett 4:111-113. https://doi.org/10.1109/EDL.1983.25667

Tewari A, Srivastava U, Gupta P (2002) A parallel DFA
minimization algorithm. In: Sahni S, Prasanna VK, Shukla U (eds)
High performance computing — HiPC 2002. Springer, Berlin,
pp 3440

Tu KN (2003) Recent Advances on electromigration in very-large-
scale-integration of interconnects. J Appl Phys 94(9):5451-73
Valmari A, Lehtinen P (2008) Efficient minimization of DFAs
with partial transition functions. CoRR arXiv:0802.2826.2008
Wang Z, Karpovsky M (2010) Robust FSMs for cryptographic
devices resilient to strong fault injection attacks. In: Proceedings
IEEE on-line testing symposium (IOLTS)

Woodruff J, Watson RNM, Chisnall D, Moore SW, Anderson J,
Davis B, Laurie B, Neumann PG, Norton R, Roe M (2014) The

43.

44.

45.

CHERI capability model: revisiting RISC in an age of risk.
In: Proceeding of the 41st annual international symposium on
computer architecture (ISCA ’14). IEEE Press, Piscataway, pp
457-468

Xiao Y, Zhang X, Zhang Y, Teodorescu R (2016) One bit flips,
one cloud flops: cross-VM row hammer attacks and privilege
escalation. In: 25th USENIX security symposium (USENIX
Security 16). Austin, pp 19-35

Yu Q, Frey J (2013) Exploiting error control approaches
for hardware Trojans on Network-on-Chip links. In: 2013
IEEE international symposium on defect and fault tolerance
in VLSI and nanotechnology systems (DFTS), pp 266-271.
https://doi.org/10.1109/DFT.2013.6653617

Yu Q, Zhang Z, Dofe J (2018) Investigating reliability and security
of integrated circuits and systems. In: IEEE computer society
annual symposium on VLSI (ISVLSI)

@ Springer

https://doi.org/10.1109/EDL.1983.25667
http://arxiv.org/abs/0802.2826.2008
https://doi.org/10.1109/DFT.2013.6653617

	SRASA: a Generalized Theoretical Framework for Security and Reliability Analysis in Computing Systems
	Abstract
	Introduction
	Overview of Computer System Reliability
	Brief Overview of Reliability
	Error Models for Reliability Problems
	Error Types
	Error Characteristics

	Solutions for Reliability Problems
	Error Prevention
	Error monitoring
	Error Recovery

	Limitations of Reliability-Oriented Designs
	Excessive Random Errors
	Injected Errors from Attackers
	Non-Invasive Attacks

	Overview of Computer System Security
	Security Threats
	Integrity and availability attacks
	Confidentiality Attacks

	Existing Hardware Infrastructures for Security

	System Reliability and Security
	Interleaving of Reliability and Security Issues
	Leveraging the Sources of Unreliability to Design Security Primitives
	Leveraging the Sources of Unreliability to Detect Counterfeit Chips
	Leveraging the Sources of Unreliability to Hide Hardware Trojan Horses
	Trade Off or Collaborate for Reliability and Security Need?

	Illustrative Case: Rowhammer Attack

	Security and Reliability Formulations
	Preliminary Definitions
	Security and Reliability Aware State Automaton
	Positive and Negative Functions
	Relationship Between These Functions

	Illustration of the Functions in Phases
	Examples

	Applying SRASA to the System Design and Evaluation Processes
	SRASA for System Design and Testing
	Scalability and Complexity of the SRASA Formulation

	Illustrative Design Cases of the Proposed Framework
	Case Study of Error Detection Schemes for the S-Box of AES
	The S-Box (SubBytes) Stage in AES
	To Protect S-Box with Reliable or Secure Functions

	Case Study of Fault Attacks on SIMON
	Case Study of Side-Channel Attacks on AES

	Conclusions and Future Work
	References

