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Abstract—I/O efficiency is crucial to productivity in scientific
computing, but the growing complexity of HPC systems and
applications complicates efforts to understand and optimize
I/O behavior at scale. Data-driven machine learning-based I/O
throughput models offer a solution: they can be used to identify
bottlenecks, automate I/O tuning, or optimize job scheduling with
minimal human intervention. Unfortunately, current state-of-the-
art I/O models are not robust enough for production use and
underperform after being deployed.

We analyze four years of application, scheduler, and storage
system logs on two leadership-class HPC platforms to understand
why I/O models underperform in practice. We propose a taxon-
omy consisting of five categories of I/O modeling errors: poor
application and system modeling, inadequate dataset coverage,
I/O contention, and I/O noise. We develop litmus tests to quantify
each category, allowing researchers to narrow down failure
modes, enhance I/O throughput models, and improve future
generations of HPC logging and analysis tools.

Index Terms—High performance computing, I/O, storage,
machine learning

I. INTRODUCTION

As scientific applications push to leverage ever more capable
computational platforms, there is a critical need to identify
and address bottlenecks of all types. applications, the I/O
subsystem is often a major source of performance bottlenecks,
and it is common for applications to attain only a small fraction
of the peak I/O rates [1]. These performance problems can
severely limit the scalability of applications and are difficult to
detect, diagnose, and fix. Data-driven machine learning-based
models of I/O throughput can help practitioners understand
application bottlenecks (e.g., [2]–[7]), and have the potential to
automate I/O tuning and other tasks. However, current machine
learning-based I/O models are not robust enough for produc-
tion use [6]. A thorough investigation of why these models
underperform when deployed on high performance computing
(HPC) systems will provide key insights and guidance on how
to address their shortcomings. The goal of our study is to help
machine learning (ML)-driven I/O modeling techniques make
the transition from theory to practice.

There are several reasons why machine learning-based
I/O models underperform when deployed: poor modeling

choices [2], [7], concept drift in the data [5], and weak
generalization [6], among others. I/O models are often opaque,
and there is no established methodology for diagnosing the
root cause of model errors. In this work, we present a
taxonomy of ML-based I/O modeling errors, as shown in
Figure 1. Through this taxonomy, we show that I/O throughput
prediction errors can be separated and quantified into five error
classes: inadequate (1) application and (2) system models,
(3) novel application or system behaviors, (4) I/O contention
and (5) inherent noise. For each class, we present data-driven
litmus tests that estimate the portion of modeling error caused
by that class. The taxonomy enables independent study of each
source of error and prescribes appropriate ML techniques to
tackle the underlying sources of error.

Our contributions in this work are as follows:

1) We introduce a taxonomy of ML-based I/O throughput
modeling errors which consists of five classes of errors.

2) We show that the choice of ML model algorithm, scaling
the model size, and tuning hyperparameters cannot reduce
all potential errors. We present two litmus tests that quan-
tify error due to poor application and system modeling.

3) We present a litmus test that estimates what portion of error
is caused by rare jobs with previously unseen behavior, and
apply uncertainty quantification methods to classify those
jobs as out-of-distribution jobs.

4) We present a method for quantifying the impact of I/O
contention and noise on I/O throughput, which (1) defines
a fundamental limit in how accurate ML models can
become, and (2) gives HPC system users and administrators
a practical estimate of the I/O throughput variance they
should expect. We show that underlying system noise is
the dominant source of errors, and not poor modeling or
lack of application or system data.

5) We present a framework for how the proposed taxonomy
is practically applied to new systems and evaluate it on
two leadership-class supercomputers: Argonne Leadership
Computing Facility (ALCF) Theta and National Energy
Research Scientific Computing Center (NERSC) Cori.
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II. RELATED WORK

In recent years, automating HPC I/O system analysis
through ML has received significant attention, with two promi-
nent directions: (1) workload clustering to better understand
groups of HPC jobs and automate handling of whole groups,
and (2) I/O subsystem modeling and make predictions of
HPC job I/O time, I/O throughput, optimal scheduling, etc.
Clustering HPC job logs has been explored in [2], [8], [9]
with the goal of better understanding workload distribution,
scaling I/O expert effort more efficiently, and revealing hidden
trends and I/O workload patterns. ML-based modeling has
been used for predicting I/O time [4], I/O throughput [2],
[7], optimal filesystem configuration [10], [11], as well as
for building black boxes of I/O subsystems in order to apply
ML model interpretation techniques [2]. While there have
been some attempts at creating analytical models of I/O
subsystems [12], most attempts are data-driven, and rely on
HPC system logs to create models of I/O [1], [2], [4], [7],
[13]. Although the challenges of developing accurate machine
learning models are well known, the nature of the domain
requires special consideration: I/O subsystems have to service
multiple competing jobs, their configuration evolves over time,
they have periods of increased variability, they experience
occasional hardware faults, etc. [14]–[16]. Diagnosing this I/O
variability, where the performance of a job depends on external
factors to the job itself has been extensively studied [3], [4],
[14], [16], [17]. Finally, the deployment of I/O models has
been shown to require special consideration as these models
often significantly underperform on new applications [5], [6].
While different sources of model error have been studied
individually, no prior work characterizes the relative impact
of different sources of error on model accuracy.

III. MODELING HPC APPLICATIONS AND SYSTEMS

The behavior of an HPC system is governed by both
complex rules and inherent noise. By formalizing the system
as a mathematical function (or, more generally, a stochastic
process) with its inputs and outputs, the process may be de-
composed into smaller components more amenable to analysis.

The I/O throughput of a system running specific sets of
applications may be treated as a data-generating process
from which I/O throughput measurements are drawn. While
building a perfect model of an HPC system may not be
possible, it is useful to understand the inputs to the ‘true’
process and the process’s functional properties. The theoretical
model of the process must include all causes that might
affect a real HPC system, such as: how well a job uses the
system, hardware and software configurations over the life
of the system, resource contention between concurrent jobs,
inherent application-specific and system noise, application-
specific noise sensitivity, etc. Although many of these causes
are not directly observable since they work at short time scales
or below the instruction set architecture where gaining low-
level insight is not possible, the effects are cumulative and the
system is affected by them. ML models of the system must
take these causes into account or suffer modeling errors.

To model system behavior, we adopt the system modeling
formulation from [4], expressing the relationship between an
HPC job j and its I/O throughput on the system ϕ(j) as:

ϕ(j) = f(j, ζ, ω) (1)
Here, j represents HPC job behavior (e.g., I/O volume and
access patterns, distribution of POSIX operations, etc.), ζ
represents system state (e.g., file system health, system config-
uration, node availability, etc.) and system behavior (e.g., the
behavior of other applications co-located with the modeled
application during its run, contention from resource sharing,
etc.) at a given time. ω represents the randomness acting on
the system. The system ζ can be further decomposed as:

ζ = ζg(t) + ζl(t, j) (2)
The component ζg(t) represents the global system impact on
all jobs running on the system (e.g., a service degradation that
equally impacts all jobs) and is only a function of time t. The
component ζl(t, j) represents the local system impact on the
I/O throughput of job j caused by resource contention and
interactions with other jobs running on the system. Contrary
to the ζg(t) component, ζl(t, j) is job-specific and depends on
the behavior of the current set of applications running on the
system and their location relative to j, the sensitivity of j to
resource contention and noise, etc. Without loss of generality,
the I/O throughput from Equation 1 can be expressed as:
ϕ(j) = f(j, ζg(t), ζl(t, j), ω)

= fa(j) + fg(j, ζg(t)) + fl(j, ζl(t, j)) + fn(j, ζ, ω)

(3)

Here, fa(j) represents the I/O throughput of a job j on an
idealized system where the j is alone on the system, the system
does not change over time, and there is no resource contention.
fg(j, ζg(t)) represents how the evolving configuration of the
system (hardware provisioning, software updates, etc.) affects
a job’s I/O throughput. The fl(j, ζl(t, j)) component repre-
sents the per-job impact of resource contention and j’s I/O
noise sensitivity. Finally, fn(j, ζ, ω) represents the impact of
inherent system noise (e.g., dropped packets) on the job.

A. Modeling assumptions

The task of modeling a system’s I/O throughput involves
predicting the behavior of the system when tasked with
executing a job from some application on some data. Modeling
I/O throughput requires modeling both the HPC system and the
jobs running on it. Machine learning models used in this work
attempt to learn the true function ϕ by mapping observable
features of the job j and the system ζ to measured I/O
throughputs ϕ(j). A model m(jo, ζo) is tasked with predicting
throughput ϕ(j), where jo ⊆ j and ζo ⊆ ζ are the observable
job and system features.

When designing ML models, the choice of model archi-
tecture and model inputs is based on implicit assumptions
about the process that generates the data. When incorrect
assumptions are made about the domain, the model will
suffer from errors that cannot be fixed within that modeling
framework, e.g., through hyperparameter tuning or further data
collection. We investigate four common assumptions about the
HPC domain, shown by the branches in Figure 1.



All data is in-distribution: a common assumption that ML
practitioners make is that all model errors are the product of
insufficiently trained models, inadequate model architectures,
or missing discriminative features. However, some jobs in the
dataset may be Out of Distribution (OoD), that is, they may
be collected at a different time or environment, or through a
different process. The model may underperform on OoD jobs
due to the lack of similar jobs in the training set and not
due to lack of insight (features) into the job. The cause of
the problem is epistemic uncertainty (EU) - the model suffers
from reducible uncertainty, i.e., lack of knowledge, since a
broader training set would make the OoD jobs in-distribution
(ID). In the HPC domain, epistemic uncertainty is present in
cases of rarely ran or novel jobs or uncommon system states.
Without considering the possibility that a portion of the error
is a product of epistemic uncertainty, practitioners may put
effort into tuning models instead of collecting more underrep-
resented jobs. Referring to Equation 1, this assumption may
be expressed as: deployment time jd and ζd are drawn from
a different distribution from training time jt and ζt.

Noise is absent: all systems have some inherent noise
that cannot be modeled and will impact predictions. Aleatory
uncertainty (AU) refers to irreducible uncertainty which stems
from inherent noise or lack of insight into jobs on the system.
Modeling errors due to aleatory uncertainty are different from
epistemic uncertainty because collecting more jobs may not
reduce AU, and these errors may be fundamentally unfixable.
Understanding and characterizing a system’s inherent I/O
noise is necessary to quantify ML model uncertainty, and
because the amount of noise in the data has a strong effect
on the optimal choice of ML model. HPC I/O domain experts
note that certain systems do have significantly higher or lower
I/O noise [18], [19], but I/O modeling works rarely attempt
to quantify ML model uncertainty [20]. The assumption that
noise is not present in the dataset can be expressed as follows:
The practitioner assumes that the data-generating process ϕ
has the form of ϕ(j) = f(j, ζ) instead of ϕ(j) = f(j, ζ, ω),
i.e., that the inherent noise impact is zero: fn(j, ζ, ω) = 0.

Sampling is independent: running a job on a system can be
viewed as sampling the combination of application behavior
and system state and measuring I/O throughput. Most I/O
modeling works implicitly assume that multiple samples taken
at the same time are independent of each other. The system is
modeled as equally affecting all jobs running on it, that is, the
placement of different jobs on nodes, the interactions between
neighboring jobs, network contention, etc. do not affect the
job. This assumption can then be expressed as: the process has
the form of ϕ(j) = f(j, ζg(t)), not ϕ(j) = f(j, ζ, ω) i.e., that
the resource contention impact is zero: fl(j, ζl(t, j)) = 0.

Process is stationary: a common assumption ML practi-
tioners make is that the data-generating process is stationary,
and that the same job ran at different times achieves the same
I/O throughput. As hardware fails, as new nodes are provi-
sioned, and shared libraries get updates, the system evolves
over time. The stationarity assumption is therefore incorrect,
and ignoring it by e.g., not exposing the ML model to when a

job is ran may cause hard-to-diagnose errors. This assumption
implies sampling independence and absence of noise, and
can be expressed using the system modeling formulation as:
ϕ(j) = f(j) and fg(j, ζg(t)) = 0.

IV. CLASSIFYING I/O THROUGHPUT PREDICTION ERRORS

No matter the problem to which machine learning is applied,
a systematic characterization of the sources of errors is crucial
to improve model accuracy. While there is no substitute for
‘looking at the data’ to understand the root cause of the
problem, this approach does not scale for large datasets. We
seek a systematic way to understand the barriers to greater
accuracy and improve ML models applied to systems data.

While the work presented here can be generalized past
just I/O to e.g., compute or network modeling, we study I/O
because I/O bottlenecks are more difficult to diagnose than
compute bottlenecks, and because I/O has a coarser tempo-
ral granularity allowing software to observe I/O subsystems
without the need for e.g., hardware performance counters or
binary instrumentation. The key questions we ask in this work
are: What are the impediments to the successful application
of learning algorithms in understanding I/O? Should ML
practitioners focus on acquiring more data on HPC appli-
cations or the HPC system? How much of the error stems
from poor ML model architectures? How much of the error
can be attributed to the dynamic nature of the system and
the interactions between concurrent jobs? How much of the
performance variation is caused by the system? What fraction
of jobs exhibit truly novel I/O behavior compared to jobs
observed thus far? At what point are the applications too novel,
so much so that users should no longer trust the predictions
of the I/O model? We now describe five error classes and dive
deeper into error attribution in Sections VI, VII, IX and VIII.

The lack of application and system observability, the inter-
action between running jobs, the inherent system noise, and
the novel or rare applications prevent ML models from fully
capturing system behavior, causing errors. We define the I/O
throughput prediction error of a model m in a job j as:

e(j) = ϕ(j, ζ, ω)−m(jo, ζo) (4)
Following the ϕ(j) terms from Eq. 3 and including the out-
of-distribution error, the error can be broken down as follows:

e(j) = eapp + esystem + eood + econtention + enoise (5)
Here, the application modeling error eapp is caused by a
poor model fit of application behavior (fa(j) component),
the global system error esystem is caused by poor predictions
of global system impact (fg(j, ζg(t)) component), the out-
of-distribution error eood is caused by weak model gener-
alization on novel applications or system states, the con-
tention error econtention is caused by poor predictions of job
interactions (fl(j, ζl(t, j)) component), and the noise error
enoise is caused by the inability of any model to predict
inherent noise (fn(j, ζ, ω) component). These five classes of
errors are shown as leaf nodes at the bottom of Figure 1.
While attributing cumulative job error to each class may be
difficult on a per-job basis, we will show that estimating each
component across a whole dataset is possible.



Fig. 1: Taxonomy of I/O throughput modeling errors, with examples of the effects of each error class shown in the bottom
row (left to right): (1) median error of XGBoost models with varying numbers of estimators and estimator depth, (2) per-week
averaged ML model error during the lifetime of a system, (3) median error before (green) and after training (red), with error
distribution shown in the background, (4) I/O throughput prediction error for sets of identical (duplicate) jobs, for 5 different
applications, (5) distribution of relative job start times and relative job I/O throughputs for pairs of duplicate jobs.

A. I/O Model Error Taxonomy and Litmus Tests

We adopt the term litmus test to mean a test that evaluates
the presence, amount, or ratio of a certain quantity. In the
following sections, we introduce a four litmus tests that split
the error from Equation 5 into five separate classes. The error
classes in Equation 5 must be estimated in the order shown in
the bottom row of Figure 1 due to the specifics of individual
litmus tests. For example, before the effect of aleatory and
epistemic uncertainty can be separated, a good model must be
found [21]. Similarly, before global and local system modeling
errors can be separated, OoD jobs must be identified.

Application modeling errors: ML models can have vary-
ing expressivity and may not always have the correct structure
or enough parameters to fit the available data. Models whose
structure or training prevents them from learning the shape
of the data-generating process are said to suffer from approx-
imation errors. Approximation errors cannot be classified as
epistemic or aleatory in nature because no new features or jobs
are necessary to remove this error. To estimate AU and EU in
the dataset, methods such as AutoDEUQ [21] first require that
an appropriate model architecture is found and trained, placing
approximation errors as the first branch of the taxonomy.

Approximation errors are further divided into application
and system modeling errors. Application modeling errors are
caused by poor predictions of application behavior which can
be fixed through hyperparameter searches or better model
architectures. The first column of Figure 1 illustrates the
impact of application modeling errors with an example hyper-

parameter search over two XGBoost parameters on the Theta
dataset (introduced in the next section). The best configuration
found by the grid search has 32 trees with a depth of 21, while
the default XGBoost configuration uses 100 trees of depth 6.

System modeling errors: system behavior changes over
time due to transient or long-term changes such as file system
metadata issues, failing components, new provisions, etc. [22].
A model that is only aware of application behavior, but not of
system state implicitly assumes that the process is stationary.
It will be forced to learn the average system response to
I/O patterns, and will suffer greater prediction errors during
periods when system behavior is perturbed. System modeling
errors occur due to poor (or complete lack of) modeling of
the global system component ζg(t). To illustrate this class
of errors, the second experiment in Figure 1 shows the per-
week average error of two models trained to predict job I/O
throughput. The blue model can be written as m(jo), i.e., it
is only exposed to observable application behavior jo. The
orange model can be written as m(jo, t), i.e., it also knows the
job start time t. During service degradations, the blue model
has long periods of biased errors while the orange model does
not, since it knows when the degradations happen.

Generalization errors: ML models should perform well
on data drawn from the same distribution from which their
training set was collected. When exposed to samples highly
dissimilar from their training set, the same models tend
to make mispredictions. These samples are called ‘out-of-
distribution’ (OoD) because they come from new, shifted,



distributions, or the training set does not have full coverage
of the sample space. While models that generalize (perform
well on OoD data) may exist, mispredictions on OoD samples
are not always the fault of the model, and in those cases the
only recourse is to (1) detect and exclude samples suspected as
out-of-distribution, (2) seek an expanded training set covering
those regions, or (3) apply domain-specific knowledge. In
order not to pollute other classes of errors, samples that show
high epistemic uncertainty must be detected and their error
counted towards generalization errors before other errors are
estimated. As an example, the third column of Figure 1 shows
model error before (green) and after (red) deployment, with
the error significantly rising when the model is evaluated on
data collected outside the training time span.

Contention and resource sharing errors: a diverse and
variable number of applications compete for compute, net-
working, and I/O bandwidth on HPC systems and interact
with each other through these shared resources [17], [23].
Although the global system state will impact all jobs equally,
the impact of resource sharing is specific to pairs of jobs
that are interacting and is harder to observe and model.
Prediction errors that occur due to lack of visibility into job
interactions are called contention errors and are shown in the
fourth column of Figure 1. Here, the I/O throughputs of a
number of identical runs (same code and data) of different
applications illustrate that some applications are more sensitive
to contention than others, even when accounting for global
system state.

Inherent noise errors: while hard to measure, contention
and resource sharing errors can be potentially removed through
greater insight into the system and workloads. What funda-
mentally cannot be removed are inherent noise errors: errors
due to random behavior by the system (e.g., dropped packets,
randomness introduced through scheduling, etc.). Inherent
noise is problematic both because ML models are bound to
make errors on samples affected by noise and because noisy
samples may impede model training. The fifth column of
Figure 1 shows the I/O throughput and start time differences
between pairs of identical jobs. The leftmost column contains
identical jobs that ran at exactly the same time, which often
experience 5% or more difference in I/O throughput.

V. DATASETS AND EXPERIMENTAL SETUP

This work is evaluated on two datasets, one collected from
the Argonne Leadership Computing Facility (ALCF) Theta
supercomputer in the period from the beginning of 2017 to end
of 2020, and one collected from the National Energy Research
Scientific Computing Center (NERSC) Cori supercomputer
in the period from beginning of 2018 to the end of 2019.
Theta collects Darshan [24] and Cobalt logs and the Theta
dataset consists of about 100K jobs with an I/O volume larger
than 1GiB, while Cori collects Darshan and Lustre Monitoring
Tools (LMT) logs, and the Cori dataset consists of 1.1M jobs
larger than 1GiB.

Darshan is an HPC I/O characterization tool that collects
HPC job I/O access patterns on both POSIX and MPI-IO

levels, and serves as our main insight into application behavior.
It collects POSIX aggregate job-level data, e.g., the total
number of bytes transferred, accesses made, read / write
ratios, unique or shared files opened, distribution of accesses
per access size, etc. MPI-IO is a library built on top of
POSIX that offers higher-level primitives for performing I/O
operations and can potentially offer the model greater insight
into application semantics and behavior. Darshan collects MPI-
IO information for jobs that use it, and all MPI-IO operations
are also visible on the POSIX level. Darshan also collects the
number of processes ran, which is typically equal to or greater
than the number of cores allocated to a job, but Darshan does
not currently measure a job’s core count. This information is
however available in Cobalt scheduler logs, which contain the
number of nodes and cores assigned to a job, job start and end
times, job placement, etc. Of the two systems observed in this
work, only Theta stores Cobalt scheduler logs. LMT collects
I/O subsystem information such as storage server load and file
system utilization, and serves as our main insight into the I/O
subsystem state as it changes over time. Every 5 seconds, LMT
records the state of Lustre file system’s object storage servers
(OSS), object storage targets (OST), metadata servers (MDS)
and metadata targets (MDT). Some of the features collected
are OSS and MDS CPU and memory utilization, number of
bytes transferred to and from the OSTs, file system fullness,
number of metadata operations (e.g., open, close, mkdir,
etc.) performed by the metadata targets, etc.

Because LMT logs are collected independently from jobs
running on the system, during a data preprocessing phase
each job’s Darshan log is matched with all LMT measure-
ments collected between the job’s start and stop time. LMT
separately logs each OSS, OST, MDS, and MDT I/O node
state, but since a job is served by an arbitrary number of
these I/O nodes, only the minimum, maximum, mean and
standard deviation of collected features are exposed to the ML
model. Overall, models have access to 48 Darshan POSIX,
48 Darshan MPI-IO, 37 LMT, and 5 Cobalt features. All
logs are sanitized and pre-processed as according to [2].
During sanitization, jobs with missing features or illegitimate
values (e.g., I/O throughput of zero) are removed. During pre-
processing, bounded features (e.g., percentage features such as
I/O R/W rate) are not modified, while unbounded features are
either scaled first by taking a log10 and then applying min-max
normalization, or alternatively these features are converted to
artificial features (e.g., read and write access count features
are converted to a bounded read / write ratio feature and
an unbounded total access count feature). The final features
exposed to the models are reported in Table I. The code and
the dataset for this work are provided in the appendix.

The ML models in this work are trained using supervised
learning on the task of predicting the I/O throughput of
individual HPC jobs. The model error is defined as:

e(y, ŷ) =
1

n

n∑
i=1

∣∣∣∣log10 (yi
ŷi

)∣∣∣∣ (6)



TABLE I: Condensed feature set and feature count

Darshan features (present on both Theta and Cori) Count

log10 of the job I/O throughput 1
log10 of the total number of {processes, files, accesses, bytes} 4
log10 of the number of POSIX {open, seek, stat, mmap, 6

fsync, mode} calls
log10 of {memory, file} alignment in bytes 2
% of all accesses that are {reads, writes} 2
% of all {reads, writes} that are {consecutive, sequential} 4
% of all accesses that switch between reading and writing 1
% of {read, write} accesses of size in ranges 20

(0B, 100B], (100B, 1KiB], ..., (100MiB, 1GiB], (1GiB+)
% of non-aligned {file, memory} accesses 2
% of all bytes that are {read, written} 2
% of {shared, unique, read-only, read-write, write-only} files 5
% of bytes read/written from {shared, unique, read-only, read-
write, write-only} files

5

Lustre features (Cori only) Count

log10 of file system {byte, inode} fullness {min, mean, max, std} 8
log10 of metadata target {closes, getattrs, getxattrs, links, mkdirs,
mknods, opens, renames, rmdirs, setattrs, statfss, unlinks} opera-
tion mean

12

% of data server {CPU, memory} {min, mean, max, std} 8
% of data target bytes {read, written} {min, mean, max, std} 8
% of metadata server CPU usage {min, mean, max, std} 1

Cobalt features (Theta only) Count

log10 of {core, node} count 2
log10 of job runtime 1
% of job {start, end} time relative to total system time range 2

where yi and ŷi are the i-th job’s measured and predicted I/O
throughputs. Because log(x) = −log(1/x), if a model over-
estimates or underestimates the I/O throughput by the same
relative amount, the absolute error remains the same. We use
percentages to write errors, where, e.g., a -25% error specifies
that the model underestimated real I/O throughput by 25%.
Some figures however show the absolute error when model
bias is not important. While models try to minimize mean
error, we report median values since some of the distributions
have heavy tails that make mean estimates unreliable.

VI. APPLICATION MODELING ERRORS

When an ML practitioner is tasked with a classification
or a regression problem, the first model they evaluate will
likely under-perform on the task, due to e.g., inadequate data
preprocessing, architecture, or hyperparameters. Therefore, the
model will suffer from approximation errors, which can be
removed by tuning the model hyperparameters or finding more
appropriate domain-specific ML model architectures. Since the
choice of model architecture and parameters typically has a
dominant effect on model error, approximation errors must be
resolved before more subtle classes of errors become a limiting
factor in improving model performance.

Approximation errors can be split into errors caused by poor
modeling of the available data (i.e., applications), and into
errors caused by implicit assumptions about the domain (e.g.,
that I/O behavior of a system does not change over time). In
this section we analyze application modeling errors, and in
Section VII we analyze system modeling errors.

This section asks the following questions: do I/O models
build faithful representations of application behavior? What
are the limits of I/O application modeling? In practice, do
I/O models faithfully learn application behavior? Can I/O
application modeling benefit from extra hyperparameter fine-
tuning or new application features?

A. Estimating limits of application modeling

Here we develop an application modeling error litmus test
which separates the application modeling error eapp from
the other four error classes in Equation 5. To do so, we
seek a ‘golden model’ (GM) that predicts I/O throughput
as accurately as possible given the observable application
behavior. Application modeling error of a practical ML model
is then estimated by comparing its error rate with that of a
golden model.

To build this ‘golden model’, we rely on a property of
synthetic datasets where the data-generating process can be
freely and repeatedly sampled. When analyzing HPC logs,
it is common to see records of the same application ran
multiple times on the same data, or data of the same format.
For example, system benchmarks such as IOR [25] may be
run periodically to evaluate file system health and overall
performance. We call these sets of repeated jobs ‘duplicate
jobs’. Pairs of jobs are duplicates if they belong to the same
application and all of their observable application features are
identical, typically because the application was ran with the
same configuration and input data. Because jobs from the same
set of duplicates appear identical to an ML model, the model
cannot distinguish between them. Given a training set that only
contains sets of duplicate jobs, the highest possible accuracy
can be achieved by mapping jobs from each individual set of
duplicates to the set’s mean I/O throughput. A model that does
not learn to predict a set’s mean value is said to suffer from
application-modeling error.

By restricting the training set to only sets of duplicates,
a golden model with a median absolute error eg can be
built for which egapp = 0. This golden model performs only
memorization and does not generalize at all, but is nonetheless
useful for comparison against real ML models. Any practical
model with a median error ep can then learn its application
modeling error epapp on the restricted training set by comparing
against the golden model eg as epapp = ep−eg . Since duplicate
sets can have as few as two jobs, I/O throughput estimates for
duplicate sets are biased, and the golden model (GM) may
appear to perform better on small sets than on large sets. By
applying Bessel’s correction [26], this effect is mitigated, and
the litmus test is administered as:



Application modeling error litmus test:
1. Find sets of duplicate jobs. For each set:

1.1. Calculate the set’s mean I/O throughput;
1.2. Apply Bessel’s correction to mean;
1.3. Use mean as golden model prediction;
1.4. Calculate per-set mean GM absolute error;

2. Calculate median of real and GM mean set errors;
3. Calc. model’s eapp as difference between the two;

Assuming that duplicate jobs are drawn from the same
distribution of applications as the rest of the dataset, the golden
model median absolute error represents the lower bound on
median absolute error a model can achieve on the whole
dataset. Note that different applications may have different
distributions of duplicate I/O throughputs, as shown in the
fourth column of Figure 1. For this litmus test to be accurate, a
large sample of applications representative of the HPC system
workload must be acquired. When applied to Theta, 19010
duplicates (23.5% of the dataset) over 3509 sets show a median
absolute error of 10.01%. Cori has 504920 duplicates (54%)
in 77390 sets with a median absolute error of 14.15%. If
the litmus test is applied correctly, practical ML models may
approach the golden model’s error but cannot surpass it.

B. Minimizing application modeling error

The next question is whether ML models can practically
reach the error lower bound estimate eg . Several I/O mod-
eling works have explored different types of ML models:
linear regression [2], decision trees [27], gradient boosting
machines [2], [27], [28], Gaussian processes [4], neural net-
works [5], etc. Here, we explore two types of models: XG-
Boost [29], an implementation of gradient boosting machines,
and feedforward neural networks. These model types are cho-
sen for their accuracy and previous success in I/O modeling.

Neither type of model achieves ideal performance ‘out of the
box’. XGBoost model performance can be improved through
hyperparameter tuning, e.g., by exploring different (1) num-
bers of decision trees, (2) their depth, (3) the features each tree
is exposed to, and (4) part of the dataset each tree is exposed
to. Neural networks are more complex, since they require
tuning hyperparameters (learning rate, weight decay, dropout,
etc.), while also exploring different architectures (number of
layers, their size, type, and connectivity). In the case of
XGBoost, we exhaustively explore four hyperparameters listed
above, for a total of 8046 XGBoost models. In the case of
neural networks, exhaustive exploration is not feasible due
to state space explosion, so we use AgEBO [30], a Network
Architecture Search (NAS) method that trains populations of
neural networks and updates each subsequent generation’s
hyperparameters and architectures through Bayesian logic.

The leftmost column of Figure 1 shows a heatmap of an
XGBoost exhaustive search over two parameters on the Theta
dataset, with the other two parameters (% of columns and rows
revealed to the trees) selected from the best possible result
found. The best performing model has an error of 10.51%

- close to the predicted bound of 10.01%. The Cori search
arrives at a similar configuration with an error of 14.92%.

In the case of neural networks, Figure 2 shows a scatter plot
of test set errors of 10 generations of neural networks on the
Cori system, with 30 networks per generation. The networks
are evolved using a separate validation test to prevent leakage
of the test set into the model parameters. Networks approach
the estimated error limit, and the best result achieves a median
absolute error of 14.3%. After extensive tuning both neural
networks and XGBoost models asymptotically approach the
estimated limit in model accuracy. Despite the 300 trained
neural networks, NAS does little to improve models, since only
6 out of 300 different models improve on previous results (gold
stars in Figure 2). This suggests that both types of ML models
are impeded by the same barrier and that the architecture and
the tuning of models are not the fundamental issue in achieving
better accuracy, i.e., that the source of error lies elsewhere.

Fig. 2: Results of the Neural Architecture Search (NAS), with
the estimated error lower bound highlighted in red.

C. Increasing visibility into applications

While hyperparameter and architecture searches approach
but do not surpass the litmus test’s estimated lower bound
on error, this is not conclusive evidence that all application
modeling error has been removed and that error stems from
other sources. Possibly, there exist missing application features
that might further reduce errors. We explore two such sets of
features: MPI-IO logs and Cobalt scheduler logs.

Figure 3 shows the absolute error distribution of
hyperparameter-tuned models trained on three Theta datasets:
POSIX, POSIX + MPI-IO, and POSIX + Cobalt (Cori ex-
cluded because of the lack of Cobalt logs). None of the dataset
enrichments help reduce error, corroborating the conclusion
that poor application modeling is not a source of error for these
models, and further insight into applications will not help.
Note that this absence of evidence does not imply evidence
of absence, i.e., it does not prove that there exist no features
that may help improve predictions. However, this experiment
does present a best-effort attempt at exposing novel features,
and the model’s predictions stay within predicted limits.

Adding Cobalt logs does reduce the error on the training
set, and ablation studies show that the job start and end time
features are the cause. Once timing features are present in
the dataset, no two jobs are duplicates due to small timing
variations. While previously the ML model was not able to
overfit the dataset due to the existence of duplicates, this
is no longer the case, and the ML model can differentiate



and memorize each individual sample. In [2] authors remove
timing features for a similar reason: ML models can learn
Darshan’s implementation of I/O throughput calculation and
make good predictions without observing job behavior.

Fig. 3: Error distribution of models trained on POSIX,
POSIX + MPI-IO, and POSIX + Cobalt feature sets.

VII. GLOBAL SYSTEM MODELING ERRORS

The second part of the approximation error in the taxonomy
is the global system modeling error. This error refers to I/O
climate and I/O weather effects [22] that affect all jobs running
on the system, and corresponds to the second component in
Equation 3. While global and local system impact on job
performance have complex and overlapping effects, factorizing
system impact into impact applied to all jobs versus the impact
that is dependent on pairs of concurrent jobs is useful for mod-
eling purposes. The main difference between the two is that
modeling local system impact requires modeling relationships
between all pairs of concurrent jobs, while modeling global
system impacts requires modeling only a single but pervasive
influence. In other words, global system impact modeling is
insensitive to the number of concurrent jobs running on the
system, and can be seen as a form of lossy compression of
system state and contention impact on jobs.

We now ask: How does I/O contention impact job I/O
throughput prediction? What are the limits of global system
modeling? Can I/O models approach this limit? What I/O sub-
system features can help improve I/O throughput predictions?

A. Estimating limits of global system modeling

Global system impact ζg(t) on job j from Equation 3 can
be formalized as some function ζg(t) = g(J(t)) where J is
the set of jobs running at time t. Since jobs have a start and
end time, given a dataset with a dense enough sampling of
J , g(J(t)) can be calculated for every point in time. During
periods of time where e.g., the file system is suffering a service
degradation, all jobs on the system will be impacted with
varying severity. A model of the system does not need to
understand how and why the degradation happened, it only

needs to know degradation start and end times, and how
different types of jobs were impacted. This time-based model
is useless for predicting future performance, and its only utility
is in evaluating how much of the degradation can be described
as purely a function of time. A deployed model does not have
insight into the future and will still need to observe the system.

To evaluate the global system impact, a golden model
that exhibits no global modeling error is developed, against
which other, ‘real’ ML models can be compared. Since the
global system impact ζg(t) only depends on time t and may
ignore the set of all jobs J , only application behavior j and
the job start time feature are exposed to the golden model.
Both real and golden models have optimized hyperparameters
and should have eapp = 0, but only the golden model has
esystem = 0 (assuming enough data to memorize ζg(t) is
available). The litmus test compares these two models to
determine epsystem = ep − eg . Here, a golden model is an
XGBoost model fine-tuned on a validation set and evaluated
on a test set. Assuming that the golden model is exposed
to enough jobs throughout the lifetime of the system, it will
learn the impact of ζg(t) even without having access to the
underlying system features causing that impact. This golden
model is used in the following litmus test:

System modeling error litmus test:
1) Run grid search on real model, find lowest ep;
2) Insert job start time feature t into the dataset;
3) Run grid search on golden model, find lowest eg;
4) Calc. system modeling error epsystem = ep − eg;

If the litmus test is applied correctly, the golden model
only suffers from the last three classes of errors: poor gen-
eralization, local system impact, and inherent noise. Note that
the litmus test is applied on the whole dataset, and not just
duplicates, because the less numerous duplicate jobs do not
cover the whole lifetime of the system well. In Figure 4 we
evaluate a baseline model (blue) and a model enriched with the
job start time (orange). Adding a start time feature has a large
impact on error: on Cori, the error drops 40%, from 16.49%
down to 10.02%, while on Theta the error drops by 30.8%. To
obtain this higher accuracy on the POSIX+time dataset, a far
larger model is needed, i.e., one that can remember the I/O
weather throughout the lifetime of the system.

Note that the timestamp feature fed to the golden model
serves no purpose at deployment time, since the ML model
cannot learn the state of the system as it is happening. This
golden model is useful to retrospectively analyze past states
and validate that deployment-time models are not suffering
from system modeling errors.

B. Improving modeling through I/O visibility

With an estimate of minimal error achievable assuming
perfect application and global system modeling, we investigate
whether I/O subsystem logs can help models approach this
limit. Since Theta does not collect I/O subsystem logs, we



Fig. 4: Error distribution of models trained on (1) POSIX, (2)
POSIX + the start time feature, and (3) Darshan and Lustre

analyze Cori, which collects both application and I/O logs.
Figure 4 shows the XGBoost performance of three models: a
baseline where eapp = 0 (blue), the litmus test’s golden model
where also esystem = 0 (orange), and a Lustre-enriched model
(green). Cori’s median absolute error is reduced by 40%,
from 16.49% down to 9.96%. The Lustre-enriched results are
surprisingly close to the litmus test’s predictions, and suggest
that predictions cannot be improved through further I/O insight
since the litmus test’s prediction is reached.

VIII. GENERALIZATION ERRORS

The remaining three classes of error are caused by lack
of data and not poor modeling, as the top branch of the
taxonomy shows. While I/O contention and inherent noise
errors are examples of aleatory uncertainty and are caused by
lack of insight into specific jobs, generalization errors stem
from epistemic uncertainty, i.e., the lack of other logged jobs
around a specific job of interest. To motivate this section, in
the third graph of Figure 1 we show error distribution of a
model trained on data from January 2018 to July 2019. When
evaluated on held-out data from the same period, the median
absolute error is low (green line). Once the model is deployed
and evaluated on the data collected after the training period
(July 2019 and after), median error spikes up (red line).

A. Estimating generalization error

Estimating the amount of out-of-distribution error eood is
important because any unaccounted OoD error will be classi-
fied as noise or contention. This will make systems that run
a lot of novel jobs appear to be more noisy than they truly
are. Because OoD and ID jobs likely have a similar amount of
I/O and contention noise, false positives (ID jobs classified as
OoD) are preferable over false negatives, since false negatives
contribute to overestimating I/O noise. To estimate the impact
of out-of-distribution jobs on error eood, we aim to quantify
how much of the error is epistemic and how much is aleatory
in nature, as shown in Figure 1 (upper right). The leading
paradigm for uncertainty quantification works by training an
ensemble of models and evaluating all of the models on
the test set. If the models make the same error, the sample
has high aleatory uncertainty, but if the models disagree, the
sample has high epistemic uncertainty [31]. The intuition

is that predictions on out-of-distribution samples will vary
significantly on the basis of the model architecture, whereas
predictions on ID but noisy samples will agree and exhibit
the same bias. Since this method relies on ensemble to have
great model diversity, several works have explored increas-
ing diversity through different model hyperparameters [32],
different architectures [33], or both [21]. We choose to use
AutoDEUQ [21], a method that evolves an ensemble of neural
network models and jointly optimizes both the architecture
and hyperparameters of the models. While in theory any
type of machine learning model can be used for the model
population, neural networks are attractive due to their high
hyperparameter count, diverse architectures found in practice,
and high generalization capability. Additionally, AutoDEUQ’s
Neural Architecture Search (NAS) is compatible with the NAS
search from section VI, reducing the computational load of
applying the taxonomy. Note that in order for AutoDEUQ
to correctly split error into eood vs. econtention + enoise,
first all application and system modeling errors eapp and
esystem must be removed. Therefore, the function of the
NAS is two-fold in this litmus test: (1) eliminate application
and system modeling errors, and (2) create a diverse model
population. Figure 5 shows the distribution of epistemic (EU)
and aleatory uncertainties (AU) of Theta and Cori test sets. For
both systems, aleatoric uncertainty is significantly higher than
epistemic uncertainty. Furthermore, all jobs seem to have AU
larger than about 0.05, hinting at the inherent noise present
in the system. The inverse cumulative distributions on the
margins (red) show what percentage of total error is caused
by AU / EU below that value. For example, for both systems
50% of all error is caused by jobs with EU below 0.04, while
in case of AU, 50% of error is below AU=0.25. The low total
EU is expected since the test set was drawn from the same
distribution as the training set, and increases on the 2020 set
(omitted due to space concerns).

Fig. 5: Distribution of prediction aleatory and epistemic uncer-
tainties for the two systems, with marginal distributions (blue)
and inverse cumulative error (red) shown on the margins.

Epistemic uncertainty does not directly translate into the
out-of-distribution error eood from Equation 5. When a sample
is truly OoD, it may not be possible to separate aleatory and
epistemic uncertainty, since a good estimate of AU requires
dense sampling around the job of interest. Therefore, we



choose to attribute all errors of a sample marked as out-of-
distribution to eood. This error attribution requires classifying
every test set sample as either in- or out-of-distribution, but
since EU estimates are continuous values, an EU threshold
which will separate OoD and ID samples is required. Although
this threshold is specific to the dataset and may require tuning,
the quick drop or ‘shoulder’ in the inverse cumulative error
graph around EU=0.1 in Figure 5 makes the choice of an EU
threshold robust. A litmus test that estimates the error due to
out-of-order samples has the following steps:

Out-of-Distribution error litmus test:
1. Run network architecture search:

1.1. Minimize epapp and epsystem for each model;
1.2. Collect best performing models;

2. Estimate epistemic uncertainty using AutoDEUQ;
3. Find a stable epistemic uncertainty threshold;
4. Classify jobs as either ID or OoD based on threshold;
5. Calculate eood as the sum of OoD job errors.

On Theta, for an EU threshold of 0.24, .7% of the samples
are classified as OoD, but constitute 2.4% of the errors, while
on Cori 2.1% of error gets removed for the same EU threshold.
In other words, the selected jobs have 3× larger average error
than random samples. By visualizing the high-dimensional job
features using the Gauge tool [8] and interactively exploring
the types of jobs that do get removed, we confirm that OoD-
classified jobs are typically rare or novel applications.

IX. I/O CONTENTION AND INHERENT NOISE ERRORS

With the ability to estimate the amount of application and
system modeling error, as well as detect outlier jobs, leftover
error is caused by system contention or inherent noise. Both
of these error classes are caused by aleatory uncertainty,
since the model lacks deeper insight into jobs or the system,
as opposed the OoD case where the model lacks samples.
While e.g., application error was explainable in terms of broad
application behavior (e.g., this application is slow because
it frequently writes to shared files, but the model fails to
learn this effect), the impact of contention and noise on I/O
throughput is caused by lower level, transient effects. Though
it may be possible to observe and log such effects through
microarchitectural hardware counters or network switch logs,
such logging would require vast amounts of storage per job
and may impact performance. Lack of practical logging tools
makes the last two error categories typically unobservable.
Furthermore, these two classes may only be separated in
hindsight, and while I/O noise levels may be constant, the
amount of I/O contention on the system is unpredictable for
a job that is about to run.

The questions we ask in this section are: how can errors due
to noise and contention be separated from errors due to poor
modeling or epistemic uncertainty? Is there a fundamental
limit to how accurate I/O models can become? What steps
are necessary to quantify system I/O variability?

A. Establishing the bounds of I/O modeling

To separate contention and noise impacts from the first three
classes of error, we develop a litmus test based on the test from
Section VI. There, by observing sets of duplicates, the error of
a golden model eg was estimated, where egapp = 0. Comparing
real models against this ideal model allows for calculating a
real model’s eapp. This litmus test works by ‘holding constant’
application behavior j within a set of duplicates, i.e., by
preventing any input variance from reaching the model. The
here introduced noise and contention litmus test seeks to hold
constant not only application behavior, but also global system
impact, and impact from poor generalization. We design a
litmus test that works by enforcing a stronger requirement on
duplicate sets, where pairs of jobs are duplicates only if they
have the both same application behavior j and same start time
t. The test assumes that identical jobs ran at the same time
are exposed to the same global system impact ζg(t), but not
necessarily the same local impact. The litmus test therefore
estimates the sum of contention and noise error for a golden
model, where only concurrent duplicates are observed and both
application behavior j and global system behavior ζg(t) are
held static for each duplicate set.

Contention and noise error litmus test:
1. Remove OoD jobs as per previous litmus test;
2. For each set of concurrent duplicate jobs (∆t = 0):

2.1. Calculate the set’s mean I/O throughput;
2.2. Apply Bessel’s correction to mean;
2.3. Use mean as golden model prediction;
2.4. Calculate per-set mean GM absolute error;

3. Calculate econtention + enoise as median of golden
model per-set errors.

In the fifth column of Figure 1 we show the distribution
of I/O throughput differences ∆ϕ and timing differences
∆t between all pairs of Cori duplicate jobs, weighted so
that large duplicate sets are not overrepresented. The vertical
strip on the left contains Cori duplicate jobs that were ran
simultaneously, largely because they were batched together.
These jobs share j and ζg , but may differ in ζl and ω. Due
to the denser sampling around 1 minute to 1 hour range, it
is not immediately apparent how the I/O difference changes
between duplicates ran at the same time and duplicates ran
with a small delay. By grouping duplicates from different ∆t
ranges and independently scaling them, a better understanding
of duplicate I/O throughput distributions across timescales can
be made, as shown in Figure 6 (Theta shown, Cori omitted
due to lack of space). For both systems, the distributions on
the right contain jobs ran over large periods of time where
global system impact ζg might have changed, explaining the
asymmetric shape of some of them. The left-most distributions
are similar, since variance only stems from contention ζl and
noise ω. While some distributions (e.g., the 105 to 106 second)
show complex multimodal behavior, all of the distributions
seem to contain the initial zero-second (0s to 1s) distribution.



Fig. 6: Distribution of errors for different periods between
duplicate runs.

By fitting a normal distribution to the ∆t = 0 distribution
(0s to 1s) in Figure 6, we can both (1) learn the lower limit on
total modeling error and (2) learn the system’s I/O noise level,
i.e., how much I/O throughput variance should jobs running
on the system expect. However, upon closer inspection, the
∆t = 0 distribution does not follow a normal distribution.
This is surprising, since if noise follows some (not necessarily
normal) stationary distribution, and is independent over time,
and its effects are cumulative, according to the central limit
theorem the total noise impact is a normal distribution. The
answer lies in how the concurrent (∆t = 0) duplicates are
sampled. When observing duplicates, in general, duplicate sets
have between 2 and hundreds of thousands of identical jobs in
them. However, in duplicate sets with identical start times on
Theta, 70% of the sets only have two identical jobs, and 96%
have 6 jobs or less, with similar results on Cori. The issue
stems from how small (sub-30 sample) duplicate set errors
are calculated: when only a small number of jobs exist in
the set, the mean I/O throughput of the set is biased by the
sampling, i.e., the estimated mean is closer to the samples
than the real mean is. This causes the set I/O throughput
variance to decrease and therefore duplicate error estimate
will be reduced as well. Student’s t-distribution describes this
effect: when the true mean of a distribution is known, error
calculations follow a normal distribution. When the true mean
is not known, the biased mean estimate makes the error follow
the t-distribution. As the set size increases, the t-distribution
approaches a normal distribution. However, naively taking the
variance of the t-distribution will produce a biased sample
variance σ2, which can be de-biased by applying Bessel’s
correction as σ̄2 = n

n−1σ
2.

With de-biasing in place, we estimate the I/O noise variance
of the two systems. Results show that a job running on Theta
can expect an I/O throughput within ±5.71% of the predicted
value 68% of the time, or within ±10.56% 95% of the time.
For Cori, these values are ±7.21% and ±14.99%, respectively.
This is a fundamental barrier not just to I/O model improve-
ment, but to predictable system usage in general. Although
some insight into contention can be gained through low-level
logging tools, noise cannot be overcome. I/O practitioners can
use this litmus test to evaluate the noise levels of their systems,

Fig. 7: Framework for applying the taxonomy.

and ML practitioners should reconsider how they evaluate
models, since some systems may be simply harder to model.

X. APPLYING THE TAXONOMY

We now illustrate how the proposed taxonomy can be used
in practice. In Figure 7, we show the steps a modeler can
follow to evaluate the taxonomy on a new system. Step 1:
The modeler splits the available data into training and test
sets, and then trains and evaluates some baseline machine
learning model on the task of predicting I/O throughput. This
model does not have to be fine-tuned, as the taxonomy will
reveal the main sources of error and approximately how much
the quality of the model is at fault. Step 2.1: The modeler
estimates application modeling errors by finding duplicate jobs
and evaluating the mean predictor performance on every set
of duplicates. Assuming that the distribution of duplicate HPC
jobs is representative of the whole population of jobs, this step
provides the modeler with a lower bound on the application
modeling error. Step 2.2: By contrasting the baseline model
error (Step 1) and the estimated application modeling error,
the modeler can estimate the percentage of error that can be
attributed to poor modeling. The modeler performs a hyperpa-
rameter or network architecture search and arrives at a good
model close to the bound. Step 3.1: The modeler estimates
system modeling errors by exposing the job start time feature
to a golden model. This step requires that the modeler has
developed a well-performing model in Step 2.2, i.e., one that
achieves close to the estimated ideal performance. The test set
error of the model serves as an estimate of the application +
system modeling lower bound. Step 3.2: The modeler explores
adding sources of system data to improve the performance of
the baseline model up to the estimated limit of application
and system modeling. Step 4: The modeler identifies out-of-
distribution samples using AutoDEUQ, calculates OoD error
that stems from these samples, and removes them from the
dataset. Step 5: The modeler estimates the error that can be
attributed to contention and noise, as well as I/O variance
of the system. This estimate is made by observing the I/O
throughput differences between sets of concurrent duplicates,
i.e., duplicate jobs ran at around the same time.



Fig. 8: Results from ALCF Theta and NERSC Cori systems.

In Figure 8 we show the average baseline model error (inner
pink circle segment) of both ANL Theta and NERSC Cori
systems, and how that error is broken down into different
classes of error. We do not focus on the cumulative (total)
error value of the two systems; instead, we focus on attributing
the baseline model error into the five classes of errors in the
taxonomy (middle circle segments of the pie chart), and on
the percentage of error that can be removed through improved
application and system modeling (outer segments of the pie
chart). The inner blue section of the two pie charts represents
the estimated application modeling error, as arrived at in Step
2.1. The outer blue section represents how much of the error
can be fixed through hyperparameter exploration, as explored
in Step 2.2. The inner green section represents the estimated
system modeling error, derived in Step 3.1. Note that the total
percentage of system modeling error is relatively small on
both systems; i.e., I/O contention, filesystem health, hardware
faults, etc., do not have a dominant impact on I/O throughput.
The outer green circle segment represents the percentage of
error that can be fixed by including system logs (LMT logs
in our case), as described in Step 3.2. Only the Cori pie
chart has this segment, as Theta does not collect LMT logs.
On Cori, the inclusion of LMT logs helps remove most of
the system modeling errors, reinforcing the conclusion that
including other logs (i.e., topology, networking) may not help
to significantly reduce errors. The inner red segment represents
the percentage of error that can be attributed to out-of-
distribution samples of the two systems, as calculated in Step
4. Finally, the yellow circle segment represents the percentage
of error that can be attributed to aleatory uncertainty. For both
Theta and Cori, this is a rather large amount, pointing to the
fact that there exists a lot of innate noise in the behavior of
these systems, and setting a relatively high lower bound on
ideal model error.

The similarity between the modeling error estimates (Steps
2.1 and 3.1) and the actual updated model performance (Steps
2.2 and 3.2) is surprising and serves as evidence for the quality
of the error estimates. However, the estimates of the five
error classes do not add up to 100%. The first three error
estimates are just that - estimates, derived from a subset of data
(duplicate HPC jobs) that do not necessarily follow the same

distribution as the rest of the dataset and may be biased. If we
add the estimates, we see that on Theta 32.9% of the error is
unexplained, and on Cori 13.5% of the error is unexplained.
Cori’s lower unexplained error may be due to the fact that we
have collected some 1.1M jobs compared to 100K on Theta.

XI. DISCUSSION AND FUTURE WORK

Developing production-ready machine learning models that
analyze HPC jobs and predict I/O throughput is difficult:
the space of all application behaviors is large, HPC jobs are
competing for resources, and the system changes over time.
To efficiently improve these models, we present a taxonomy
of HPC I/O modeling errors that enables independent study
of different types of errors, helps quantify their impact, and
identifies the most promising avenues for model improvement.
Our taxonomy breaks errors into five categories: (1) applica-
tion and (2) system modeling errors, (3) poor generalization,
(4) resource contention, and (5) I/O noise. We present litmus
tests that quantify what percentage of model error should
be attributed to each class, and show that models improved
by using the taxonomy are within a percentage point of an
estimated best-case I/O throughput modeling accuracy. We
show that a large portion of I/O throughput modeling error
is irreducible and stems from I/O variability. We provide tests
that quantify the I/O variability and establish an upper bound
on how accurate I/O models can become. Our test shows that
jobs ran on Theta and Cori can expect an I/O throughput
standard deviation of 5.7% and 7.2%, respectively.

In future work, we plan to explore why error classes in
Figure 8 do not add up to 100%. Our hypothesis that poor
duplicate distribution is the source of this discrepancy, and
that instead of duplicate jobs, a targeted set of repeated
microbenchmarks may better inform the framework introduced
in this work. By tuning and executing microbenchmarks rep-
resentative of the system’s application distribution, we hope
to build a minimal set of workloads that evaluate system
parameters such as I/O noise amount or application parameters
such as I/O contention sensitivity. We also plan to explore how
transferable this set of benchmarks is, and whether different
HPC system workloads can be accurately represented by a set
of weighted microbenchmarks.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We run 10 experiments in the paper, most of which do data sci-
ence on a set of preprocessed Darshan logs from the ALCF Theta
supercomputer.

Figure 1a performs a grid search over XGBoost parameters and
shows an error matrix. Figure 1b trains two XGBoost models, one
with and one without a job start time feature, and plots their errors
vs. time when the jobs were run. Figure 1c trains a model on data
collected up to a date, and evaluates the model on data collected
before (green) and after that date. Figure 1d finds sets of repeated
jobs with identical features from 5 largest applications, and plots
howmuch repeated jobs diverge in I/O throughput. Figure 1e shows
the distribution of time and I/O throughput differences for sets of
duplicate jobs. Figure 3 trains XGBoost models on different subsets
of features (POSIX, POSIX+MPIIO, POSIX+Cobalt) and plots error
distributions. Figure 4 evaluates how much the START_TIME fea-
ture helps improve the baseline POSIX predictions. Figure 5 plots
the distribution of aleatory and epistemic uncertainties collected
using the autodeuq.ipynb Jupyter Notebook found in the experi-
ments/ directory. Due to the heavy computational requirements for
the notebook, we store the aleatory and epistemic uncertainties in
CSV files in the postprocessed_data/ directory. Figure 6 performs
the same experiment as Figure 1e but groups samples in different
time ranges and only plots 1D histograms fitted with KDE.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6632461
Artifact name: Experiments needed to reproduce our SC22 submis-

sion titled "A Taxonomy of Error Sources in HPC I/O Machine
Learning Models"

Reproduction of the artifact with container: The user needs to:
1. Download and unpack the zip file 2. Enter the directory 3.
Build the docker container by running "docker build -t sc22 ." 4.
Run the docker container by running "docker run -p 8888:8888 -v
$PWD/figures/:/figures/ -it sc22"

The figures generated by the scripts will appear in
the figures/ directory. The docker container will also
start a Jupyter Notebook, which can be accessed at
http://localhost:8888/notebooks/experiments/autodeuq-io.ipynb
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