
Pruning neural networks can reduce their size by 95%
• Only applicable after training
• Pruned connections waste all energy used to train them
We take inspiration from Network on Chip architectures 
• Instead of all-to-all connections, we create a “network” for each layer
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Introduction

Training networks on the edge is hard, due to low HW
performance and power and memory bottlenecks of edge
devices. We propose to reduce the computational complexity
of networks by pruning networks ahead of time.
A dense layer has two properties:
• Information bandwidth (number of output neurons in a layer)
• Layer expressivity (number of connections in the layer)
Dense layers control both properties with one parameter – the
number of neurons in the layer. This causes unsustainable
growth of the layers as we increase information bandwidth.
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Our key contributions are:
• We show a method for reducing the memory and compute 

requirements of dense, convolutional and recurrent layers
– This allows scaling networks to bigger problems without 

quadratically growing the network size
• We develop new initialization strategies for sparse networks 
• We provide a heuristic for comparing topologies, and show that 

shallow topologies with high path diversity like the Clos 
network outperform all other topologies

– We provide an intuition of why butterfly and other deep 
and parameter-efficient topologies underperform

• We show how a priori sparse networks can be applied to CNNs
• We propose efficient GPU kernels that can process Clos 

networks with very little overhead, despite high sparsity

• From the constraint solving graph coloring, we see that deep 
networks can waste edges
• Skip connections allow paths to connect input and output pairs 

without using (coloring) multiple edges
• Skip connections help with parameter efficiency (the number 

of constraints solved per parameter)
• Even with skip connections, some topologies have a hard time 

satisfying all constraints
• Solving all constraints is an NP-hard problem
• Butterfly networks underperform as at high depth, it is difficult to 

find an open path through the graph
• Clos performs well because of (1) ideal parameter efficiency, 

(2) shallowness and (3) high path diversity
• Clos networks with skip connections have ideal parameter efficiency
• 4-stage Clos networks do not provide a benefit as path diversity 

is already sufficiently high
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Results & Key Contributions

Conventional Glorot (Xavier) initialization leads to vanishing
gradient problems when used in a priori sparse networks. After
diagnosing this issue, we update the initialization as follows:
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This “Sparse Glorot” initialization allows us to train linear sparse
networks of any depth.

We reduce the problem of finding the best intra-layer topology of
a network for to a sparse decomposition task, where an original
dense matrix 𝑊, is decomposed as a product of sparse matrices:

Not all topologies perform equally well. We seek a unifying
heuristic that predicts how a certain topology will behave.
We reduce the sparse reconstruction problem to a constraint
satisfaction problem. By using L1 loss, SGD will exactly
reconstruct some of the 𝑊, values. We can count those values
and treat each matrix value as a separate constraint, with the
goal of satisfying the largest number of constraints. We rewrite
the matrix equation for sparse decomposition as:

We interpret the equation as: a reconstructed element 𝑊3[𝑥, 𝑦]
is a sum of products across all paths from input x to output y.
Since setting just one element on one path is enough to satisfy a
constraint, the number of solvable constraints is lesser or
equal to the number of parameters in the topology. From
here, we develop a graph coloring based heuristic for estimating
the number of constraints a topology can solve. As an example:
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ClosNets break a dense layer into a cascade of three sparse 
layers with the Clos topology.  We use the Clos topology as:

• Has high path diversity
• Has efficient HW implementation

• Guarantees full connectivity
• Is shallow

Our ClosNets work did not answer: 
• If there existed better topologies
• How to train deeper, sparser topologies

NeuroFabric is a method for compressing linear and
convolutional layers ahead of training. It reduces both the
computation and memory requirements of layers by breaking
them down into a priori structured sparse cascades.
Since we don’t know the training data, we cannot have a dataset
specific topology – the topology must work on all datasets.
NeuroFabric therefore allows networks to decouple layer
information bandwidth (number of output neurons in a layer)
from layer expressivity (number of parameters in the layer).
By breaking dense layers into sparse cascades, we:
• Minimize memory and compute bottlenecks
• Allow scaling networks without quadratic growth in size
By knowing the topology in advance:
• There is no need for storing element indices
• Memory accesses can be made sequential
• We can minimize data movement by selecting good topologies
The main questions we ask are:
1. How can we train very deep, sparse topologies?
2. What topology should we choose?
3. How deep should the cascade be?
NeuroFabric can also be applied to CNNs!

𝑛 = 𝑤:*𝑎+𝑤<*𝑏

𝑥 = 𝑤*>𝑛; 		𝑦 = 𝑤*@𝑛 𝜕𝑦
𝜕𝑏 = 𝑐<@

𝜕𝑦
𝜕𝑎 = 𝑐@>

𝜕𝑥
𝜕𝑏 = 𝑐<>

𝜕𝑥
𝜕𝑎 = 𝑐:>

Original graph Constraints

𝑤<* =
𝑐<@
𝑤*@

𝑤*@ =
𝑐@>
𝑤:*

𝑤*> =
𝑐<>
𝑤<*

𝑤:* =
𝑐:>
𝑤*>

Solution Graph coloring 
Solution

The graph has 4 edges, 
but can solve only 3 out 

of the 4 constraints! 
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quadruples the weights!
Bigger applications will require wider nets - DNNs will grow
quadratically! CNN and RNNs also suffer:
• CNNs: Doubling the number of input and output channels in a

convolutional layer will quadruple the number of convolutions
• RNNs: If an RNN layer needs (1) a wider input window, or (2)

more memory, the number of connections grows quadratically
We propose to disentangle layer bandwidth and expressivity.
With separate parameters for each property, the user can select a
network that is wide enough to solve a task, but uses the minimal
amount of compute power needed.
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Graph coloring rules:
1. If a path is drawn from an input to an output, that constraint is solved.
2. A path can be drawn only if there is at least one uncolored edge on it.
3. A path colors all edges it covers.
4. The intersection of two paths must be a connected component.

Future Directions of Research
1. Densifying networks during training: the network topology 

gains edges as training progresses
2. Network Calcification: older, trained connections get frozen, 

and become immutable during future training epochs 
3. On-chip training: removing DRAM from the equation
4. Inverse plasticity: dynamic reconfiguration on FPGAs allows 

moving old weights from SRAM to FPGA  LUTs 
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ClosNets and MobileNet v1 on CIFAR-10

MobileNet v1, 3162k parameters

ClosNet, 784k parameters

ClosNet, 532k parameters  

ClosNet, 278k parameters

ClosNet, 186k parameters 
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