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Abstract—Emerging data-intensive applications such as graph
analytics, machine learning, and data-driven scientific comput-
ing are driving the evolution of high-performance computing
(HPC) systems from monolithic to scaled-out, heterogeneous, and
complex architectures. In these systems, enormous data sets are
mapped to discrete nodes to improve the performance of the
system by using distributed storage and computing resources.
As such, these data distributions induce frequent cross-node
data transactions which challenge the performance of large-
scale systems. Global atomic operations are one emerging class
of the remote data operations that enable lock-free remote
shared data operations. However, the cross-node read-modify-
write operations consist of multiple distinct data operations and
specific atomicity management, which induces a large amount
of overhead. As such, these global atomic operations require an
efficient communication methodology Existing advanced compo-
nents, such as network interface controllers, network fabrics,
network-on-chip (NoC) interconnects, are architected together
to improve the system performance. However, complex software
infrastructures are needed to provide integration between each
discrete component. As a result, the redundant software routines
across distinct devices induce a large amount of overhead that
causes performance degradation.

In this paper, we propose a remote atomic extension (RAE)
design that provides inherent ISA-level instructions and micro-
architecture support for remote atomic operations based on
the RISC-V instruction set architecture (ISA). We design a
toolchain and evaluate the RAE infrastructure via simulation.
Our experiment results show that RAE eliminates 89.71% of the
redundant software instructions used for remote atomic accesses
and improves the performance by 17.61% on average (up to
23.35%), compared with the OpenSHMEM.

I. INTRODUCTION

Emerging High-Performance Computing (HPC) applica-
tions, such as graph analytics, machine learning, and data-
driven scientific computing are data-intensive. In order to
address the challenges posed by ever-expanding data vol-
umes, large-scale HPC architectures are introduced to map
shared data into multiple discrete nodes to better process
these tremendous data sets using a high degree of data-
level parallelism. However, as a result of this distributed
resource mapping, frequent inter-node accesses to shared data
quickly become a performance bottleneck and severely limit
the performance of large-scale HPC systems. These frequent

inter-node communications also trigger the evolution of con-
ventional local shared data operations to the high-performance
global data accesses.

Atomic operations are an important class of optimizations
that are utilized for lock-free shared data accesses in HPC.
Modern architectures, such as x86, RISC-V, etc., provide ISA-
level instructions and underlying micro-architecture support
for local atomic operations. However, with respect to systems
that utilize inter-node communication, we can not simply har-
ness local atomic operations to avoid locking critical regions
that operate on remote shared data objects. Targeting this issue,
parallel programming models designed for distributed shared
memory accesses, such as the Message Passing Interface
(MPI), OpenSHMEM, Global Arrays (GA), Unified Parallel
C (UPC), etc., introduce software support for remote atomic
requests. However, the runtime library or compiler based
approaches mentioned above potentially involve redundant
software routines that cause performance degradation.

Orthogonally, existing supercomputers such as the Cray
T3E, IBM Summit, and Sunway TaihuLight have explored
hardware-based optimizations for remote shared data opera-
tions using advanced network interconnects and protocols. The
remote direct memory access (RDMA) protocol, for example,
introduces one-sided remote atomic optimizations based on
the InfiniBand network fabric for operations such as compare-
and-swap, fetch-and-add, etc. These remote atomic operations
leverage near data processing (NDP) methodologies to effec-
tively reduce redundant inter-node data traffic by bringing the
computation closer to the data [1], [2]. Herein, the RDMA-
based remote atomic requests are translated to read-modify-
write operations over PCIe with an internal lock for the
target address [3] in order to perform atomic operations at
the remote node while avoiding redundant data movement.
However, these additional locks and the multi-layer software
infrastructure required by inter-node communication dramat-
ically affect the performance of remote atomic operations in
large-scale systems [4], [5].

Moreover, HPC systems are typically comprised of a variety
of heterogeneous components (i.e., customized cores, network
fabrics, interconnects, etc.) integrated together in a coupled
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manner. In order to properly interface, each of these compo-
nent requires a specific, and often distinct, software stack that
manages associated APIs and protocols. In this scenario, the
resultant blended software infrastructure used to bridge the gap
between discrete components results in both redundant latency
and space overheads that significantly hamper the performance
and scalability of the given HPC system.

As such, existing efforts such as the Extended Base Global
Address Space (xBGAS) have been proposed [6] as an exten-
sion to the RISC-V ISA. The xBGAS provides an extended
global address space and associated ISA-level extensions for
remote load and store operations to minimize the superfluous
software overhead of inter-node communications. Yet, the
xBGAS extension lacks cross-node atomic operation support,
which is an indispensable feature strongly desired for emerg-
ing HPC applications.

Therefore, in this paper, we introduce a remote atomic
extension (RAE) based on the xBGAS design to provide sup-
port for global atomicity requirements using high-performance
remote atomic operations that access distributed shared data
objects. The RAE design harnesses the extensible nature of
the RISC-V architecture to introduce extended remote atomic
instructions, as well as the associated methodologies and
architecture infrastructure, to enhance the performance of data-
intensive applications with distributed shared memory.

This research study makes three key contributions. First,
we introduce the extended ISA-level remote atomic in-
struction support based on the RISC-V ISA. Second, we
present the architecture design of the remote atomic extension
(RAE), including the network interface, coherency mechanism,
and remote atomicity management. Third, we showcase our
toolchain support for the extended remote atomic design,
including the runtime library, the compiler toolchain, and
simulation infrastructure. Finally, we validate the feasibility
of our design and provide a performance evaluation of the
RAE with benchmarks and applications that exhibit frequent
global atomic memory operations.

The remainder of this paper is organized as follows. Sec-
tion II presents the background and motivations of this work.
Section III introduces the RAE architecture and describes the
detailed management of atomic requests. Section IV reports
the RAE experimental results. Finally, Section V summarizes
our conclusions.

II. BACKGROUND

A. Atomic Operations

Due to the severe performance penalty associated with
use of mutex locks during parallel execution, the lock-free
multithreading is preferred in shared memory programming
models. In such models, atomic operations are introduced to
supersede locks and allow simultaneous accesses from distinct
processing elements (PEs) without the risk of race conditions.
For example, diverse parallel graph traversal algorithms, such
as breadth-first search (BFS), single-source shortest paths
(SSSP), page rank (PR), etc., utilize atomic operations to
improve the performance of shared data accesses. In order
to quantify the usage of atomic operations, we measure the
number of both executed atomic and total instructions during
each graph processing kernel of the GAP Benchmark Suite
(GAPBS) [7] to derive the proportion of atomic operations.
The detailed evaluation configurations are described in Sec-
tion IV-B. As shown in Figure 1, an average of 17.46% of
the executed assembly instructions are atomic operations. This
observation reveals the significant amount of atomic usage in
the data-intensive applications.

B. Remote Atomic Operations

The increasingly large data sets utilized by modern HPC
applications often necessitate the distribution of distinct shared
data throughout multiple nodes. Given that each atomic exe-
cution involves multiple operations, the performance overhead
of local atomic operations is aggravated by this cross-node
data distribution [8], [9]. Further compounding this problem,
the majority of the data-intensive applications use pointer-
based data structures (graphs, imbalanced trees, unstructured
grids, sparse matrices), which leads to fine-grained (word-
size) requests and random memory footprints. As such, the
symmetric shared memory allocations and random remote
request distributions may induce a large proportion of remote
shared memory accesses with a high-degree of parallelism.

In order to quantify the percentage of remote atomic oper-
ations, we further investigate the remote request distributions.
We first bind each processing element to a specific node to
force the network transactions for remote shared data accesses
between distinct PEs. We then evenly distribute the shared data
between each node and execute scatter operations a[[b[i]] =
c[i] atomically using random indexes b[i] that span over the
global shared memory space. As presented in Figure 2, the

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:33:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Architecture of Atomic Design in xBGAS

percentage of remote atomic requests quickly increases from
0% to 98.44% as the number of running PEs grows from 1 to
64, which implies that remote atomic operations can have a
critical impact on the performance of large-scale HPC systems.

C. xBGAS Extension

Existing distributed shared memory programming models
such as OpenSHMEM, MPI, UPC, etc., provide simple shared
memory interfaces for distributed hardware devices at the cost
of complex software infrastructures. For example, OpenSH-
MEM implementations typically rely on some combination of
the Process Management Interface Exascale (PMIx), Unified
Communication X (UCX) framework, Message Passing In-
terface (MPI), Universal Common Communication Substrate
(UCCS), and other network frameworks to facilitate low-
level communication. These combined software layers induce
significant overheads and performance degradations.

Motivated by the aforementioned software overhead, the
Extended Base Global Address Space (xBGAS) was intro-
duced [6], [10]. The xBGAS is an extension of the RISC-
V instruction set architecture (ISA) that provides extended
global memory addressing support for datacenter-scale high
performance computing. This extension provides up to a 128-
bit extended address space. By mapping data objects into this
extended address space, xBGAS proposes to use memory-
semantic remote load and store instructions to directly access
the shared data objects in remote nodes rather than invoking
multi-level redundant software routines. The extended address
is utilized as the data object ID for these shared memory
accesses. Further, the global address of the data object is
formed by using 32 extended registers (e0∼e31) together with
the a base general purpose register (GPR) of the RISC-V
architecture. Further details can be found in xBGAS speci-
fication [10]. However, the existing xBGAS remote load and
store operations can not provide efficient cross-node atomicity
support, which leads to the desire for a high-performance
remote atomic operation support for the large-scale systems.

In order to show the potential performance benefits of using
ISA-level instructions for inter-node data atomic operations,
we compare the instruction counts of several widely used
remote operations in HPC applications with OpenMPI 4.0 and
the ISA-level remote atomic operations of the RAE design.
As shown in Figure 3, the ISA-level remote atomic operations

(ISA-RAMO) require far fewer executed instructions than the
OpenMPI remote atomic communication model (OpenMPI-
RAMO) across each tested remote atomic operation. This
comparison confirms that the innate ISA-level support for re-
mote atomic accesses can dramatically eliminate the redundant
software footprints and associated latency.

III. ARCHITECTURE

Motivated by the aforementioned needs, we propose a novel
ISA and micro-architecture extension to facilitate the high-
performance remote atomic operations in HPC systems.

A. Remote Atomic ISA Extension

We introduce a series of extended atomic instructions to
perform remote atomic operations through the use of the
xBGAS extended addressing capabilities. The remote atomic
extensions are based on the standard RISC-V instruction set
architecture and the extended encodings are consistent with
the RISC-V ISA specification [11]. We introduce 7 differ-
ent types of atomic operations, including the remote fetch-
and-add, fetch-and-xor, fetch-and-or, fetch-and-and, fetch-and-
max, fetch-and-min, and compare-and-swap (CAS). Each re-
mote atomic operation corresponds to a base RISC-V local
atomic instruction and supports both word (32-bit) and double
word (64-bit) data operands for the RV32 and RV64, respec-
tively. Thus, we introduce 14 R-type atomic instructions in
total as an extension to RISC-V ISA.

In an extended atomic instruction built upon RV64, the rs1
register stores the base address and the extended upper 64-
bit address (bits[127:64]) is placed in an extended register
(ext1). Due to the limited encoding space, the index of
extended register is selected to correspond to the index of the
general purpose register (GPR) rs1. As an example, Figure 5
shows a case where processing element (PE) 1 issues an
extended eamoadd.d instruction to perform a 64-bit fetch-and-
add operation on the remote shared data variable A owned by
PE 0. Due to the limited encoding space, the index of extended
register is chosen based on the index of the corresponding base
register. As such, registers x21 (rs1) and e21 (ext1) are used
to form the 128-bit address. The value of x20 is shown to be
one, representing the data operand of the remote fetch-and-add
operation. After the eamoadd.d operation has completed, the
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Fig. 5: Example of xBGAS Atomic Fetch-and-add Operation

value of shared variable A in PE0 is updated from 0 to 1 and
the return value is written to base register x31 of PE 1.

Notably, these newly introduced atomic instructions have
no impact on the behaviour of local data accesses. Thus, the
extended instructions do not tamper with the execution of
standard RV32 or RV64 applications.

B. Architecture Design

Figure 4(a) shows an overview of xBGAS architecture with
xBGAS cores 1 and 2 in distinct nodes. The xBGAS cores
are extended from the standard RISC-V cores with additional
xBGAS registers, instructions, etc. The local data accesses are
routed to the local memory system normally, while the remote
requests bypass the local data path and directly head to the
remote node over the network via the memory and network
interfaces. The remote requests are handled using a one-sided
communication model that directly accesses the shared data
located in the main memory of the remote target node. Each
xBGAS core distinguishes the request type (local or global)
based on the value of the extended address, which is used
as the data object ID to reference remote shared data. If the
extended address is zero, then a given request is considered
a local memory request and forwarded to the local memory
system. Otherwise, the request is routed to the corresponding
remote nodes via the network-on-chip (NoC) router.

In order to provide high-performance remote atomic opera-
tions, we harness the network interface controller (NIC) as a
remote atomic accelerator to handle the arithmetic or bitwise
logic operations associated with the atomic requests from the
remote nodes. As shown in Figure 4(b), the packetizer unpacks
and converts remote atomic requests into corresponding local
atomic operations via the operation mapping table (OMT).
In order to reduce the latency of remote atomic requests
efficiently, the NIC core is configured to directly execute the
converted atomic operations, rather than involving the host
processors or loading data back to the remote nodes to perform
the corresponding computations.

The operation mapping table functions as a lookup table
that translates between remote and local atomic requests, as
presented in Figure 4(c). Since each extended xBGAS atomic
operation is extended to correspond to a specific RISC-V local
atomic instruction, we utilize the RISC-V core as the net-
work interface controller to simplify the conversion of remote
atomic requests. In this manner, the remote atomic operations

Fig. 6: Extended MSHRs

are treated the same way as the local atomic requests from
the host xBGAS cores by the local memory. As such, we
avoid the necessity of customizing the memory controller
or bus controller to support the extended remote operations.
Figure 4(c) illustrates an example of handling remote atomic
operation via the OMT. Node 1 first dispatches a remote
fetch-and-add request to access the shared data in node 2 .
The OMT of node 2 converts the remote atomic instruction
eamoadd.d to the local RISC-V atomic operation amoadd.d.
The NIC core then executes the translated instruction and
performs the read-modify-write operation that loads the data
into the NIC cache first, and then writes the result back after
the requested operation is completed. We also extend the miss
status holding registers (MSHRs) of the NIC cache to ensure
the atomicity of remote operations and aggregate the remote
requests targeting the same cache line to avoid redundant
host memory accesses. We further detail the NIC cache and
extended MSHRs designs in Sections III-C and III-D.

C. Data Coherence

We employ a directory based protocol for the xBGAS
remote atomic design to maintain data coherency within the
local memory system. The requests from both local and remote
nodes access the local memory through a directory. This
directory maintains only the data coherency of the local cache
hierarchy and alerts the cache as soon as data in the main
memory is modified by remote requests. Figure 4(b) shows
the paths for requests and responses for both local and global
memory operations.

Given that the random memory footprints of the data-
intensive workloads exhibit very limited spatial locality, the
low NIC cache hit rate makes it unnecessary to maintain data
loaded from the main memory. As such, once all the remote
requests pending for a specific NIC cache line are completed,
the corresponding cache line will be invalidated and associated
directory entry is freed.

D. Atomicity

Miss status holding registers are widely utilized to imple-
ment non-blocking caches for out-of-order processors [12]–
[14]. When a cache miss occurs, the address of the missing
line is simultaneously compared with the existing cache misses
stored in the MSHRs via the hardware comparators. If there
exists a MSHR entry containing misses to the same cache
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Fig. 7: Performance Gain Fig. 8: Inst. Reduction Fig. 9: Remote Rqst. Distributions

line, then the pending miss is attached as a subentry to
the corresponding MSHR. Otherwise, a new MSHR entry is
allocated to hold the new miss. In the xBGAS design, we
extend the MSHRs to manage atomicity and optimize the
performance of remote atomic operations.

As demonstrated in Figure 6, we introduce two extensions
to the standard MSHRs. First, we extend the OP segment
in the MSHR subentries from 1 bit to 4 bits to support all
of our extended remote atomic operations, in addition to the
basic remote load and store requests. Second, considering the
potential temporal locality in the case of multiple processing
elements updating the same shared variable atomically, we
define a W bit in the MSHR main entry, which is set to
1 if the corresponding cache line will be modified by the
pending remote accesses. Otherwise, the W bit remains 0.
The MSHR entry that sets the W bit only issues a cache line
invalidation signal to the coherence bus until all the requests
residing in the MSHR subentries of this specific cache line are
completed. As such, the extended MSHRs effectively eliminate
the redundant coherence overhead in situations where multiple
write operations hit the same cache line. Notably, since the
MSHRs merge all the requests hitting the same cache line, they
can potentially enable aggregated atomic requests. Rather than
issuing a pair of load and store requests into the host memory
for each atomic request, the MSHR-based atomic aggregation
is able to effectively limit unnecessary memory traffic.

IV. SIMULATION, EVALUATION, AND ANALYSES

A. Implementation

We have integrated the proposed remote atomic design into
the xBGAS extension to leverage the extended global address
space. We have extended the xBGAS runtime library [15] to
support the global atomic instructions. The respective atomic
function prototype is designed in a format similar to the se-
mantics and syntax of the OpenSHMEM and MPI to enhance
the portability. We then implemented the extended atomic
instructions into the GCC 8.3.0 toolchains for compilation
support [16]. Further, we have extended the RISC-V Spike
simulator [17] to handle the extended global atomicity support
across multiple nodes via MPICH 3.2. Finally, we extended the
cycle-accurate Structural Simulation Toolkit (SST) 8.0.0 [18]
to gather network traffic and memory statistics at runtime. We
have encapsulated our extended atomic infrastructure within
the Miranda core of SST-elements and incorporated the Spike

TABLE I: Simulation Environment Configurations

Parameters Configurations
ISA RV64I

Node & Core 6 Nodes, 1 Core/Node, 2 GHz
CPU $ 8-Way, 16-KB L1, 8-MB L2
NIC $ Direct Mapped, 64 KB, 1K Entries

MSHRs 64-entry, up to 64 subentries per $ line
Memory DDR4, 2 GB per Node
Network 2D-meshed NoC, 32-bit FLIT

and SST simulation infrastructures together to investigate the
performance impact of the xBGAS extension.

B. Benchmarks and Environment

In order to evaluate the efficacy of RAE, we selected 8
benchmark kernels from the GAP Benchmark Suite (GAPBS)
and the CircusTent atomic system benchmarks [7], [19]. These
kernels represent the dense (linear) or random memory access
patterns typical for atomic operations in data-intensive appli-
cations. We compiled the aforementioned test suites with the
RISC-V GCC 8.3.0 compiler and simulated them on the RISC-
V Spike and SST simulators to compare the performance of
RAE with OpenSHMEM 3.0.4. The detailed configurations of
the simulation environment are listed in Table I. The RAE
design introduces a total space overhead of 12.5 KB buffer
space and 64 hardware comparators per node.

C. Results and Analyses

1) Performance: We first collect the runtime statistics of
remote atomic accesses in each benchmark using OpenSH-
MEM and RAE, respectively. We then compare and derive the
latency reduction of the RAE design to quantify its impact on
the overall performance. As shown in Figure 7, RAE provides
a substantial amount of performance enhancement over the
tested workloads. In particular, the CircusTent GATHER,
SCATTER, and STRIDE benchmarks are improved by over
20%. Overall, RAE design boosts the performance of the
tested workloads by 17.61% on average.

Notably, the achieved performance enhancements are at-
tributed to the significant software overhead reductions via
ISA-level remote atomic instructions and associated micro-
architecture support of the RAE design. Therefore, we also
record the number of executed instructions in each benchmark
using OpenSHMEM and RAE, respectively, to obtain the
statistics regarding the redundant instruction reductions, as
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Fig. 10: NIC Cache Miss Rate

reported in Figure 8. It is observable that RAE dramatically
reduces the instruction counts of the remote atomic operations
on each test suite. On average, 89.71% of the redundant
software overhead in remote atomic routines is eliminated
by RAE, which greatly lowers the overall cost of inter-node
shared data operations.

2) Remote Atomic Request Distributions: We employ a
reduced NIC cache line size in our design to avoid superfluous
data movement in cases where data-intensive applications
present random or non-deterministic memory footprints. In
order to validate the poor spatial locality of these irregular
memory access streams, we capture all the remote compare-
and-swap requests targeting the shared data objects of PE 0 in
the SCATTER benchmark. We then randomly select 10,000
requests and plot them in Figure 9 based on the physical
memory addresses and sequences of these remote atomic
accesses. Here, it is evident that the majority of the remote
accesses are sparsely scattered over the shared memory region
of PE 0. This limited data locality makes it impractical to
attempt to reduce the number of network transfers via remote
request aggregation approaches [20], [21]

3) NIC Cache Analyses: In order to validate our NIC
cache configurations, we also measure the miss rate of remote
atomic accesses. As shown in Figure 10, the remote atomic
requests of each irregular workload, such as the PR (Page
Rank), PTRCHASE (pointer chasing), SCATTER, GATHER,
etc., exhibits dramatically high NIC cache miss rates (85.05%
on average). It is also noticeable that regular workloads,
such as with strided or hotspot (single point) accesses, show
an average miss rate of 0.11%. However, remote requests
with good locality are usually optimized via direct memory
access (DMA) bulk transfer mechanisms that coalesce small
requests together into a large request to avoid the performance
penalty associated with repeated NIC cache evictions. As such,
for emerging data-intensive applications that exhibit irregular
memory access patterns, it is not necessary to always buffer
the data requested by remote operations within the NIC cache,
which also alleviates the overhead of coherency management.

V. CONCLUSION

In this work, we have introduced a novel remote atomic
extension (RAE) infrastructure and the associated methodolo-
gies for global atomicity management using extended MSHRs
and an enhanced NIC design. By using an extended address

to access remote data objects, RAE provides the support
necessary for remote atomic operations. Our evaluation shows
that RAE achieves an average reduction of 89.71% of the
software overhead associated with remote atomic operations
through the use of the introduced micro-architecture support
and extended instructions. On average, RAE boosts the overall
performance by 17.61% over the tested workloads. These
results and observations confirm the potential impact of RAE
on scalable architecture design for the increasingly important
class of data-intensive applications.
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