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ABSTRACT
Quorum sensing in cells is a generalized framework for mod-
eling and analyzing the local density of the bacterial popu-
lation in a given biological environment. It has applications
in biology, medical and therapeutic domains, e.g., cancer
cell research. Software-based simulations are generally slow
and only provide a certain level of functional faithfulness or
model fidelity. In this work we introduce a scalable open-
source architecture to accelerate bacterial quorum sensing
simulations called ABAQS (Agent Based Architecture for
Quorum sensing Simulation). The presented architecture
allows researchers to create and launch new simulations by
quickly incorporating custom cell models. The architecture
is highly modular and separates the functional model from
control logic. It has a simple interface to enable users to
readily connect their custom models to the simulation plat-
form. To illustrate the proposed architecture, we present the
implementation details and results for a small-scale model
representing up to 81 cells which we have synthesized and
configured on an FPGA. We also highlight some of the key
features to be implemented in future versions of the pro-
posed architecture. The open-source license of this project
will allow other researchers to contribute and improve the ar-
chitecture to (a) better fit their quorum sensing simulations
and (b) give the community a flexible simulation accelera-
tion tool.

1. INTRODUCTION
Quorum sensing (QS) is defined as the detection of extra-

cellular chemical signals, which, at certain levels, will alter
the behavior of a cell by activating specific genes [9]. By
sensing the external concentration of a specific chemical that
other cells produce, a cell can infer the number of surround-
ing cells. QS acts as a form of indirect communication be-
tween cells and is sometimes thought of as chemical “wires”
in a broadcast communication. In QS communication, cells
do not have a mechanism to directly communicate. Instead,
any communication or coordination is achieved by sensing
chemical molecules outside the cell. Figure 1 depicts several
cells in a varying concentration of chemical molecules. The
concentration of chemical molecules is proportional to the
number of cells nearby.

Researchers are still trying to understand how many cells
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Figure 1: Four cells surrounded by chemical
molecules. Each cell is sensing and outputting quan-
tities of the chemical. The cells on the left are in a
higher concentration of chemical allowing them to
sense a quorum, while the cell on the right is in a
lower concentration and does not sense a quorum.

are needed to reach a quorum and how close cells must be to
interact (some studies have suggested distances of no more
than 10-100µm) [9]. In addition to researching how and
why QS works, recent research has focused on a wide range
of potential applications which can leverage QS communi-
cation. These applications range from cellular computing,
where colonies of bacteria have been grown to compute the
output of two input logic gates [8], to targeted drug delivery,
where researchers investigate how cells might be engineered
to release a treatment in the presence of cancer cells [7].
Previous research has also focused on the role QS plays in
biofilm (dense clusters of cells) formation, destruction and
resistance to antimicrobial treatments [6]. By understand-
ing how diseases use QS to grow and survive, researchers
can develop new therapies that work by interfering with the
disease’s QS.

In order to understand how QS systems can be engineered
to solve specific problems, researchers need accurate models
of these systems and the ability to perform experiments at
the relevant scale. Often the scale of the experiments is
too large for simulation or laboratory conditions, forcing
researchers to use less controllable real world environments.
The current QS simulation tools struggle to scale beyond
hundreds of micrometers in size. These simulations are large
enough to model on the order of 105 to 106 cells depending
on their complexity. While this scale is large enough to
simulate the logic gates developed in [8], simulating larger
environments will require more scalable simulation tools.

A domain specific architecture would enable researchers to
accelerate QS simulations, allowing them to simulate longer
time spans at a larger scale than what is feasible in the cur-



rent software frameworks. In this paper, we propose and
implement a modular, scalable and open-source architec-
ture to accelerate QS simulations. This open-source archi-
tecture serves as a proof of concept and can be further im-
proved by the community. The source code for this project
is available on the ASCS Lab website at the following URL:
http://ascslab.org/research/abc/abaqs/index.html

2. BACKGROUND AND RELATED WORK

2.1 Quorum Sensing Applications
In the last few years, researchers have begun to under-

stand how QS impacts bacterial interactions by performing
experiments in the lab [9] [4]. Some experiments have been
performed in more complex natural environments (such as
a live organism), but the poor control researchers have over
these environments means that the scale and complexity of
these experiments is relatively limited.

A current area of research focuses on how diseases use
QS. Some works have hypothesized that interfering with
a disease’s QS could provide a new form of treatment for
antimicrobial-resistant infections. These diseases, which are
resistant to current treatments, can use QS to coordinate in
a way that increases virulence (how harmful a disease is) [9].
Treatments that interfere with QS would not directly treat
the disease, instead they would work to reduce the virulence
and limit the coordination between cells, potentially slowing
or stopping the antimicrobial resistant strains of the disease
enough for conventional therapies to be effective.

Another approach which leverages QS is described in [7],
where the authors describe their vision of targeted drug de-
livery, where small doses of a treatment are embedded in
nanomachines (cells or other particles) capable of detecting
the low oxygen environments preferred by cancer cells. Once
these nanomachines detect cancer cells, they would begin to
release oxygen. By sensing the concentration of oxygen, the
cells can detect when a quorum of nanomachines is present
to simultaneously release their treatment. While this type
of treatment is likely decades away, it serves as an illustra-
tion of the potential uses QS can have in developing new
treatments for diseases.

2.2 Quorum Sensing Simulations
Simulation offers a way for researchers to test their under-

standing of interactions observed in natural and laboratory
environments by building mathematical models to represent
a cell’s behavior. These models can then be used to pre-
dict behavior in other environments. Several software frame-
works exist to enable researchers to quickly build models of
cells and an environment [2] [5]. Most software frameworks
take an event driven, agent based approach to model rela-
tively sparse populations of bacteria. This approach allows
researchers to simulate events across different time scales
with limited processing overhead.

While the agent and event based approaches work well to
model individual cells or very small quantities of chemical
molecules, chemical concentrations across a 2D or 3D space
are better represented with differential equations solved by
numerical methods, as in [2]. This combination of chemical
fields and agent based cells usually leads to a hybrid simu-
lation where the chemical field is updated at fixed discrete
time intervals and the cell states are updated on events in a
more continuous time scale.

In [4], the chemical fields and dense cell populations are
modeled with differential equations. The diffusion of chem-
ical molecules throughout space is modeled with a discrete
Laplace operator shown in Equation 1.

xt+1 = xcell +
(xn + xs + xe + xw)− 4 ∗ xt

4 ∗ h2
∗ dt (1)

In Equation 1, xt+1 represents the quantity of chemical in
the given location at time t + 1. The variable xt is the
quantity of a chemical in given location at time t. The
variable xcell is the quantity added by the cell at the same
location at time t. The values xn, xs, xe and xw are the
quantities of the chemical in the north, south, east and west
locations respectively at time t. The variable h is equal to
the physical distance between points in the simulation. The
value of dt is equal to the size of the simulation time step.
Note that the diffusion model used is meant to represent a
2D space, with unique operations for each edge and corner
(not shown in Equation 1).

Most frameworks, such as BSim [2], are written in higher
level languages (like Java) which trade off efficiency for us-
ability. These high level languages make it easy for re-
searchers to develop simulations, but these simulations are
limited in duration and scale.

2.3 FPGA Accelerated Agent Based Models
Other works have focused on accelerating similar agent

based applications with FPGAs. In [1], the author uses
memory interleaving to fetch data for a cluster of points in
a 2D grid. By taking advantage of the distributed BRAMs
on an FPGA, the author is able to get data for a whole
cluster in a single memory fetch. Additionally, the author
shows how to tile a 2D grid of processing elements, assigning
each to a memory bank. The number of banks is dependent
on the cluster size needed in the computation. The author of
[1] uses Conway’s Game of Life as an example agent based
application. Conway’s Game of Life uses a 3x3 cluster in
each computation (a cell and its 8 neighbors), resulting in 9
memory banks. The author shows that they are able to get
a 290x speedup compared to a software implementation.

3. PROPOSED ARCHITECTURE

3.1 Processing Element Description
The architecture models a two dimensional discrete space

in discrete time. The size of the space is parameterized and
user selectable. For simplicity, the edges of the two dimen-
sional space wrap around, creating a torus. This simplifies
the implementation by removing the need for unique pro-
cessing elements along the edges and corners (at the expense
of chemical diffusion accuracy with the current model). Con-
ducting simulations with a torus rather than a 2D mesh can
help prevent undesirable effects created by the edges of a
simulation.

In the current implementation, each point in space is mod-
eled with a single processing element (PE) that stores a
chemical concentration and the status of a single cell. Sep-
arate execution units are used to update the chemical con-
centration and cell state simultaneously.

Figure 2 shows a block diagram of the architecture. The
expanded oval depicts a single PE with a chemical execu-



tion unit (orange box) and a cell execution unit (blue circle).
Note that the connections between the cell execution units
(dashed lines) are only used to copy state registers in the
event of cell movement. Cells cannot directly communicate
in QS, instead they must influence the chemical concentra-
tion around them which will diffuse to other locations to be
sensed by nearby cells. This process is represented with the
solid lines in Figure 2.

Figure 2: A block diagram of the proposed archi-
tecture. The expanded section shows a processing
element with chemical and cell execution units and
the single word FIFOs between them.

3.2 Cell Execution Unit
The cell execution unit stores the cell’s state in a set of

registers. Additional registers are used to store the type
of cell present in the PE (type 0 is used to indicate that
no cell is present). The cell execution unit is designed such
that the control logic is separate from the state update logic,
allowing a user to quickly make changes to the type of cells
being modeled without the need to understand the control
signals.

Instead, the user implements a separate rules module with
pipelined state update logic. The rules module is repre-
sented as the dark blue box in the cell execution unit in
Figure 2. The interface between the rules module and the
rest of the cell execution unit is well defined and constant
for each simulation. The control logic makes no assump-
tions about the data in the state registers, meaning the user
is free to use any representation they desire (such as fixed
point or floating point) in the custom rules module.

The depth of the pipeline can be determined by the user
during the design of the rules module with the parameter
RULE DELAY. User selectable pipeline depths allows for
complex cell models without lengthening the critical path
or unnecessarily increasing latency.

The rules module will be different for each simulation but
it will usually be made up of several pipelines (one for each
type of cell) and a multiplexer to choose between them.
The type register controls the select signals on the multi-
plexer, ensuring the correct pipeline updates the state reg-
isters. The rules module will also output a signed quantity
for the chemical execution unit to add or subtract from the
local chemical concentration, representing a cell absorbing
or secreting a quantity of chemical. Figure 3 shows a typical
cell execution unit implementation with two cell types and
a simple 10 or 0 addition to the chemical concentration.

The cell execution unit supports movement of cells in
north, south, east or west directions. In order for a cell
to move, the rules module must output a direction and as-

Figure 3: An example cell execution unit with two
state registers and two cell types. Note that the
chemical concentration input is used in the state up-
date logic. In this example, the cell either secretes
10 or 0 units of chemical based on the type registers.

sert the move request signal. The control logic in the cell
execution unit checks that the adjacent PE is empty. If the
PE is empty, the cell is allowed to move, its state registers
are copied to the destination PE and the local type registers
are set to zero to indicate that the cell unit is now empty. If
the neighboring PE already has a cell in it, the control logic
ignores the move request and the cell does not move.

This implementation has the potential to create dead-
locks, as an empty cell execution unit is required for a cell to
move. While there are cases where this would be the desired
behavior, this may not always be the case. Future work will
eliminate this constraint by adding more complicated move-
ment arbitration between cell execution units or by adding
several cell execution units to each PE. A PE with several
cell execution units can be thought of as modeling a larger
two dimensional space with a lower resolution chemical field.
A PE with multiple cell execution units would treat all cells
as being at the same position in a lower resolution space.
Having more cell modules at a discrete point in space would
reduce the likelihood of a deadlock. Sacrificing resolution in
this way is tolerable because in QS cells do not directly com-
municate. By placing multiple cells in the same PE, they
can be treated as if they are so close to the adjacent cells
that they will instantly sense any changes to the chemical
environment made by their neighbors.

3.3 Chemical Execution Unit
The chemical execution unit stores the local concentration

of chemical at the processing element’s location in a register.
Each chemical unit is connected to its north, south, east and
west neighbors as well as the local cell unit. Two FIFOs are
used to connect neighboring execution units, one to buffer
data in each direction. The FIFOs are only a single word
deep and represented as registers in Figure 2. The discrete
time simulation means that any execution unit cannot be
more than one time step ahead of its slowest neighbor, re-
sulting in at most one chemical concentration being buffered
between execution units. Placing these FIFOs between each
neighbor simplifies arbitration and allows a module to up-
date its internal state even if each connected module has not
read the previous state yet. The chemical concentration is
updated once all of the neighboring modules (including the



cell module) have put new data in the FIFO for the chemi-
cal module to read. The model of chemical diffusion is fixed
for all simulations but future work will focus on creating
modular interfaces for custom chemical diffusion equations,
similar to the cell rules modules described above.

3.4 Load and Store Shift Register
To initialize a simulation and record its state, the architec-

ture includes a shift register along each row of PEs. Figure 4
illustrates how these shift registers are connected to the exe-
cution units. The execution units can read or write to these
shift registers when a global read or write signal is asserted.
The length of the shift register depends on the size of the
simulation (determined by the user). Each shift register is
one word wide (word size is also determined by the user).
The shift register length must be long enough to store the
state of an entire row at once, so the depth matches the num-
ber of state registers for each chemical execution unit (one)
and cell execution unit (a user selectable number of regis-
ters) in the row. The frequency that the simulation state
can be recorded is a function of the number of state regis-
ters per PE and PEs per row. A longer row or larger number
of state registers will increase the time needed to save the
simulation state, reducing how often it can be saved. The
architecture uses shift registers along each row, meaning the
number of rows does not affect the time needed to record the
simulation state but it will determine the bandwidth used
to do so.

Figure 4: The shift registers used to initialize and
record state information. Each row has its own shift
register. Global load and store signals are used to
read or write state information to shift register.

3.5 Design Flow Overview
Figure 5 shows the process of building a simulation. First,

researchers must have a model of their cell. This model can
be represented in a variety of formats (equations, software,
etc.) and defines the requirements of the rules module. Us-
ing the cell model as a guide, researchers can build the Ver-
ilog rules module, which typically consists of one or more
pipelines multiplexed together by the type register. With
the rules module created, the simulation parameters can be
set. Parameters include the number of state registers used
in the cell model, the depth of the rules pipeline and the size
of the simulation. After the parameters have been defined
for the specific simulation, the design can be synthesized and
configured on an FPGA to record simulation results.

4. RESULTS
To test the architecture, we synthesize it for an Altera

Cyclone V FPGA with approximately 32k Adaptive Logic
Modules (ALM). Each ALM contains a fractureable 8 in-
put look up table and 4 registers [3]. We use a simple

Figure 5: The steps to build a simulation. Designers
must build the rules module and define the param-
eters for the simulation. Each simulation must be
synthesized individually. After synthesis, the simu-
lation can be run and results can be saved.

Simulation Number ALM Total Device
Size of PEs Usage Registers Utilization
4x4 16 4876 9767 15%
5x5 25 7533 15229 23%
8x8 64 19190 37906 60%
9x9 81 24277 48436 75%

Table 1: Synthesis results for the proposed architec-
ture with 4 state registers in the cell model.

cell model with 4 state registers. One state register stores
the local chemical concentration, another implements a sim-
ple counter, the last two store the two previous values of
the counter. The word width for each state register (and
throughout the architecture) is 32 bits. This model is not
meant to model a real cell but instead implement the mini-
mum functionality to verify all of the features of the architec-
ture. This benchmark provides resource utilization results
for the simplest models of cells and can act as a baseline
resource usage for more complex cell models.

The architecture was synthesized with the parameters de-
scribed above at various sizes including 4x4, 5x5, 8x8 and
9x9. Table 1 shows the resource usage for each of the sizes.

One PE requires about 300 ALMs. The worst case Fmax

is 71MHz for the 9x9 design. The architecture can compute
a simulation time step in 5 cycles, with a single cycle rules
module. With 5 clock cycles per time step and a 71MHz
clock, a single time step can be computed in 70.4ns. With
QS simulation timesteps on the order of milliseconds as in
[4], this architecture will enable researchers to quickly con-
duct simulations with long time spans.

This architecture separates the simulation time step size
from the time step between simulation snapshots saved with
the row-wise shift registers. This allows simulations to be
conducted with a high resolution while ensuring the amount
of stored data from the simulation is manageable. The fre-
quency of saved simulation states depends on the length of
the shift register and the device’s clock frequency.

The 9x9 PE architecture with 1 register in the chemical
execution unit for the chemical concentration and 4 registers
in the cell execution unit for the cell state has an 45 register
shift register. With 5 cycles per simulation timestep, the
simulation state can be saved every 9 simulation time steps.
Figure 6 plots the number of simulation timesteps between
each simulation snapshot for varying numbers of registers
per PE.

5. PROJECT ROADMAP
The architecture and results presented are meant to intro-

duce the general framework for using reconfigurable hard-
ware to accelerate QS simulations and to serve as a small
scale proof of concept for the platform. Future work will
focus on 1) optimizing the architecture for speed and area,



Figure 6: The number of simulation timesteps be-
tween saved simulation snapshots. With 5 regis-
ters per PE, the simulation can be saved every 9
timesteps. The timestep size can be altered to
change the simulation time between saved simula-
tion snapshots.

enabling larger simulations on a single FPGA, 2) implement-
ing a multi-FPGA design, allowing researchers to scale up
simulations by adding more FPGAs, 3) improving the archi-
tecture’s fidelity, enabling more realistic simulations, and 4)
creating a programming toolchain for non-digital designers.
We plan to release new instances of the platform every six
months. The open-source nature of this project will allow
researchers to contribute to it, developing the features most
important to them.

Features such as time multiplexing the PEs would allow
simulations to scale beyond the number of physical PEs in
the architecture. A large simulation state could be stored
in memory with parts of it loaded onto the PEs to update
small sections at a time. Memory interleaving similar to
the techniques described in [1] could be used to leverage
the FPGA’s many BRAMs. The single word FIFOs used
to connect neighboring modules work well for discrete time
simulations but larger FIFOs would be needed to buffer data
in event driven simulations. A parameterized FIFO depth
will be incorporated into the next version of the architec-
ture. With the addition of timestamps that can be attached
to the data, event driven simulations will be possible. The
addition of true multi-word FIFOs between PEs will also
separate clock domains, significantly improving the maxi-
mum clock frequency of the design. Multi-FPGA implemen-
tation support is being developed to allow extremely large
and more complex simulations. Future work will be needed
to create a communication interface between FPGAs that
can efficiently perform the chemical diffusion computation
between PEs on separate FPGAs.

The chemical diffusion model is fixed in the current archi-
tecture for simplicity but researchers would likely want to
tweak it. Placing the diffusion logic in a separate module
from the control logic will further improve the flexibility of
the architecture. We plan to include this change in the next
version of our architecture. Subsequent work will also focus
on analyzing the tradeoff between the number of cell execu-
tion units per PE and simulation resolution. Multiple cell
units on a PE would increase the size of the physical space
represented in the simulation at the cost of resolution. Cell
movement arbitration must also be improved to avoid dead-
locks. We plan to change the arbitration between cells to
allow cells to swap places.

To simplify the process of building cell rules modules,
higher level tools could be used to describe the pipelines

in the rules modules. OpenCL or a C-to-gates synthesizer
could be used to describe the cell models in a way more fa-
miliar to those already using software frameworks like BSim
or Repast to develop QS simulations. Future work could
develop toolchains to create cell rules modules from higher
level languages. Additionally, a GUI to allow users to quickly
define their simulation parameters could simplify the pro-
cess of simulation building. Frequently used cell rules mod-
els could be incorporated into a repository to serve as a
starting point for other researchers. These models could be
incorporated into a GUI tool to let researchers quickly build
simulations with commonly studied cells.

6. CONCLUSION
In this work, we presented a scalable open-source archi-

tecture to accelerate bacterial quorum sensing simulations.
The architecture is modular and researchers can customize
cell models to run different simulations. Furthermore, the
control logic is decoupled from the cell model logic to enable
researchers to build new cell models without the need to un-
derstand the entire architecture. The fact that this project
is open-source means that researchers will be able to share
the cell models they develop, allowing others to reproduce
their results and further build on them. We have presented
synthesis results for the architecture with up to 81 process-
ing elements on a single FPGA. Finally, we outlined plans
to further improve the architecture’s efficiency and efficacy
in covering a multitude of cell models.
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