
The ABAQS Manual

Alan Ehret
ASCS Lab, Boston University
abaqs.feedback@gmail.com

June 8, 2018

Abstract

The Agent Based Architecture for Quorum sensing Simulation (ABAQS) allows researchers to create and launch Quorum Sensing
(QS) simulations. New simulations can be made by incorporating custom cell models. ABAQS uses a shift register that runs along rows
of processing elements to load or store simulation states. The shift registers can be connected to a host processor or another system to
manage simulations. The architecture is highly modular and separates the functional model from control logic. It has a simple interface
to enable users to readily connect their custom models to the simulation platform. The open-source license of this project allows other
researchers to contribute and improve the architecture to (a) better fit their quorum sensing simulations and (b) give the community a
flexible simulation acceleration tool.

1 Getting Started

1.1 Quorum Sensing Overview
Quorum Sensing (QS) is defined as the detection of extra-cellular chemical molecules, which, at certain levels, will alter the behavior of
a cell by activating specific genes. By sensing the external concentration of a specific chemical that other cells produce, a cell can infer
the number of surrounding cells. QS acts as a form of indirect communication between cells and is sometimes thought of as chemical
“wires” in a broadcast communication. In QS communication, cells do not have a mechanism to directly communicate. Instead, any
communication or coordination is achieved by sensing chemical molecules outside the cell. Figure 1 depicts several cells in a varying
concentration of chemical molecules. The concentration of chemical molecules is proportional to the number of cells nearby.

Figure 1: Four cells surrounded by chemical molecules. Each cell is sensing and outputting quantities of the chemical. The cells on the
left are in a higher concentration of chemical allowing them to sense a quorum, while the cell on the right is in a lower concentration
and does not sense a quorum.

ABAQS, the Agent Based Architecture for Quorum sensing Simulations, is an open-source architecture that accelerates bacterial
quorum sensing (QS) simulations. The current version of ABAQS requires a decent understanding of Hardware Descriptor Languages
(HDL), specifically Verilog. ABAQS is written in the Verilog 2001 (IEEE 1364-2001) specification. So far ABAQS targets Altera
Cyclone V FPGAs but it should work fine on other FPGAs. For synthesis and simulations, ABAQS has been tested with Quartus Prime
Lite Edition 17.1 and ModelSim Intel FPGA Starter Edition 10.5b (the version distributed with Quartus). This document will use the
specified versions of Quartus and ModelSim but other tools should work as well.

1



1.2 Module Overview
This section provides a brief overview of the modules in the ABAQS architecture. See the sections below for more documentation on
the top level module interface and each module in the design. Figure 2 shows the module hierarchy in the ABAQS architecture.

Figure 2: A depiction of the module hierarchy in ABAQS. Modules are only shown once at each level in this hierarchy even if their
parent module instantiates them several times.

The ABAQS architecture is made up of two execution units, the cell execution unit and the chemical execution unit (also called the
space execution unit). The cell execution unit is all of the logic inside the cell agent module. The chemical execution unit is all of the
logic inside the space agent module. A cell execution unit and a chemical execution unit together make a processing element. Figure 3
shows a block diagram of the ABAQS architecture. The expanded gray oval section represents a single processing element. Note that
the dotted lines between the cell execution units are only for cell movement. Communication between cells is done through the chemical
execution units (along the solid lines).

A custom quorum sensing simulation can be created by making changes to the cell rules module. For now the diffusion model
used to simulate chemical concentrations is fixed. The next section describes how to change the cell rules module to create a custom
simulation.

Figure 3: A block diagram of the ABAQS architecture. The expanded section shows a processing element with chemical and cell
execution units and the single word FIFOs between them.

2



1.3 Creating a Quorum Sensing Simulation
This section assumes that you are comfortable with ModelSim and know how to simulate a verilog design. If you do not know how,
other resources are available online to teach you.

The default cell rules module implements a simple counter and shift register with the cell state registers. The default cell rules
module is not meant to represent a real cell. Instead it demonstrates the minimum functionality needed to verify the features in the
architecture. The move rq signal is held low in the default version of cell rules meaning that the modeled cell will never move.

Figure 5 shows the ModelSim output after compiling and running the torus tb test bench. On the left, the concentration of the
chemical field is shown in hex. On the right, the type register of each PE is shown. In this case, there is only one type of cell. A type
register value of ‘1’ means that a cell is present in the PE, a type of ‘0’ means that there is no cell present in the PE. Notice that the
quorum sensing simulation is initialized with one cell in the center PE and that it does not move because the move rq signal is held low.
The chemical field is initialized to be empty, except for the center PE which is initialized to 0x000F0000 (15 in base10 if there are 16
bits of fixed point precision).

As the simulation progresses, the high concentration of chemical in the center PE begins to diffuse to the neighboring PEs. The
center PE will maintain a slightly higher concentration of chemical because the cell model adds a small amount of chemical to the
chemical concentration each simulation tick.

After running the default simulation, try changing the cell rules module to change the cell’s behavior. Commenting out line 69 and
uncommenting line 68 will assert the move rq signal every 7 clock cycles. Running the simulation again yields the output shown in
Figure 6. Note that the ‘1’ in the type registers moves between PEs, indicating that the cell is moving.

It is also important to note that the simulation state cannot be saved every simulation tick. The frequency of simulation state snapshots
is limited by the length of the shift register used to output the state data. In the torus tb test bench, a simulation snapshot is saved every
two or three simulation ticks (the snapshot period does not line up perfectly with the tick period).

2 Top Level Interface
The torus module is the top level module in the ABAQS architecture with a simple interface to save or initialize a simulation state.
Exposed at the top level module are shift register inputs and outputs as well as separate read and write signals. Table 1 describes each of
the ports in the torus port list. Table 2 describes each of the parameters in the torus module. These parameters will be passed down to
the modules that need them. The torus tb test bench provides an example of when to assert the read and write signals.

Figure 4: The data shift register in a two high by two wide simulation. Each PE has four cell state registers and one space state register.
Type shift registers have been omitted from this diagram.

The shift register used to save or initialize a simulation state in the ABAQS architecture runs along the rows of processing elements
(PE). In the Verilog, each row of PEs has its own shift register and the torus module concatenates them together, presenting a single
(very wide) shift register in the interface of the top level (torus) module. The bit width of the shift register is determined by the height of
the simulation (and the BIT WIDTH parameter) while the depth of the shift register is determined by the width of the simulation and the
number of state registers in each PE. Figure 4 represents a two wide by two tall simulation. Each cell agent has four state registers and
each space agent has one state register (to hold chemical concentration). The shift register inputs and outputs on each PE are connected
to the PEs on their left and right. In this example, BIT WIDTH is set to 32. The type shift registers are omitted for clarity. The type shift
register length is equal to the data shift register length, this way each data word has a type word associated with it. Future versions of the
architecture may include the type word in the data shift register so that type words are associated with PEs rather than with data words.

3



Port Name Direction Width Description
clock input 1 Clock signal for the entire ABAQS architecture.
reset n input 1 Active low reset signal for the entire ABAQS architec-

ture.
write shift reg input 1 Load values from the execution unit registers into the

shift registers. Asserting this signal saves the current sim-
ulation state into the shift register so it can be shifted out
of the torus module and stored somewhere.

read shift reg input 1 Store shift register values in the execution unit state reg-
isters. Asserting this signal initializes the simulation state
to the current state of the shift register.

data vector in input HEIGHT * BIT WIDTH The data shift register input vector. This port concate-
nates the input words for each row-wise shift register.

data vector out output HEIGHT * BIT WIDTH The data shift register output vector. This port concate-
nates the output words for each row-wise shift register.

type vector in input HEIGHT *
TYPE BIT WIDTH

The type shift register input vector. This port concate-
nates the input words of the type mask row-wise shift
register. Each data word has an associated type word to
indicate the type of agent it belongs to. In reality, only
one type mask is needed for each PE module given that
the PE only stores one agent. For now a separate shift
register is used for simplicity. The area penalty will be
small because the TYPE BIT WIDTH is small.

type vector out output HEIGHT *
TYPE BIT WIDTH

The type shift register output vector. This port concate-
nates the output words of the type mask row-wise shift
register. Each data word has an associated type word to
indicate the type of agent it belongs to. In reality, only
one type mask is needed for each PE module given that
the PE only stores one agent. For now a separate shift
register is used for simplicity. The area penalty will be
small because the TYPE BIT WIDTH is small.

Table 1: A description of each port in the torus module, which is the top
level module in the ABAQS architecture.

Parameter Name Default Value Description
BIT WIDTH 32 The bit width of a data word. This is the bit width used

throughout the architecture, including for space and cell
state registers.

NUM REGS 4 The number of registers to store variables or data in the
cell control module. This is the number of cell state reg-
isters.

NUM BITS NUM REGS ∗
BIT WIDTH

The total number of bits used to store the cell state in the
cell control module. This should not be directly changed.
Instead change the NUM REGS parameter.

TYPE BIT WIDTH 1 The number of bits in the cell control type type register.
RULE DELAY 1 The number of clock cycles needed for valid rule output. A

delay of 1 means that the cell rules module does not latch
the cell state between the input and output.

WIDTH 3 The width of the simulation. This is represents the number
of processing element modules in each simulation row.

HEIGHT 3 The height of the simulation. This represents the number of
processing element modules in each simulation column.

START TYPE {TYPE BIT WIDTH{1’b0}} The value of the type register in cell control after a reset
signal. This can be used in simulation to avoid using the
shift register to initialize simple simulations.

Table 2: A description of each parameter in the torus module, which is
the top level module in the ABAQS architecture.

4



3 Module Description
This section describes each module in the design. See Figure 2 for a depiction of the module hierarchy.

3.1 torus
The torus module is considered the top level module of ABAQS. It implements a torus of processing element modules and provides
inputs and outputs to the shift register used to load and store simulation states. Extra logic will need to be added to interface ABAQS to
the rest of a system (a simple PCIe wrapper is in the early stages of development).

3.2 processing element
A processing element (PE) is made up of a single cell agent and space agent module. The PE module connects the two types of agent
modules creating an interface to represent a single point in space in the simulation.

3.3 cell agent
The cell agent module connects the cell control module to the cell rules module. It also includes a fifo 1 module for sending data to the
space agent module. This module (with its submodules) contains all of the logic needed to represent a single cell agent.

3.4 cell control
The cell control module creates the output interface for the cell agent. All of the cell agent output signals run through this module
(except for the connections to the space agent which run through the fifo 1 module first).

This module handles cell movement, checking that the adjacent cell is empty before copying the cell state. All of the control signals
for the cell agent (including the ones for cell movement) are generated here.

3.5 cell rules
The cell rules module must be customized to represent the given cell model. The provided module can be used as a template for custom
cell models. Changes should be made to the code below the generate statement (marked by the multi-line comment).

The custom part of the rules module will generally be a pipeline for each type of cell followed by a multiplexer controlled by the
type register to output the appropriate state to the cell control module. Note that in the provided cell rules template, there is no type
multiplexer because there is only one type of cell. An empty cell is represented by a type of zero. The cell control will automatically
prevent state updates with a type of zero, so no logic is needed for it in this module.

3.6 space agent
The space agent module wraps up all of the logic needed to compute the concentration of a chemical at the current point in space. This
module connects to the four adjacent space agent modules (through the processing element modules) as well as one cell agent module.

All of the connections are made with two fifo 1 modules (one for each direction). Only the outbound fifo 1 modules are instantiated
in the module. The inbound FIFOs are an adjacent module’s outbound FIFOs.

3.7 space agent core
The space agent core module reads the chemical concentration from each of the available inbound FIFOs and computes the chemical
concentration for the next time step. The space agent core module then writes the new chemical concentration to the outbound FIFOs.

3.8 fifo 1
This module is a simple FIFO with a depth of one word. This means that the empty and full signal are guaranteed to be inverted and can
be combined into a single signal.

5



4 Creating a Custom Rules Module
In order to change the simulation, a user must add their custom cell model to the cell rules module in cell rules.v. It is important that
the port list is not changed to ensure compatibility with the other modules and future designs. Table 3 describes each of the ports to the
cell rules module.

A typical rules module will have a pipeline for each type of cell and a multiplexer controlled by the type in port. The user defined
cell model will read the current cell state and compute the cell’s state for the next timestep.

Port Name Direction Width Description
clock input 1 Clock signal for the rules module.
reset n input 1 Active low reset signal for the rules module.
space data in input BIT WIDTH The concentration from the local space agent module.
cell state in input NUM BITS A vector representing the current state of the cell. This

input is the concatenation of each of the cell state regis-
ters. Use the cell state in array wire to access each one
of the state registers individually.

type in input TYPE BIT WIDTH The current type of this cell. The type indicates which
cell model should be used. A type of zero means the cell
is empty and no updates will be made. The type value can
be used to determine which hardware to use to update the
cell state if there are several different species of cells in
the model.

cell state out output NUM BITS A vector of bits representing the new state of the
cell. This vector is a concatenated version of the
cell state out array. Use the cell state out array wire to
directly assign values to the next cell state.

quantity output BIT WIDTH This is the amount of chemical added to the space agent
in this timestep. This value is a quantity and not a rate, it
is not multiplied by dt in the space agent.

move rq output 1 Assert this signal to trigger cell movement. If the desired
adjacent PE is empty, the control logic will copy the cell
state to the destination PE and mark this PE as empty.

move direction output 2 This indicates the direction of the desired movement. It
is ignored if move rq is 0. The encoding is: 0x0 = North,
0x1 = South, 0x2 = East, 0x3 = West.

Table 3: A description of each port in the cell rules module.

6



Figure 5: The torus tb test bench output with the default cell rules module without cell movement.

7



Figure 6: The torus tb test bench output with the modified cell rules module to enable cell movement every seven cycles. Note that the
simulation ticks do not line up with the simulation snapshots. Each displayed snapshot is 2-3 simulation ticks.

8


