

BRISC-V Tool Box

Donato Kava, Sahan Bandara, Alan Ehret, and Mihailo Isakov

ASCS Lab, Boston University

briscv.dev@gmail.com

The Boston University RISC-V Processor Set (BRISC-V) is a parameterized set of modules

for design space exploration for RISC-V ISA based architectures. We call the full set of

processors and tools to support them the tool box. Included with the BRISC-V Tool box include

(i) multiple RISC-V cores with different levels of complexity (e.g., single-cycle core, multiple-

cycle, and reconfigurable pipelined), (ii) a programmable memory system with reconfigurable

multi-level cache subsystems, (iii) a flexible interconnect network supporting programmable

topology, router size and routing algorithm and (iv) BRISC-V explorer which is GUI software

support for selecting parameterized Verilog and (v) the BRISC-V emulator for software RISC-V

instruction emulation. The aim of this work is to provide an easy to use, open-source,

parameterized, fully synthesizable, platform for students and researchers experimenting with

the RISC-V ISA features to quickly bring up a complete and fully working architecture and start

applying their own modification.

1 Getting Started
The BRISC-V tool box offers users a variety of different single-core and multi-core

systems. Each hardware component of BRISC-V (the cores, cache subsystem and on-chip

network) is written in parameterized Verilog HDL modules, enabling architectural changes with

parameter settings. The core types currently supported by BRISC-V include RV32I

implementations of a small single cycle core, five and seven stage pipeline cores and a larger

RV32IF out-of-order core. The cache subsystem and on-chip network interfaces support

numerous memory hierarchy configurations. An arbitrary cache size, associativity and number

of levels can be selected with module parameters.

1.1 The Processors

1.1.1 The Single Cycle RV32i Processor

1.1.2 The Five Cycle RV32i Processor

1.1.3 The Seven Cycle RV32i Processor

1.1.4 The Out of Order RV32i Processor

1.2 Cache System

1.3 Software Tools
The BRISC-V toolbox is not limited to only Verilog designs, it offers two interactive tools

for working with RISC-V. The BRISC-V explorer adds a visual aid for visualizing hardware

parameterization. The BRISC-V emulator is offered as a way to emulate RISC-V programs

without the need for hardware and shows the state of the processor as each instruction is ran.

1.3.1 BRISC-V Explorer

The BRISC-V Explorer provides a user friendly way to choose parameters and visualize a

BRISC-V system. The application runs in a browser allowing users to easily run it on Windows,

Linux or Mac. In the BRISC-V Explorer, users can 1) select their desired core type, 2) enter

parameters such as memory size for that core, and 3) configure cache parameters including

block size and associativity.

Once a user is sure of their processor and generates their design a verilog the explorer

tool will generate a verilog design based around the users selections. From there its up to the

users imagination on what to do with it.

1.3.2 BRISC-V Emulator

The BRISC-V Emulator visually shows the state of the processor at every instruction

and allows for exploration of a compiled code behaving as expected. Being an in browser tool

OS dependencies are avoided allowing for an easy, fast, and intuitive exploration. The register

file, instruction break down, memory state and program list are all displayed as the program

operates.

2 Manual Parameter Selection
 Outside of the explorer tool where parameters are selected when generating,

parameter selection in the processor verilog files is just as easy. Parameters are at the top of

the RISC_V_Core.V file. As seen below, in an example from the 7 cycle processor, the

parameters are laid out and named as clearly as possible. Its is important to properly fill in the

PROGRAM parameter to match the path on your computer where a generated verilog hex file

is located.

 When making personal changes to the processors we recommend to use the

parameters to keep the parametric property of the processor set and for ease of experiments

later on.

 parameter CORE = 0,
 parameter DATA_WIDTH = 32,
 parameter INDEX_BITS = 6,
 parameter OFFSET_BITS = 3,
 parameter ADDRESS_BITS = 12,
 parameter PRINT_CYCLES_MIN = 0,
 parameter PRINT_CYCLES_MAX = 15,
 parameter PROGRAM =
 "../software/applications/binaries/short_mandelbrot.vmh"

3 Compilation Software

3.1 Compile Tool
In the software directory there are three folders called applications, compiler-scripts and riscv-

compiler. There is also a file named compile.sh which will generate all the binary files in the

binaries directory, from the C programs in applications/src/, using the riscv-compiler. Editing

compile.sh can allow for not provided program binaries to be generated. In the applications

folder there are two sub folders, binaries and src. In the src folder there are 12 sample C

programs and in the binaries folder there are sample program’s .asm, .dump, .mem, .s, and

.vmh versions. In compiler-scripts there are perl scripts used to arrange the BRISC-V© program

kernel. The folder riscv-compiler contains two folders named bin and libexec. Libexec contains

a number of sub-folders which are empty while bin contains the RISC-V gcc tools used for

generating binary files to compile and generate binaries for the RISC-V rv32 ISA.

3.1 Compile Process
To assist in developing software for the different BRISC-V processor, it is accompanied with a

GCC RISC-V cross-compiler. The figure above depicts the software flow for compiling a C

program into the compatible BRISC-V instruction code that can be executed on the processor.

The compilation process consists of a series of seven steps.

1. First, the user invokes riscv32-unknown-elf-gcc to translate the C code into assembly
language (e.g., ./riscv32-unknown-elf-gcc -S fibonacci.c).

2. In step 2, the assembly code is then run through the linker to set up the stack pointer
and return value registers (e.g., ./link.pl fibonacci.s). Its output is a .asm file.

3. In step 3, the user compiles the assembly file into an object file using the cross-
compiler. This is accomplished by executing riscv32-unknown-elf-as on the .asm file
(e.g., ./riscv32-unknown-elf-as fibonacci.asm –o fibonacci.o).

4. In this step, all the jump addresses are properly linked with ./riscv32-unknown-elf-ld -N -
Ttext 0x0004 --unresolved-symbols=ignore-all fibonacci.o –ofibonacci.

5. In step 5, the object file is disassembled using the riscv32-unknown-elf-objdump
command (e.g., ./ riscv32-unknown-elf-objdump fibonacci.o). Its output is a .dump file.

6. In step 6, the constructor script is called to transform the dump file into a Verilog
memory .vmh file format (e.g., ./riscv32-unknown-elf-objcopy fibonacci.dump).

7. Finally, a second constructor script is called to transform the dump file into another
Verilog memory .mem file format (e.g., ./dump2vmh fibonacci.dump). Different Verilog
simulations or FPGA synthesis tools use different formats, i.e., .vmh or .mem. They
contain the same data. Programs/Applications that have some initial values/data stored
in memory will also have a data file generated for them (e.g., data_fibonacci.vmh/mem).

For script-based compilation, if you run ./compile.sh, it will take a set of predefined C

applications/programs in the application/src folder and compile all of them. If you would like to

compile your own application (e.g., albert_s_ beautiful_code.c) with your own stack pointer size

(albert_s_ stack, a decimal number), you can execute ./compile.sh albert_s_ beautiful_code.c

albert_s_ stack. (e.g., ./compile.sh foo.c 128).

Diassembler
[…elf-objdump]

Compiler
[…elf-gcc]Source code file

e.g., fibonacci.c

Assembly
code file
e.g., fibonacci.s

Linker
Operation

[link.pl]

Program start
& result output
assembly code
e.g., fibonacci.asm

Linked object
code file
e.g., fibonacci

Jump Linking
[…elf-ld]

Constructor
[dump2vmh]

Dump file
e.g.,
fibonacci.dump

Verilog hex
memory file
e.g., fibonacci.vmh

Constructor2
[dump2mem]

Verilog hex
memory file
e.g., fibonacci.mem

Object code file
e.g., fibonacci.o

Assembler
[…elf-as]

