2011 21st International Conference on Field Programmable Logic and Applications

Heracles: Fully Synthesizable Parameterized
MIPS-Based Multicore System

Michel A. Kinsy, Michael Pellauer, and Srinivas Devadas
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Email: mkinsy, pellauer, devadas @csail.mit.edu

Abstract—Heracles is an open-source complete multicore sys-
tem written in Verilog. It is fully parameterized and can be
reconfigured and synthesized into different topologies and sizes.
Each processing node has a fully bypassed, 7-stage pipelined
microprocessor running the MIPS-III ISA, a 4-stage input-buffer,
virtual-channel router, and a local variable-size shared memory.
Our design is highly modular with clear interfaces between the
core, the memory hierarchy, and the on-chip network. In the
baseline design, the microprocessor is attached to two caches,
one instruction cache and one data cache, which are oblivious to
the global memory organization. The memory system in Heracles
can be configured as one single global shared memory (SM), or
distributed shared memory (DSM), or any combination thereof.
Each core is connected to the rest of the network of processors by
a parameterized, realistic, wormhole router. We show different
topology configurations of the system, and their synthesis results
on the Xilinx Virtex-5 LX330T FPGA board. We also provide
a small MIPS cross-compiler toolchain to assist in developing
software for Heracles.

I. INTRODUCTION

Multicore architectures have become mainstream computing
platforms. These systems typically consist of processing ele-
ments (PEs or cores), a memory subsystem, and an infrastruc-
ture for inter-core communications. Traditionally, buses have
been used in establishing communications between cores, but
because of the increasing complexity of these designs and
the lack of scalability of wired connections between cores,
network-on-chip (NoC) architectures have been introduced as
an effective data communication infrastructure [7], [11]. It
has been shown that the overall performance of multicore
systems is often defined by their communication limits in
terms of bandwidth, speed and concurrency [4], and not by the
individual computation power of the cores. Therefore, simple
reduced instruction set computer (RISC) cores are often used
in these architectures.

In this paper, we present a new open-source FPGA-based
system for designing multicore architectures. Heracles is a
complete multicore system written in Verilog, fully param-
eterized, that can be reconfigured into different topologies
and sizes. The main contribution of our work is the fact that
Heracles is designed with a high degree of modularity to
support exploration of future multicore processors of different
topologies, routing schemes, processing elements or cores,
and memory system organizations. Figure 1 shows the top
level view of Heracles multicore system arranged in 2D-

978-0-7695-4529-5/11 $26.00 © 2011 IEEE
DOI 10.1109/FPL.2011.70

356

mesh topology, and Figure 2 shows two different views of
the network switch local to a node.

There has been a large body of work on implementing
multicore architectures on FPGAs. In contrast, there seems
to be very little on complete, modular, multicore systems,
with reconfigurable network topology, where processing core,
memory system, and on-chip network are fully self-contained.
Heracles presents designers with a global and complete view
of the inner workings of a multiprocessor machine cycle-by-
cycle from instruction fetches at the microprocessor core at
each node to the flit arbitration at the routers, with RTL level
correctness. A flit is the smallest unit of information recog-
nized by the flow control method [8]. This enables the designer
to explore different implementation approaches: core micro-
architecture, levels of caches, cache sizes, routing algorithm,
router micro-architecture, distributed or shared memory, or
network interface, and to quickly evaluate their impact on the
overall system performance.

Section II describes an integer-based 7-stage MIPS pro-
cessing element (PE), and its usage in forming a node in
the network. Section III presents our structure for supporting
an arbitrary memory organization, and details regarding the
network interface. Section IV deals with the router micro-
architecture and support for various routing algorithms. Sec-
tion V shows different Heracles topologies and their FPGA
utilization. Section VI describes the current software toolchain,
and Section VII presents our performance analysis results.
Related work is summarized in Section VIII. Section IX
concludes the paper.

v ¥ ¥ ‘ I |
| | / [1
MIPS-Based Processing
] | I |] l A Element
Core Starting PC
and 3}) !
Routing Table Data | [1]
l—| . Node
X 1] Memory subsystem
I 17
FI I ¥ Router
Fig. 1. 2D-Mesh Topology Heracles Architecture.
IEEE
)computer
soclety

II. PROCESSING ELEMENT MODULE

The processing element in Heracles consists of an integer-
based 7-stage MIPS Core. MIPS (Microprocessor without In-
terlocked Pipeline Stages) is a register based RISC architecture
widely used in commercial products and for teaching purposes
[19]. Our implementation is a standard Verilog implementation
of the micro-architecture described by Patterson and Hennessy
[19], with some modifications for FPGAs. For example, the
adoption of a 7-stage pipeline, due to block RAM access time
on the FPGA.

Figure 3 shows the core architecture, a 7-stage pipeline
architecture, fully bypassed, with no branch predictor or
branch delay slot, running MIPS-III instruction set architecture
(ISA) without floating point. Instruction and data caches are
implemented using block RAMs, and instruction fetch and data
memory access take two cycles. Instruction address is issued
at I-Fetch 1 stage and on a cache hit, the actual instruction
appears in the I-Fetch 2 stage. Instruction decode and register
read stage and the execution stage remain functionally the
same as described in [19]. Stall and bypass signals are modi-
fied to support the extended pipeline. Data memory (cache) is
implemented over D-Memory 1 and D-Memory 2 stages. For
a read, the memory address is presented to the cache in the
D-Memory 1 stage and the data on a cache hit appears in the
D-Memory 2 stage. On a memory write, we also check in the

I

I
1

MIPS-Based Processing
Element

111/

1
i Mem m Wrappk A
! Cache System !

‘Address Resolution Logic] 1

i | tocal Memory '

Packetizer

Memory Subsystem
and
Router

Router Wrapper

= !

(a) Expanded View of Memory Hierarchy (b) Expanded View of Router Wrapper

Fig. 2. Network Switch Expanded Views.

I-Fetch 1 | I-Fetch2 | Instruction Decode | Execute |D-Memory 1} D- Memory 2

P
CS’; i-stall ASrc

.

rind

Jabs

pc+4

31

‘ 1

we _i" i
rsl — we
rs2 rdi J addr

rdatal
a

nop
insy —
Inst

Memory

Dat:
Memory

wdata

BSrc

Zero

Fig. 3. Integer-based 7-stage MIPS processing element.

357

D-Memory 2 stage that there is a cache hit before continuing
execution. Instructions are issued and executed in-order, and
the data memory accesses are also in-order.

Used | Available | Utilization
Registers 1,635 207,360 under 1%
Lookup Tables | 2,529 | 207,360 1%
Critical Path (ns) 6.151
Clock Rate (MHz) | 162.564

TABLE 1
PROCESSING ELEMENT SYNTHESIS RESULTS

The core is synthesized using Xilinx ISE Design Suite 11.5,
with Virtex-5 LX330T as the targeted board. Table I gives a
brief summary of the synthesis results and the clocking speed
of the design. As shown in Table I, our 7-stage pipeline core
architecture runs at 162.5 MHz, and has an FPGA resource
utilization of around 1% on the Virtex-5 LX330T. Due to the
modular design of Heracles, any core with the same memory
interface can be plugged into the system.

III. MEMORY SYSTEM ORGANIZATION

The memory system in Heracles is completely parameter-
ized, and can be set up in various ways, independent of the
rest of the system. The key components are the cache system,
the local memory, and the network interface.

A. Cache System

In Heracles, we implement a l-level cache system com-
posed of a direct-mapped instruction cache and a direct-
mapped data cache, which can be extended to more cache
levels. Each cache can be independently configured. The IN-
DEX_BITS parameter controls the number of blocks or cache-
line in the cache. The OFFSET_BITS parameter determines the
cache block size. The direct-mapped cache is implemented
using block RAM, where on a hit, the data appears on the
output port in the following cycle. Since block RAMs on
the FPGA are constrained resources, we also implement a
direct-mapped cache using registers and lookup tables, but
at a high FPGA resource cost. The cache system, like the
core, is oblivious to the system-level memory organization
and network topology. This decoupling is achieved through
the Address Resolution Logic, which sits outside the cache
system and interacts with the rest of the memory structure.

B. Local Memory Distribution

The memory system in Heracles is constructed to allow
different memory space configurations. The local memory is
parameterized and has two very important attributes: its size
can be changed on a per core-basis, and it can service a
variable number of caches in a round-robin fashion. For a
Shared Memory (SM) implementation, where all processors
share a single large memory block, the local memory size is
simply set to zero at all nodes except one. At the nodes with
no local memory, the Address Resolution Logic directly sends
all cache system traffic into the network, where it transits to
the target node. In Distributed Shared Memory (DSM), where
each processing element has its own private memory, local

memory size can be set to be the same across all the nodes or
set to different values. For example, in a mesh network, our
experiments show that for a large class of routing algorithms
locating larger blocks of memory at the center nodes, can im-
prove network congestion. The LOCAL_ADDR_BITS parameter
is used to set the size of the local memory.

The fact that the local memory is parameterized to han-
dle requests from a variable number of caches allows us
to present to the local memory the traffic coming into the
node from other cores through the network, as just another
cache communication. This illusion is created through the
network packetizer. Local memory can also be viewed as
a memory controller. Heracles, at the moment, provides no
cache coherence protocol. However, the design of the system
is such that a cache coherence scheme can be supported.

C. Network Interface

The Address Resolution Logic works with the Packetizer
module to get the caches and the local memory to interact
with the rest of the system. All cache traffic goes through the
Address Resolution Logic, which determines if a request can
be served at the local memory, or if the request needs to be sent
over the network. In Heracles, an address contains two fields,
where the lower order bits represent the real address, and the
the higher order bits identify the home core for that particular
address. These two fields are automatically identified based on
the LOCAL_ADDR_BITS and the ADDRESS_BITS parameters. If
the home core of an address is not the core that generated the
address, the Address Resolution Logic forwards the request to
the network, through the Packetizer.

Cache System Response Cache System Request

Memory Response Memory Request

12 T

Local Memory Interface Local Cache System Interface

|l I T]

Packetizer Lite |

T T

Outgoing flit Incoming flit

Fig. 4. Network Interface Packetizer.

Inside the Packetizer module, there are three submodules
as shown in Figure 4. The Local Memory Interface uses a
cache-like protocol to interact with the local memory. In our
baseline design, the Local Memory Interface simply acts as
a third cache on the local memory side. The Local Cache
System Interface uses a memory-like protocol to interact with
the cache system like a second larger memory block. The
Packetizer Lite is responsible for converting data traffic, such
as a load, coming from the local memory and the cache system
into packets or flits that can be routed inside the Network-
on-chip (NoC), and for reconstructing packets or flits into

358

Used | Available | Utilization
Registers 2,695 207,360 under 1%
Lookup Tables 5,562 207,360 2%
Block RAM/FIFO 75 324 23%

Critical Path (ns) 6.471

Clock Rate (MHz) | 155.825
TABLE II

PROCESSING ELEMENT WITH CACHES AND MEMORY SYNTHESIS

RESULTS

data traffic at the opposite side when exiting the NoC. The
Packetizer Lite directly connects to the network router. Table
IT gives a brief summary of the synthesis results and the
clocking speed of our 7-stage pipeline MIPS core with 2
caches (I-Cache and D-Cache) of 2KB each, and 262KB of
local memory.

IV. ROUTER ARCHITECTURE

To provide scalability, Heracles uses a network-on-chip
(NoC) architecture for its data communication infrastructure.
An NoC architecture is defined by its topology (the physical
organization of nodes in the network), its flow control mech-
anism (which establishes the data formatting, the switching
protocol and the buffer allocation), and its routing algorithm
(which determines the path selected by a packet to reach its
destination under a given application). This section discusses
the router micro-architecture, and its support for different
network topologies and routing algorithms.

L t1 '

Memory System Wrapper

Fig. 5. Router Micro-Architecture.

A. Router Micro-Architecture

Figure 5 illustrates the virtual-channel router used in Her-
acles. The router fairly conforms, in its architecture and
operation, to conventional virtual-channel routers [8], [17]. It
has some input buffers to store flits while they are waiting
to be routed to the next hop in the network. The routing
operation takes four steps or phases, namely routing (RC),
virtual-channel allocation (VA), switch allocation (SA), and
switch traversal (ST), where each phase corresponds to a
pipeline stage in our router. When a head flit (the first flit of
a packet) arrives at an input channel, the router stores the flit
in the buffer for the allocated virtual channel and determines
the next hop for the packet (RC phase). Given the next hop,
the router then allocates a virtual channel in the next hop (VA

phase). Finally, the flit competes for a switch (SA phase), if
the next hop can accept the flit, and moves to the output port
(ST phase).

The switch allocation (SA) stage is the critical stage in our
router design, due to the complexity of the arbiter. During
the SA stage, the arbiter grants switch traversal to all input
ports requesting output ports for which they have priority. If
an input port is requesting an output port, and the priority
holder on that outgoing port is either idle or requesting a
different output port, it has to compete with all other input
ports requesting the same output port. The arbiter is also
responsible for adjusting priorities to promote fairness and
avoid starvation. The synthesis of the router shows a delay
of 14.016 nanoseconds, with 24 levels of logic on the critical
path.

B. Route Computation and Virtual Channel Allocation

Algorithms used to compute routes in network-on-chip
(NoC) architectures, generally fall under two categories: obliv-
ious and dynamic [18]. The router implemented in Heracles
primarily supports oblivious routing algorithms using either
fixed logic or routing table. Fixed logic is provided for
dimension order routing (DOR) algorithms [21], which are
popular and have many desirable properties. For example, they
generate deadlock-free routes in mesh or hypercube topologies
[6]. Either using XY-Ordered Routing or YX-Ordered Routing,
each packet is routed along one dimension in its first phase
followed by the other dimension. On the other hand, table-
based routing provides greater programmability and flexibility,
since routes can be pre-computed and stored in the routing
tables before execution. Table-based routing supports both
minimal and non-minimal routing algorithms. In this routing
scheme, at the beginning of the program, routing tables are
updated; and during execution each packet has a flow ID,
which is used to address the routing table to determine the
packet’s outgoing port. The RT_ALG parameter is used to
select the proper routing algorithm for a given application
and topology. Heracles provides support for both static and
dynamic virtual channel allocation. When static allocation is
used, the routing table stores the outgoing port of the packet
along with the virtual channel to be used in the next node.
There is no additional hardware cost for supporting static
virtual channel allocation, since the entry into the table is
also used during dynamic allocation. The number of virtual
channels per port and their sizes are variable parameters
(VC_PER_PORT and VC_DEPTH).

C. Network Topology Configuration

The parameterization of the number of input ports and
output ports on the router and the table-based routing ca-
pability give Heracles a great amount of flexibility and the
ability to metamorphose into different network topologies;
for example, k-ary n-cube, 2D-mesh, 3D-mesh, hypercube,
ring, or tree. A new topology is constructed by changing the
IN_PORTS, OUT_PORTS, and SWITCH_TO_SWITCH parameters
and reconnecting the routers. In the case of the 3D-mesh, the

359

IN_PORTS and OUT_PORTS parameters are set to 2 or 3, one
to connect the router to the local core and the remainder to
connect the router to the third dimension. Table III gives a brief
summary of the synthesis results and the clock frequency of
our virtual-channel router in 2D-meshes. It runs at 71 MHz,
with the limiting factor being logic complexity of the arbiter.

Used | Available

Registers 2,806 207,360
Lookup Tables | 2,058 207,360
Critical Path (ns) 14.016

Clock Rate (MHz) | 71.345

Utilization
1%
1%

TABLE III
VIRTUAL-CHANNEL ROUTER SYNTHESIS RESULTS

For a fat-tree [15] topology, routers at different levels
of the tree have different sizes, in terms of crossbar and
arbitration logic. The root node contains the largest router, and
controls the clock frequency of the system. Figure 6 shows an
unbalanced fat-tree topology, and Table IV shows the summary
of the synthesis results and the clock frequency of the fat-tree
multicore system.

Used
Registers 166,726
Lookup Tables | 165284
Critical Path (ns)
Clock Rate (MHz)

TABLE IV
UNBALANCED FAT-TREE TOPOLOGY SYNTHESIS RESULTS

Available
207,360
207,360

33.246

30.079

Utilization
80%
80%

v v v k2
fe—| fe—
Core Starting PC T | | I I l l
Routing Table Data 1M 2 ¥
= Rt =
Wlee Fix2 Y\ Ve k2

1= Memgoystem Wrdpper- /

' H /

i I

' Cache System N

' H \

i 1 : IPS-Based Processing| | / ;]

: : \ g i

[ddress Resolution Logid N Element y ' :

| ! - l T V4 1 || Local Core Interface |1

! | Local Memory ' pul 4— ' '

| I | == == il

' . i 11 Memory Subsystem —— i S

! Packetizer ' “ i 1>

' i — and > HP HEl B

””””””””” -1 Router i g—‘-_." Router T

=§ ; - — DI — —— i
E = =
| Router Wrapper 3 T

= = .. —

Expanded View of Memory Hierarchy Expanded View of Router Wrapper

Fig. 6. Unbalanced Fat-Tree Topology with Expanded Views of the Root.

V. FPGA 2D-MESH TOPOLOGY SYSTEMS
A large number of cores can be implemented on a modern
FPGA. Moreover, having a simple RISC core, MIPS in our
case, for the processing element (PE) allows for a good size
multicore system. This section presents three different sizes,

2x2, 3x3, and 4x4, of the complete Heracles multicore
architecture arranged in 2D-mesh topology. Figure 1 shows the
3x3 mesh topology. Table V summarizes the key architectural
characteristics of the multicore system. The system is running
at 71 MHz, which is the clock frequency of the router,
regardless of the size of the mesh. The system speed will
increase if a less complex arbitration scheme is adopted.

{ Heracles
Core
ISA 32-Bit MIPS
Multiply/Divide Software
Floating Point Software
Pipeline Stages 7
Bypassing Full
Branch policy Always non-Taken
Outstanding memory requests 1
Address Translation None
Level 1 Instruction/Data Caches
Associativity Direct
Size 16KB
Outstanding Misses 1
On-Chip Network
Topology 2D-Mesh
Routing Policy DOR and Table-based
Virtual Channels 2
Buffers per channel 8

TABLE V
2D-MESH Heracles MULTICORE ARCHITECTURE

Resource Utilization

Registers | Lookup Tables | Block RAM/FIFO
2x2 Mesh 35.5% 39.6% 92.1%
3x3 Mesh 58.1% 60.0% 99.6%
4x4 Mesh 99.9% 94.7% 83.5% *
Total Available Resource
Registers | Lookup Tables | Block RAM/FIFO
207,360 207,360 324
TABLE VI

VIRTEX-5 LX330T FPGA RESOURCE UTILIZATION PER MESH SIZE.

Using a 2-D mesh topology, we are able to fit up to 16 cores
on the Virtex-5 LX330T FPGA board. Table VI summarizes
the FPGA resource utilization for different network sizes in
terms of registers, lookup tables, and RAMs. In the 2x2
configuration, the local shared memory is set to 260K B
per core. Whereas for the 3x3 configuration the size of the
local shared memory is reduced to 64K B per core, due to
limited FPGA block RAM. The local memory in the 4x4
configuration is set to 32K B, which lowers the percentage of
used block RAM/FIFO down to 83.5%.

VI. SOFTWARE PROGRAMMING TOOLCHAIN

We are releasing Heracles with a small open-source soft-
ware toolchain to assist in developing software for the system,
although users can easily build their own. The toolchain for
this release supports a single-Thread C programming model.
It is built around the GCC MIPS cross-compiler using GNU C
version 3.2.1. Figure 7 depicts the software flow for compiling
a C program into the compatible MIPS instruction code that
can be executed on the system. The compilation process

360

consists of a series of six steps. First, the user invokes mips-gcc
to translate the C code into assembly language (e.g., ./mips-gcc
-S fibonacci.c). In step 2, the assembly code is then run through
the isa-checker (e.g., ./checker fibonacci.s). The checker’s role
is to: (1) remove all memory space primitives, (2) replace all
pseudo-instructions, and (3) check for floating point instruc-
tions. Its output is a .asm file. For this release, there is no direct
high-level operating system support. Therefore, in the third
compilation stage, a small kernel-like assembly code is added
to the application assembly code for memory space manage-
ment and workload distribution (e.g., ./linker fibonacci.asm).
Users can modify the linker.cpp file provided in the toolchain
to reconfigure the memory space and workload. In step 4,
the user compiles the assembly file into an object file using
the cross-compiler. This is accomplished by executing mips-
as on the .asm file (e.g., ./mips-as fibonacci.asm). In the next
step, the object file is disassembled using the mips-objdump
command (e.g., ./mips-objdump fibonacci.o). Its output is a
.dump file. Finally, the constructor script is called to transform
the dump file into Verilog memory, .vmh, file format (e.g.,
Jdump2vmh fibonacci.dump). The software toolchain is still
evolving.

VII. EXPERIMENTAL RESULTS

We examine the performance of two SPEC CINT2000
benchmarks, namely, 197.parser and 256.bzip2 on Heracles.
We modify and parallelize these benchmarks to fit into our
evaluation framework. For the 197.parser benchmark, we
identify three functional units: file reading and parameters
setting as one unit, actual parsing as a second unit, and
error reporting as the third unit. When there are more than
three cores, all additional cores are used in the parsing unit.
Similarly, 256.bzip2 is divided into three functional units: file
reading and cyclic redundancy check, compression, and output
file writing. The compression unit exhibits a high degree of
data-parallelism, therefore we apply all additional cores to this
unit for core count greater than three. We also present a brief
analysis of a simple Fibonacci number calculation program.
Figures 8 and 10 show 197.parser and 256.bzip2 benchmarks
under single shared-memory (SSM) and distributed shared-
memory (DSM), using XY-Ordered routing. Increasing the
number of cores improves performance for both benchmarks; it
also exposes the memory bottleneck encountered in the single
shared-memory scheme. Figures 9 and 11 highlight the impact
of the routing algorithm on the overall system performance,
by comparing completion cycles of XY-Ordered routing and
BSOR [13]. BSOR, which stands for Bandwidth-Sensitive
Oblivious Routing, is a table-based routing algorithm that min-
imizes the maximum channel load (MCL) or maximum traffic
across all network links in an effort to maximize application
throughput. The routing algorithm has little or no effect on
the performance of 197.parser and 256.bzip2 benchmarks, as
shown in Figure 9 for 197.parser, because of the traffic patterns
in these applications. For the Fibonacci application, Figure 11,
BSOR routing does improve performance, particularly with 5
or more cores.

> Assembly
code file
e.g. fib

Source code file
e.g., fibonacci.c

Verilog hex
memory file

e.g., fib ci.mem|

~{

Compiler
[mips-gee]

Fig. 7.

« 10° Effect of Memory Organization on 197 parser/CINT2000 under Heracles
4

Completion Cycles

1 2 3 4 5 6 7
Number of Cores

Fig. 8. 197.parser: Effect of Memory Organization on Performance

x 10° Effect of Memory Organization on 256.bzip2/CINT2000 under Heracles

i XY-Orderedgg,,

o5 _ _XY-Orderedy,,

hl
o

Completion Cycles
~

o
o

1 2 3 4
Number of Cores

Fig. 9. 256.bzip2: Effect of Memory Organization on Performance

Heracles Verilog files and software toolchain for building
MIPS code to run on the system can be found at:
http://web.mit.edu/mkinsy/Public/Heracles

VIII. RELATED WORK

Implementation of multicore architecture on FPGAs has
been the subject of several research projects. In [9] Del Valle
et al present an FPGA-based emulation framework for multi-
processor system-on-chip (MPSoC) architectures. LEON3 [1],
a synthesizable VHDL model of a 32-bit processor compliant
with the SPARC V8§ architecture, has been used in imple-
menting multiprocessor systems on FPGAs. Andersson et al
[2], for example, use the LEON4FT microprocessor to build
their Next Generation Multipurpose Microprocessor (NGMP)

N
— | Compatibility
checker
[isa-checker]

I 4 |Diassembler
[mips-objdump]

361

Architecture (
i Compatible - ‘S;::::::‘:o n i Memory-aware
assembly wd&_: (Still a manual assem‘bly cod_e
e.g., fibonacci.asm process) e.g., fib as
4= | Object code file - Assembler
e.g., fibonacci.o [mips-as]
e/

Software Toolchain Flow.

x10° Effect of Routing Algorithm on 197.parser/CINT2000 under Heracles
4

+ XY-Orderedgg,,
 __XY-Ordered,g,,

_oBSORg,
s ESOHDSM

Completion Cycles

4
Number of Cores

Fig. 10. 197.parser: Effect of Routing Algorithm on Performance in 2D-Mesh
o 10° Effect of Routing Algorithm on Fibonacci Computation under Heracles
4+ XY-Orderedgg,,
39 _ - XY-Ordered,,,
_o BSORg,,
3 ——BSORpgy
5 25
S
3
5 2
2
2
E
£
© 1.5
1
0.5]
1 2 4 6 7
Number of Cores
Fig. 11. Fibonacci: Effect of Routing Algorithm on Performance

architecture, which is prototyped on the Xilinx XC5VEX130T
FPGA board. However, the LEON architecture is fairly com-
plex, and it is difficult to instantiate more than two or three
on a medium size FPGA. Clack et al [5] investigate the use
of FPGAs as a prototyping platform for developing multicore
system applications. They use Xilinx MicroBlaze processor for
the core, and a bus protocol for the inter-core communication.
James-Roxby et al [12] shows similar FPGA design in their
proposed architecture for supporting a single program multiple
data model of parallel processing.

Other FPGA-based multicore architectures are more appli-
cation specific. Ravindran et al [20] demonstrate the feasibility
of FPGA-based multicore systems for high performance appli-
cations, through the implementation of IPv4 packet forwarding

using Xilinx Virtex-II Pro FPGA. Wang et al [24] propose a
multicore architecture on FPGAs for large dictionary string
matching. Similarly, Tumeo et al [23] present FPGA-based
multicore shared memory for dual priority scheduling algo-
rithm for real-time embedded systems. Some designs focus
primarly on the Network-on-chip (NoC). Lusala er al [16],
for example, propose a scalable implementation of NoC on
FPGA using a torus topology. Genko et al [10] also present
an FPGA-based flexible emulation environment for explor-
ing different NoC features. A VHDL-based cycle accurate
RTL model for evaluating power and performance of NoC
architectures is presented in Banerjee et al [3]. Other designs
make use of multiple FPGAs. H-Scale [22], by Saint-Jean
et al, is a multi-FPGA based homogeneous SoC, with RISC
processors and an asynchronous NoC. The S-Scale version
supports a multi-threaded sequential programming model with
dedicated communication primitives handled at run-time by a
simple operating system. The RAMP Blue project [14] has
developed a set of reusable design blocks to emulate multicore
architectures on FPGAs. The system consists of 768-1008
MicroBlaze cores in 64-84 Virtex-II Pro 70 FPGAs on 16-
21 BEE2 boards.

IX. CONCLUSION

We have presented a complete, realistic, fully parameterized,
synthesizable, modular, multicore architecture. The system,
called Heracles, uses a component-based design approach,
where the processing element or core, the router and the
network-on-chip, and the memory subsystem are independent
building blocks, and can be used in other designs. The
baseline system has a 7-stage integer-based MIPS core, a
virtual-channel wormhole router, with support for both shared
memory and distributed shared memory, and can be imple-
mented on the Xilinx Virtex-5 LX330T FPGA board. We have
introduce a small software toolchain for compiling C programs
onto the system.

We have shown a 2D-Mesh topology and an unbalanced
fat-tree topology implementation of Heracles, to demonstrate
the flexibility and the robustness of the system. Heracles can
serve as a simulator in testing routing algorithms, flow control
schemes, network topologies, or memory controller organiza-
tions, or it can be used as an accelerator when simulating a
network-on-chip (NoC) by removing the MIPS cores from the
design and placing only the NoC on the FPGA.

Future work will involve adding a small kernel binary code
to each core on start up for handling exceptions and proper
interrupts for peripheral communications. Multi-threading and
dynamic runtime workload management among the cores, via
thread migration, will be explored.

ACKNOWLEDGMENT

We thank Joel Emer, Li-Shiuan Peh, Omer Kan, Myong
Hyon Cho, and Noah Keegan for interesting discussions
throughout the course of this work.

362

REFERENCES

[1] A. G. AB. Leon3 processor. Available at: http://www.gaisler.com.

[2] J. Andersson, J. Gaisler, and R. Weigand. Next

generation ~ multipurpose microprocessor. Available at:

http://microelectronics.esa.int/ngmp/NGMP-DASIA 10-Paper.pdf, 2010.

N. Banerjee, P. Vellanki, and K. Chatha. A power and performance model

for network-on-chip architectures. volume 2, pages 1250 — 1255 Vol.2,

feb. 2004.

L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.

Computer, 35(1):70-78, Jan 2002.

C. R. Clack, R. Nathuji, and H.-H. S. Lee. Using an fpga as a proto-

typing platform for multi-core processor applications. In WARFP-2005:

Workshop on Architecture Research using FPGA Platforms, Cambridge,

MA, USA, feb. 2005.

W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing in Multi-

processor Interconnection Networks. IEEE Trans. Computers, 36(5):547—

553, 1987.

W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip

Interconnection Networks. In Proc. of the 38th Design Automation

Conference (DAC), June 2001.

W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2003.

P. Del valle, D. Atienza, I. Magan, J. Flores, E. Perez, J. Mendias,

L. Benini, and G. Micheli. A complete multi-processor system-on-chip

fpga-based emulation framework. pages 140 —145, oct. 2006.

[10] N. Genko, D. Atienza, G. D. Micheli, J. M. Mendias, R. Hermida, and
F. Catthoor. A complete network-on-chip emulation framework. In DATE
'05: Proceedings of the conference on Design, Automation and Test in
Europe, pages 246-251, Washington, DC, USA, 2005.

[11] A. Ivanov and G. D. Micheli. The Network-on-Chip Paradigm in
Practice and Research. Design & Test of Computers, 22(5):399-403,
2005.

[12] P. James-Roxby, P. Schumacher, and C. Ross. A single program multiple
data parallel processing platform for fpgas. In FCCM '04: Proceedings
of the 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 302-303, Washington, DC, USA, 2004.

[13] M. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S. Devadas.
Application-Aware Deadlock-Free Oblivious Routing. In Proceedings of
the Int’l Symposium on Computer Architecture, jun. 2009.

[14] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz.
Ramp blue: A message-passing manycore system in fpgas. pages 54
61, aug. 2007.

[15] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. /EEE Trans. Comput., 34(10):892-901, 1985.

[16] A. Lusala, P. Manet, B. Rousseau, and J.-D. Legat. Noc implementation
in fpga using torus topology. pages 778 =781, aug. 2007.

[17] R.D.Mullins, A. F. West, and S. W. Moore. Low-latency virtual-channel
routers for on-chip networks. In Proc. of the 31st Annual Intl. Symp. on
Computer Architecture (ISCA), pages 188—197, 2004.

[18] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques
in direct networks. Computer, 26(2):62-76, 1993.

[19] D. Patterson and J. Hennessy. Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann, 2005.

[20] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An fpga-based soft
multiprocessor system for ipv4 packet forwarding. pages 487 — 492, aug.
2005.

[21] H. Sullivan and T. R. Bashkow. A large scale, homogeneous, fully dis-
tributed parallel machine, i. SIGARCH Comput. Archit. News, 5(7):105—
117, 1977.

[22] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and M. Robert. Hs-
scale: a hardware-software scalable mp-soc architecture for embedded
systems. In Proceedings of the IEEE Computer Society Annual Sympo-
sium on VLSI, pages 21-28, Washington, DC, USA, 2007.

[23] A. Tumeo, M. Branca, L. Camerini, M. Ceriani, M. Monchiero,
G. Palermo, F. Ferrandi, and D. Sciuto. Prototyping pipelined applications
on a heterogeneous fpga multiprocessor virtual platform. In Proceedings
of the 2009 Asia and South Pacific Design Automation Conference, pages
317-322, Piscataway, NJ, USA, 2009. IEEE Press.

[24] Q. Wang and V. K. Prasanna. Multi-core architecture on fpga for large
dictionary string matching. In FCCM ’09: Proceedings of the 2009 17th
IEEE Symposium on Field Programmable Custom Computing Machines,
pages 96—103.

[31

[4

=

(5]

[6]

(7]

(8]
[91

