
Heracles: A Tool for Fast RTL-Based Design Space
Exploration of Multicore Processors

Michel A. Kinsy Srinivas Devadas
Department of Electrical Engineering and

Computer Science
Massachusetts Institute of Technology

mkinsy, devadas@mit.edu

Michael Pellauer
Intel Corporation
VSSAD Group

michael.i.pellauer@intel.com

ABSTRACT
This paper presents Heracles, an open-source, functional,
parameterized, synthesizable multicore system toolkit. Such
a multi/many-core design platform is a powerful and versa-
tile research and teaching tool for architectural exploration
and hardware-software co-design. The Heracles toolkit com-
prises the soft hardware (HDL) modules, application com-
piler, and graphical user interface. It is designed with a high
degree of modularity to support fast exploration of future
multicore processors of different topologies, routing schemes,
processing elements (cores), and memory system organiza-
tions. It is a component-based framework with parameter-
ized interfaces and strong emphasis on module reusability.
The compiler toolchain is used to map C or C++ based ap-
plications onto the processing units. The GUI allows the
user to quickly configure and launch a system instance for
easy factorial development and evaluation. Hardware mod-
ules are implemented in synthesizable Verilog and are FPGA
platform independent. The Heracles tool is freely available
under the open-source MIT license at:
http://projects.csail.mit.edu/heracles.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Processor Ar-
chitecture - Single-instruction-stream, multiple-data-stream
processors (SIMD); B.5.1 [Hardware]: Register-Transfer-
Level Implementation- Design.

General Terms
Tool, Design, Experimentation, Performance

Keywords
Multicore Architecture Design, RTL-Based Design, FPGA,
Shared Memory, Distributed Shared Memory, Network-on-
Chip, RISC, MIPS, Hardware Migration, Hardware multi-
threading, Virtual Channel, Wormhole Router, NoC Rout-
ing Algorithm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’13, February 11-13, 2013, Monterey, California, USA.
Copyright 2013 ACM 978-1-4503-1887-7/13/02 ...$15.00.

1. INTRODUCTION
The ability to integrate various computation components

such as processing cores, memories, custom hardware units,
and complex network-on-chip (NoC) communication proto-
cols onto a single chip has significantly enlarged the design
space in multi/many-core systems. The design of these sys-
tems requires tuning of a large number of parameters in
order to find the most suitable hardware configuration, in
terms of performance, area, and energy consumption, for
a target application domain. This increasing complexity
makes the need for efficient and accurate design tools more
acute.

There are two main approaches currently used in the de-
sign space exploration of multi/many-core systems. One ap-
proach consists of building software routines for the differ-
ent system components and simulating them to analyze sys-
tem behavior. Software simulation has many advantages:
i) large programming tool support; ii) internal states of
all system modules can be easily accessed and altered; iii)
compilation/re-compilation is fast; and iv) less constraining
in terms of number of components (e.g., number of cores) to
simulate. Some of the most stable and widely used soft-
ware simulators are Simics [14]–a commercially available
full-system simulator–GEMS [21], Hornet [12], and Graphite
[15]. However, software simulation of many-core architec-
tures with cycle- and bit-level accuracy is time-prohibitive,
and many of these systems have to trade off evaluation ac-
curacy for execution speed. Although such a tradeoff is fair
and even desirable in the early phase of the design explo-
ration, making final micro-architecture decisions based on
these software models over truncated applications or appli-
cation traces leads to inaccurate or misleading system char-
acterization.

The second approach used, often preceded by software
simulation, is register-transfer level (RTL) simulation or em-
ulation. This level of accuracy considerably reduces system
behavior mis-characterization and helps avoid late discovery
of system performance problems. The primary disadvantage
of RTL simulation/emulation is that as the design size in-
creases so does the simulation time. However, this problem
can be circumvented by adopting synthesizable RTL and us-
ing hardware-assisted accelerators–field programmable gate
arrays (FPGAs)–to speed up system execution. Although
FPGA resources constrain the size of design one can im-
plement, recent advances in FPGA-based design method-
ologies have shown that such constraints can be overcome.
HAsim [18], for example, has shown using its time multiplex-
ing technique how one can model a shared-memory multicore

system including detailed core pipelines, cache hierarchy,
and on-chip network, on a single FPGA. RAMP Gold [20]
is able to simulate a 64-core shared-memory target machine
capable of booting real operating systems running on a sin-
gle Xilinx Virtex-5 FPGA board. Fleming et al [7] propose a
mechanism by which complex designs can be efficiently and
automatically partitioned among multiple FPGAs.

RTL design exploration for multi/many-core systems
nonetheless remain unattractive to most researchers because
it is still a time-consuming endeavor to build such large de-
signs from the ground up and ensure correctness at all levels.
Furthermore, researchers are generally interested in one key
system area, such as processing core and/or memory organi-
zation, network interface, interconnect network, or operating
system and/or application mapping. Therefore, we believe
that if there is a platform-independent design framework,
more specifically, a general hardware toolkit, which allows
designers to compose their systems and modify them at will
and with very little effort or knowledge of other parts of the
system, the speed versus accuracy dilemma in design space
exploration of many-core systems can be further mitigated.

To that end we present Heracles, a functional, modular,
synthesizable, parameterized multicore system toolkit. It
is a powerful and versatile research and teaching tool for
architectural exploration and hardware-software co-design.
Without loss in timing accuracy and logic, complete sys-
tems can be constructed, simulated and/or synthesized onto
FPGA, with minimal effort. The initial framework is pre-
sented in [10]. Heracles is designed with a high degree of
modularity to support fast exploration of future multicore
processors–different topologies, routing schemes, processing
elements or cores, and memory system organizations by us-
ing a library of components, and reusing user-defined hard-
ware blocks between different system configurations or pro-
jects. It has a compiler toolchain for mapping applications
written in C or C++ onto the core units. The graphical
user interface (GUI) allows the user to quickly configure
and launch a system instance for easily-factored develop-
ment and evaluation. Hardware modules are implemented
in synthesizable Verilog and are FPGA platform indepen-
dent.

2. RELATED WORK
In [6] Del Valle et al present an FPGA-based emulation

framework for multiprocessor system-on-chip (MPSoC) ar-
chitectures. LEON3, a synthesizable VHDL model of a 32-
bit processor compliant with the SPARC V8 architecture,
has been used in implementing multiprocessor systems on
FPGAs. Andersson et al [1], for example, use the LEON4FT
microprocessor to build their Next Generation Multipurpose
Microprocessor (NGMP) architecture, which is prototyped
on the Xilinx XC5VFX130T FPGA board. However, the
LEON architecture is fairly complex, and it is difficult to in-
stantiate more than two or three on a medium-sized FPGA.
Clack et al [4] investigate the use of FPGAs as a prototyping
platform for developing multicore system applications. They
use the Xilinx MicroBlaze processor for the core, and a bus
protocol for the inter-core communication. Some designs
focus primarly on the Network-on-chip (NoC). Lusala et al
[13], for example, propose a scalable implementation of NoC
on FPGA using a torus topology. Genko et al [8] also present
an FPGA-based flexible emulation environment for explor-
ing different NoC features. A VHDL-based cycle-accurate

RTL model for evaluating power and performance of NoC
architectures is presented in Banerjee et al [2]. Other designs
make use of multiple FPGAs. H-Scale [19], by Saint-Jean
et al, is a multi-FPGA based homogeneous SoC, with RISC
processors and an asynchronous NoC. The S-Scale version
supports a multi-threaded sequential programming model
with dedicated communication primitives handled at run-
time by a simple operating system.

3. HERACLES HARDWARE SYSTEM
Heracles presents designers with a global and complete

view of the inner workings of the multi/many-core system
at cycle-level granularity from instruction fetches at the pro-
cessing core in each node to the flit arbitration at the routers.
It enables designers to explore different implementation pa-
rameters: core micro-architecture, levels of caches, cache
sizes, routing algorithm, router micro-architecture, distribu-
ted or shared memory, or network interface, and to quickly
evaluate their impact on the overall system performance. It
is implemented with user-enabled performance counters and
probes.

3.1 System overview

Application (single or multi-threaded C or C++)

MIPS-based Linux GNU GCC cross compiler

Hardware config-aware application mapping

Processing
elements
selection

Memory
organization
configuration

Network-on-chip
Topology and
routing settings

RTL-level simulation FPGA-based Emulation

Software
Environment

 Component-based
 Hardware Design

 Evaluation
Environment

Figure 1: Heracles-based design flow.

Figure 1 illustrates the general Heracles-based design flow.
Full applications–written in single or multithreaded C or
C++–can be directly compiled onto a given system instance
using the Heracles MIPS-based GCC cross compiler. The
detailed compilation process and application examples are
presented in Section 5. For a multi/many-core system, we
take a component-based approach by providing clear inter-
faces to all modules for easy composition and substitutions.
The system has multiple default settings to allow users to
quickly get a system running and only focus on their area of
interest. System and application binary can be executed in
an RTL simulated environment and/or on an FPGA. Fig-
ure 2 shows two different views of a typical network node
structure in Heracles.

3.2 Processing Units
In the current version of the Heracles design framework,

users can instantiate four different types of processor cores,
or any combination thereof, depending on the programming
model adopted and architectural evaluation goals.

Processing	
 Core	

Memory	
 Subsystem	
 	

&	

Router	

Router	
 &	
 network	
 interface	

Memory	
 System	
 Wrapper	

Network	
 interface	

Router	

Caches	

Address	
 Transla:on	
 Logic	

Memory	
 System_Wrapper	

Router	
 &	
 Network	
 	

interface	

Local	
 Main	

Memory	

Packe:zer	

(a)	
 Expanded	
 view	
 of	
 local	
 memory	
 structure	
 (b)	
 Expanded	
 view	
 of	
 the	
 rou:ng	
 structure	

Figure 2: Network node structure.

3.2.1 Injector Core
The injector core (iCore) is the simplest processing unit.

It emits and/or collects from the network user-defined data
streams and traffic patterns. Although it does not do any
useful computation, this type of core is useful when the user
is only focusing on the network on-chip behavior. It is use-
ful in generating network traffic and allowing the evaluation
of network congestion. Often, applications running on real
cores fail to produce enough data traffic to saturate the net-
work.

3.2.2 Single Hardware-Threaded MIPS Core
This is an integer 7-stage 32-bit MIPS–Microprocessor

without Interlocked Pipeline Stages–Core (sCore). This RISC
architecture is widely used in commercial products and for
teaching purposes [17]. Most users are very familiar with
this architecture and its operation, and will be able to easily
modify it when necessary. Our implementation is generally
standard with some modifications for FPGAs. For example,
the adoption of a 7-stage pipeline, due to block RAM access
time on the FPGA. The architecture is fully bypassed, with
no branch prediction table or branch delay slot, running
MIPS-III instruction set architecture (ISA) without floating
point. Instruction and data caches are implemented using
block RAMs, and instruction fetch and data memory access
take two cycles. Stall and bypass signals are modified to
support the extended pipeline. Instructions are issued and
executed in-order, and the data memory accesses are also
in-order.

3.2.3 Two-way Hardware-Threaded MIPS Core
A fully functional fine-grain hardware multithreaded MIPS

core (dCore). There are two hardware threads in the core.
The execution datapath for each thread is similar to the
single-threaded core above. Each of the two threads has its
own context which includes a program counter (PC), a set
of 32 data registers, and one 32-bit state register. The core
can dispatch instructions from any one of hardware contexts
and supports precise interrupts (doorbell type) with limited
state saving. A single hardware thread is active on any given
cycle, and pipeline stages must be drained between context
switches to avoid state corruption. The user has the ability
to control the context switching conditions, e.g., minimum
number of cycles to allocate to each hardware thread at a
time, instruction or data cache misses.

3.2.4 Two-way Hardware-Threaded MIPS Core with
Migration

The fourth type of core is also a two-way hardware-threaded
processor but enhanced to support hardware-level thread

migration and evictions (mCore). It is the user’s responsi-
bility to guarantee deadlock-freedom under this core config-
uration. One approach is to allocate local memory to con-
texts so on migration they are removed from the network.
Another approach which requires no additional hardware
modification to the core, is using Cho et al [3] deadlock-free
thread migration scheme.

3.2.5 FPGA Synthesis Data
All the cores have the same interface, they are self-contained

and oblivious to the rest of the system, and therefore eas-
ily interchangeable. The cores are synthesized using Xilinx
ISE Design Suite 11.5, with Virtex-6 LX550T package ff1760
speed -2, as the targeted FPGA board. The number of slice
registers and slice lookup tables (LUTs) on the board are
687360 and 343680 respectively. Table 1 shows the regis-
ter and LUT utilization of the different cores. The two-
way hardware-threaded core with migration consumes the
most resources and is less than 0.5%. Table 1 also shows
the clocking speed of the cores. The injector core, which
does no useful computation, runs the fastest at 500.92MHz
whereas the two-way hardware-threaded core runs the slow-
est at 118.66MHz.

Table 1: FPGA resource utilization per core type.

Core type iCore sCore dCore mCore
Registers 227 1660 2875 3484

LUTs 243 3661 5481 6293
Speed (MHz) 500.92 172.02 118.66 127.4

3.3 Memory System Organization
The memory system in Heracles is parameterized, and

can be set up in various ways, independent of the rest of
the system. The key components are main memory, caching
system, and network interface.

3.3.1 Main Memory Configuration
The main memory is constructed to allow different mem-

ory space configurations. For Centralized Shared Memory
(CSM) implementation, all processors share a single large
main memory block; the local memory size (shown in Fig-
ure 2) is simply set to zero at all nodes except one. In
Distributed Shared Memory (DSM), where each processing
element has a local memory, the local memory is parame-
terized and has two very important attributes: the size can
be changed on a per core-basis, providing support for both
uniform and non-uniform distributed memory, and it can
service a variable number of caches in a round-robin fash-
ion. Figure 3 illustrates these physical memory partitions.
The fact that the local memory is parameterized to handle
requests from a variable number of caches allows the traffic
coming into a node from other cores through the network
to be presented to local memory as just another cache com-
munication. This illusion is created through the network
packetizer. Local memory can also be viewed as a mem-
ory controller. Figure 4 illustrates the local structure of the
memory sub-system. The LOCAL ADDR BITS parameter is
used to set the size of the local memory. The Address Trans-
lation Logic performs the virtual-to-physical address lookup
using the high-order bits, and directs cache traffic to local
memory or network.

For cache coherence, a directory is attached to each lo-
cal memory and the MESI protocol is implemented as the

LM	
 LM	

LM	

Uniform	
 distributed	
 memory	
 Non-­‐uniform	
 distributed	
 memory	
 Non-­‐distributed	
 memory	

Figure 3: Possible physical memory configurations.

DCache	

Status	
 	
 Tag	
 	
 	
 	
 	
 	
 	
 	
 	
 Data	
 Block	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

ICache	

Status	
 	
 Tag	
 	
 	
 	
 	
 	
 	
 	
 Data	
 Block	

Directory	

Status	
 	
 	
 PE	
 IDs	

	
 	
 	
 	
 	

Data	
 Block	

	
 	
 	
 	
 	
 Directory	

Manager	

Caches	

Address	
 Transla:on	
 Logic	

Memory	
 System_Wrapper	

Router	
 &	
 Network	
 	

interface	

Local	
 Main	

Memory	

Packe:zer	

Figure 4: Local memory sub-system structure.

default coherence mechanism. Remote access (RA) is also
supported. In RA mode, the network packetizer directly
sends network traffic to the caches. Memory structures are
implemented in FPGA using block RAMs. There are 632
block RAMs on the Virtex-6 LX550T. A local memory of
0.26MB uses 64 block RAMs or 10%. Table 2 shows the
FPGA resource used to provide the two cache coherence
mechanisms. The RA scheme uses less hardware resources
than the cache-coherence-free structure, since no cache-line
buffering is needed. The directory-based coherence is far
more complex resulting in more resource utilization. The
SHARERS parameter is used to set the number of sharers
per data block. It also dictates the overall size of the lo-
cal memory directory size. When a directory entry cannot
handle all sharers, other sharers are evicted.

Table 2: FPGA resource utilization per coherence
mechanism.

Coherence None RA Directory
Registers 2917 2424 11482

LUTs 5285 4826 17460
Speed (MHz) 238.04 217.34 171.75

3.3.2 Caching System
The user can instantiate direct-mapped Level 1 or Levels

1 and 2 caches with the option of making Level 2 an inclusive
cache. The INDEX BITS parameter defines the number of
blocks or cache-lines in the cache where the OFFSET BITS

parameter defines block size. By default, cache and memory
structures are implemented in FPGA using block RAMs,
but user can instruct Heracles to use LUTs for caches or
some combination of LUTs and block RAMs. A single 2KB
cache uses 4 FPGA block RAMs, 462 slice registers, 1106
slice LUTs, and runs at 228.8MHz. If cache size is in-
creased to 8KB by changing the INDEX BITS parameter

from 6 to 8, resource utilization and speed remain identical.
Meanwhile if cache size is increased to 8KB by changing
the OFFSET BITS parameter from 3 to 5, resource utiliza-
tion increases dramatically: 15 FPGA block RAMs, 1232
slice registers, 3397 slice LUTs, and speed is 226.8MHz.
FPGA-based cache design favors large number of blocks of
small size versus small number of blocks of large size 1.

3.3.3 Network Interface
The Address Resolution Logic works with the Packetizer

module, shown in Figure 2, to get the caches and the local
memory to interact with the rest of the system. All cache
traffic goes through the Address Resolution Logic, which de-
termines if a request can be served at the local memory,
or if the request needs to be sent over the network. The
Packetizer is responsible for converting data traffic, such as
a load, coming from the local memory and the cache system
into packets or flits that can be routed inside the Network-
on-chip (NoC), and for reconstructing packets or flits into
data traffic at the opposite side when exiting the NoC.

3.3.4 Hardware multithreading and caching
In this section, we examine the effect of hardware mul-

tithreading (HMT) on system performance. We run the
197.parser application from the SPEC CINT2000 bench-
marks on a single node with the dCore as the processing
unit using two different inputs–one per thread–with five dif-
ferent execution interleaving policies:

• setup 1: threads take turns to execute every 32 cycles;
on a context switch, the pipeline is drained before the
execution of another thread begins.

• setup 2: thread switching happens every 1024 cycles.
• setup 3: thread context swapping is initiated on an

instruction or a data miss at the Level 1 cache.
• setup 4: thread interleaving occurs only when there is

a data miss at the Level 1 cache.
• setup 5: thread switching happens when there is a data

miss at the Level 2 cache.

Figure 5 shows the total completion time of the two threads
(in terms of number of cycles). It is worth noting that
even with fast fine-grain hardware context switching, mul-
tithreading is most beneficial for large miss penalty events
like Level 2 cache misses or remote data accesses.

3.4 Network-on-Chip (NoC)
To provide scalability, Heracles uses a network-on-chip

(NoC) architecture for its data communication infrastruc-
ture. A NoC architecture is defined by its topology (the

1Cache-line size also has traffic implications at the network
level

0	

1	

2	

3	

4	

5	

6	

7	

8	

32	
 1024	
 miss	
 (L1)	
 d-­‐miss	
 (L1)	
 d-­‐miss	
 (L2)	

Cy
cl
es
	
 (x
10

9)
	

Execu+on	
 Cycles	

Thread1	

Thread2	

Figure 5: Effects of hardware multithreading and
caching.

physical organization of nodes in the network), its flow con-
trol mechanism (which establishes the data formatting, the
switching protocol and the buffer allocation), and its routing
algorithm (which determines the path selected by a packet
to reach its destination under a given application).

3.4.1 Flow control
Routing in Heracles can be done using either bufferless or

buffered routers. Bufferless routing is generally used to re-
duce area and power overhead associated with buffered rout-
ing. Contention for physical link access is resolved by either
dropping and retransmitting or temporarily misrouting or
deflecting of flits. With flit dropping an acknowledgment
mechanism is needed to enable retransmission of lost flits.
With flit deflection, a priority-based arbitration, e.g., age-
based, is needed to avoid livelock. In Heracles, to mitigate
some of the problems associated with the lossy bufferless
routing, namely retransmission and slow arbitration logic,
we supplement the arbiter with a routing table that can be
statically and off-line configured on a per-application basis.

	
 Arbiter	

Xbar	

Rou:ng	
 Logic	
 And	
 Table	

Virtual	
 Channels	

Router	
 &	
 network	
 interface	

Memory	
 System	
 Wrapper	

Network	
 interface	

Router	

Figure 6: Virtual channel based router architecture.

The system default virtual-channel router conforms in its
architecture and operation to conventional virtual-channel
routers [5]. It has some input buffers to store flits while they
are waiting to be routed to the next hop in the network.
The router is modular enough to allow user to substitute
different arbitration schemes. The routing operation takes
four steps or phases, namely routing (RC), virtual-channel
allocation (VA), switch allocation (SA), and switch traversal
(ST), where each phase corresponds to a pipeline stage in our
router. Figure 6 depicts the general structure of the buffered
router. In this router the number of virtual channels per
port and their sizes are controlled through VC PER PORT

and VC DEPTH parameters. Table 3 shows the register and
LUT utilization of the bufferless router and different buffer

configurations of the buffered router. It also shows the effect
of virtual channels on router clocking speed. The key take-
away is that a larger number of VCs at the router increases
both the router resource utilization and the critical path.

Table 3: FPGA resource utilization per router con-
figuration.

Number of VCs Bufferless 2 VCs 4 VCs 8 VCs
Registers 175 4081 7260 13374

LUTs 328 7251 12733 23585
Speed (MHz) 817.18 111.83 94.8 80.02

3.4.2 Routing algorithm
Algorithms used to compute routes in network-on-chip

(NoC) architectures, generally fall under two categories: obliv-
ious and dynamic [16]. The default routers in Heracles
primarily support oblivious routing algorithms using either
fixed logic or routing tables. Fixed logic is provided for
dimension-order routing (DOR) algorithms, which are widely
used and have many desirable properties. On the other
hand, table-based routing provides greater programmabil-
ity and flexibility, since routes can be pre-computed and
stored in the routing tables before execution. Both buffered
and bufferless routers can make usage of the routing tables.
Heracles provides support for both static and dynamic vir-
tual channel allocation.

3.4.3 Network Topology Configuration
The parameterization of the number of input ports and

output ports on the router and the table-based routing ca-
pability give Heracles a great amount of flexibility and the
ability to metamorphose into different network topologies;
for example, k-ary n-cube, 2D-mesh, 3D-mesh, hypercube,
ring, or tree. A new topology is constructed by chang-
ing the IN PORTS, OUT PORTS, and SWITCH TO SWITCH

parameters and reconnecting the routers. Table 4 shows
the clocking speed of a bufferless router, a buffered router
with strict round-robin arbitration (Arbiter1), a buffered
router with weak round-robin arbitration (Arbiter2), and
a buffered router with 7 ports for a 3D-mesh network. The
bufferless router runs the fastest at 817.2MHz, Arbiter1 and
Arbiter2 run at the same speed (∼ 112), although the arbi-
tration scheme in Arbiter2 is more complex. The 7-port
router runs the slowest due to more complex arbitration
logic.

Table 4: Clocking speed of different router types.

Router type Bufferless Arbiter1 Arbiter2 7-Port
Speed (MHz) 817.18 111.83 112.15 101.5

Figure 7 shows a 3×3 2D-mesh with all identical routers.
Figure 8 depicts an unbalanced fat-tree topology. For a fat-
tree [11] topology, routers at different levels of the tree have
different sizes, in terms of crossbar and arbitration logic.
The root node contains the largest router, and controls the
clock frequency of the system.

4. HERACLES PROGRAMMING MODELS
A programming model is inherently tied to the underly-

ing hardware architecture. The Heracles design tool has no
directly deployable operating system, but it supports both
sequential and parallel programming models through various

Node	

Core	
 Star'ng	
 PC	

Rou'ng	
 Table	
 Data	

Figure 7: 2D mesh topology.

Core	
 Star'ng	
 PC	

Rou'ng	
 Table	
 Data	

Root	

Figure 8: Unbalanced fat-tree topology.

application programming interface (API) protocols. There
are three memory spaces associated with each program: in-
struction memory, data memory, and stack memory. Dy-
namic memory allocation is not supported in the current
version of the tool.

4.1 Sequential programming model
In the sequential programming model, a program has a

single entry point (starting program counter–PC) and single
execution thread. Under this model, a program may exhibit
any of the follow behavior or a combination thereof:
• the local memory of executing core has instruction bi-

nary;
• PC pointer to another core’s local memory where the

instruction binary resides;
• the stack frame pointer– SP points to the local memory

of executing core;
• SP points to another core’s local memory for the stor-

age of the stack frame;
• program data is stored at the local memory;
• program data is mapped to another core local memory.

Figure 9 gives illustrating examples of the memory space
management when dealing with sequential programs. These
techniques provide the programming flexibility needed to
support the different physical memory configurations. They
also allow users:
• to run the same program on multiple cores (program

inputs can be different); in this setup the program bi-
nary is loaded to one core and the program counter at
other cores points to the core with the binary;

Inac've	
 Ac've	
 	
 Inac've	

(a)	

Ac've	
 Ac've	
 	
 Inac've	

(b)	

Ac've	
 Ac've	
 	
 Ac've	

(c)	

PC	
 	
 	
 	
 	
 	
 à	
 	
 A	

SP	
 	
 	
 	
 	
 	
 à	
 	
 A	

DATA	
 à	
 A	

	

B	
 A	
 C	

B	
 A	
 C	

B	
 A	
 C	

PC	
 	
 	
 	
 	
 	
 à	
 	
 B	

SP	
 	
 	
 	
 	
 	
 à	
 	
 A	

DATA	
 à	
 A	

	

PC	
 	
 	
 	
 	
 	
 à	
 	
 B	

SP	
 	
 	
 	
 	
 	
 à	
 	
 C	

DATA	
 à	
 A	

	

Figure 9: Examples of memory space management
for sequential programs.

• to execute one program across multiple cores by mi-
grating the program from one core to another.

4.2 Parallel programming model
The Heracles design platform supports both hardware multi-

threading and software multi-threading. The keywords
HHThread1 and HHThread2 are provided to specify the part
of the program to execute on each hardware thread. Multi-
ple programs can also be executed on the same core using
the same approach. An example is shown below:

...

int HHThread1 (int *array, int item, int size) {

sort(array, size);

int output = search(array, item, size);

return output;

}

int HHThread2 (int input,int src,int aux,int dest){

int output = Hanoi(input, src, aux, dest);

return output;

}

...

Below is the associated binary outline:

@e2 // <HHThread1>

27bdffd8 // 00000388 addiu sp,sp,-40

...

0c00004c // 000003c0 jal 130 <search>

...

@fa // <HHThread2>

27bdffd8 // 000003e8 addiu sp,sp,-40

...

0c0000ab // 00000418 jal 2ac <Hanoi>

...

@110 // <HHThread1_Dispatcher>

27bdffa8 // 00000440 addiu sp,sp,-88

...

0c0000e2 // 000004bc jal 388 <hThread1>

...

@15e // <HHThread2_Dispatcher>

27bdffa8 // 00000440 addiu sp,sp,-88

...

0c0000fa // 000004d8 jal 3e8 <HHThread2>

...

Heracles uses OpenMP style pragmas to allow users to
directly compile multi-threaded programs onto cores. Users
specify programs or parts of a program that can be exe-
cuted in parallel and on which cores. Keywords HLock and
HBarrier are provided for synchronization and shared vari-
ables are encoded with the keyword HGlobal. An example
is shown below:

...

#pragma Heracles core 0 {

// Synchronizers

HLock lock1, lock2;

HBarrier bar1, bar2;

// Variables

HGlobal int arg1, arg2, arg3;

HGlobal int Arr[16][16];

HGlobal int Arr0[16][16] = { { 1, 12, 7, 0,...

HGlobal int Arr1[16[16] = { { 2, 45, 63, 89,...

// Workers

#pragma Heracles core 1 {

start_check(50);

check_lock(&lock1, 1000);

matrix_add(Arr, Arr0, Arr1, arg1);

clear_barrier(&bar1);

}

#pragma Heracles core 2 {

start_check(50);

check_lock(&lock1, 1000);

matrix_add(Arr, Arr0, Arr1, arg2);

clear_barrier(&bar2);

}

}

...

Below is the intermediate C representation:

...

int core_0_lock1, core_0_lock2;

int core_0_bar1, core_0_bar2;

int core_0_arg1, core_0_arg2, core_0_arg3;

int core_0_Arr[16][16];

int core_0_Arr0[16][16] = { { 1, 12, 7, 0,...

int core_0_Arr1[16][16] = { { 2, 45, 63, 89,...

void core_0_work (void)

{

// Synchronizers

// Variables

// Workers

// Main function

main();

}

void core_1_work (void)

{

start_check(50);

check_lock(&core_0_lock1, 1000);

matrix_add(core_0_Arr, core_0_Arr0, core_0_Arr1,

core_0_arg1);

clear_barrier(&core_0_bar1);

}

...

Below is the associated binary outline:

@12b // <Dispatcher>

27bdffe8 // 000004ac addiu sp,sp,-24

...

0c000113 // 000004bc jal 44c <core_0_work>

...

5. PROGRAMMING TOOLCHAIN

5.1 Program compilation flow
The Heracles environment has an open-source compiler

toolchain to assist in developing software for different sys-
tem configurations. The toolchain is built around the GCC
MIPS cross-compiler using GNU C version 3.2.1. Figure 10
depicts the software flow for compiling a C program into the
compatible MIPS instruction code that can be executed on
the system. The compilation process consists of a series of
six steps.

• First, the user invokes mips-gcc to translate the C
code into assembly language (e.g., ./mips-gcc -S fi-
bonacci.c).

• In step 2, the assembly code is then run through the
isa-checker (e.g., ./checker fibonacci.s). The checker’s
role is to: (1) remove all memory space primitives,
(2) replace all pseudo-instructions, and (3) check for
floating point instructions. Its output is a .asm file.

• For this release, there is no direct high-level operat-
ing system support. Therefore, in the third compila-
tion stage, a small kernel-like assembly code is added
to the application assembly code for memory space
management and workload distribution (e.g., ./linker
fibonacci.asm). Users can modify the linker.cpp file
provided in the toolchain to reconfigure the memory
space and workload.

• In step 4, the user compiles the assembly file into an
object file using the cross-compiler. This is accom-
plished by executing mips-as on the .asm file (e.g.,
./mips-as fibonacci.asm).

• In step 5, the object file is disassembled using the mips-
objdump command (e.g., ./mips-objdump fibonacci.o).
Its output is a .dump file.

• Finally, the constructor script is called to transform
the dump file into a Verilog memory, .vmh, file format
(e.g., ./dump2vmh fibonacci.dump).

If the program is specified using Heracles multi-threading
format (.hc or .hcc), c-cplus-generator (e.g., ./c-cplus-genera-
tor fibonacci.hc) is called to first get the C or C++ program
file before executing the steps listed above. The software
toolchain is still evolving. All these steps are also automated
through the GUI.

5.2 Heracles graphical user interface
The graphical user interface (GUI) is called Heracles De-

signer. It helps to quickly configure and launch system con-
figurations. Figure 11 shows a screen shot of the GUI. On
the core tab, the user can select: (1) the type of core to
generate, (2) the network topology of the system instance
to generate, (3) the number of cores to generate, (4) traf-
fic type, injection rate, and simulation cycles in the case
of an injector core, or (5) different pre-configured settings.

Object code file
e.g., fibonacci.o

Assembler
[mips-as]

Diassembler
[mips-objdump]

Compiler
[mips-gcc] Source code file

e.g., fibonacci.c

Assembly
code file
e.g., fibonacci.s

Compatibility
 checker
[isa-checker]

Architecture
Compatible
assembly code
e.g., fibonacci.asm

Workload
Distribution
(Automatic for
 .hc or .hcc)

Memory-aware
assembly code
e.g., fibonacci.asm

 Constructor
 [dump2vmh]

 Dump file
 e.g.,
 fibonacci.dump

 Verilog hex
 memory file
 e.g., fibonacci.mem

Heracles code file
e.g., fibonacci.hc

Start C-cplus-
generator

Start

End

Figure 10: Software toolchain flow.

Figure 11: Heracles designer graphical user interface.

Generate and Run buttons on this tab are used to automat-
ically generate the Verilog files and to launch the synthesis
process or specified simulation environment. The second
tab–memory system tab–allows the user to set: (1) maim
memory configuration (e.g., Uniformed Distributed), (2) to-
tal main memory size, (3) instruction and data cache sizes,
(4) Level 2 cache, and (5) FPGA favored resource (LUT
or block RAM) for cache structures. The on-chip network
tab covers all the major aspects of the system interconnect:
(1) routing algorithm, (2) number of virtual channels (VCs)
per port, (3) VC depth, (4) core and switch bandwidths, (5)
routing tables programming, by selecting source/destination
pair or flow ID, router ID, output port, and VC (allow-
ing user-defined routing paths), and (6) number of flits per
packet for injector-based traffic. The programming tab is
updated when the user changes the number of cores in the
system; the user can: (1) load a binary file onto a core, (2)
load a binary onto a core and set the starting address for an-
other core to point to that binary, (3) select where to place
the data section or stack pointer of a core (it can be local,
on the same core as the binary or on another core), and (4)
select which cores to start.

6. EXPERIMENTAL RESULTS

6.1 Full 2D-mesh systems
The synthesis results of five multicore systems of size:

2×2, 3×3, 4×4, 5×5, and 6×6 arranged in 2D-mesh topology
are summarized below. Table 5 gives the key architectural
characteristics of the multicore system. All five systems run
at 105.5MHz, which is the clock frequency of the router,
regardless of the size of the mesh.

Figure 12 summarizes the FPGA resource utilization by

the different systems in terms of registers, lookup tables, and
block RAMs. In the 2×2 and 3×3 configurations, the local
memory is set to 260KB per core. The 3×3 configuration
uses 99% of block RAM resources at 260KB of local memory
per core. For the 4×4 configuration the local memory is
reduced to 64KB per core, and the local memory in the 5×5
configuration is set to 32KB. The 6×6 configuration, with
16KB of local memory per core, fails during the mapping
and routing synthesis steps, due to the lack of LUTs.

6.2 Evaluation results
We examine the performance of two SPEC CINT2000

benchmarks, namely, 197.parser and 256.bzip2 on Heracles.
We modify and parallelize these benchmarks to fit into our
evaluation framework. For the 197.parser benchmark, we
identify three functional units: file reading and parameters
setting as one unit, actual parsing as a second unit, and er-

Table 5: 2D-mesh system architecture details.

Core
ISA 32-Bit MIPS
Hardware threads 1
Pipeline Stages 7
Bypassing Full
Branch policy Always non-Taken
Outstanding memory requests 1

Level 1 Instruction/Data Caches
Associativity Direct
Size variable
Outstanding Misses 1

On-Chip Network
Topology 2D-Mesh
Routing Policy DOR and Table-based
Virtual Channels 2
Buffers per channel 8

� � � � � � �
�

�	�

�

�	�

�

�	�

�

�	�

�

��

�

��
��� �� �����

�
�

�
��
���
�
�
��
��
�

����� ���
!!"

����� ���
#!"

$!�%
!!"

$!�%
#!"

� � � � � � �
�	�

�

�	�

�

�	�

�

�	�

�

��

�

�
���� �� �����

�
�
�
�
��
���
�
�
��
��
�

��� �!���!
""#

��� �!���!
$"#

� � � � � � �
���

�

���

�

���

	

	��

���

����� �� �����

�
�
�
�
��
���
�
�
��
��
�

�� !�"���"
##$

�� !�"���"
%#$

&#!'
##$

&#!'
%#$

� � � � � � �
���

�

���

�

���

	

	��

���

����� �� �����

�
�
�
�
��
���
�
�
��
��
�

�� !�"���"
##$

�� !�"���"
%#$

� � � � � � �
�	�

�

�	�

�

�	�

�

�	�

�

��

�

�
���� �� �����

�
�
�
�
��
���
�
�
��
��
�

��� �!���!
""#

��� �!���!
$"#

%" &
""#

%" &
$"#

� � � � � � �
�	�

�

�	�

�

�	�

�

�	�

�

��

�

��
��� �� �����

�
�

��
��
��
�
�
��
��
�

����� ���
!!"

����� ���
#!"

(b)	
 256.bzip2	
 	

(b)	
 256.bzip2	
 	

(a)	
 197.parser	
 	

(a)	
 197.parser	
 	

(c)	
 Fibonacci	
 	

(c)	
 Fibonacci	
 	

Figure 13: Effect of memory organization on performance for the different applications.

� � � � � � �
�

�	�

�

�	�

�

�	�

�

�	�

�

��

�

��
��� �� �����

�
�

�
��
���
�
�
��
��
�

����� ���
!!"

����� ���
#!"

$!�%
!!"

$!�%
#!"

� � � � � � �
�	�

�

�	�

�

�	�

�

�	�

�

��

�

�
���� �� �����

�
�
�
�
��
���
�
�
��
��
�

��� �!���!
""#

��� �!���!
$"#

� � � � � � �
���

�

���

�

���

	

	��

���

����� �� �����

�
�
�
�
��
���
�
�
��
��
�

�� !�"���"
##$

�� !�"���"
%#$

&#!'
##$

&#!'
%#$

� � � � � � �
���

�

���

�

���

	

	��

���

����� �� �����

�
�
�
�
��
���
�
�
��
��
�

�� !�"���"
##$

�� !�"���"
%#$

� � � � � � �
�	�

�

�	�

�

�	�

�

�	�

�

��

�

�
���� �� �����

�
�
�
�
��
���
�
�
��
��
�

��� �!���!
""#

��� �!���!
$"#

%" &
""#

%" &
$"#

� � � � � � �
�	�

�

�	�

�

�	�

�

�	�

�

��

�

��
��� �� �����

�
�

��
��
��
�
�
��
��
�

����� ���
!!"

����� ���
#!"

(b)	
 256.bzip2	
 	

(b)	
 256.bzip2	
 	

(a)	
 197.parser	
 	

(a)	
 197.parser	
 	

(c)	
 Fibonacci	
 	

(c)	
 Fibonacci	
 	

Figure 14: Effect of routing algorithm on performance in 2D-mesh for the different applications.

0	

0.2	

0.4	

0.6	

0.8	

1	

2x2	
 3x3	
 4x4	
 5x5	
 6x6*	

Pe
rc
en

ta
ge
	

2D	
 Meshes	

Resource	
 U3liza3on	
 	

Registers	

LUTs	

Block	
 RAMs	

Figure 12: Percentage of FPGA resource utilization
per mesh size.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

16x16	
 32x32	
 64x64	
 80x80	
 100x100	
 128x128	

Ex
ec
u+

on
	
 c
yc
le
s	
 (
10
^8
)	
 	

Matrix	
 sizes	

4	
 cores	

9	
 cores	

16	
 cores	

Figure 15: Matrix multiplication acceleration.

ror reporting as the third unit. When there are more than
three cores, all additional cores are used in the parsing unit.
Similarly, 256.bzip2 is divided into three functional units:
file reading and cyclic redundancy check, compression, and
output file writing. The compression unit exhibits a high
degree of data-parallelism, therefore we apply all additional
cores to this unit for core count greater than three. We also
present a brief analysis of a simple Fibonacci number calcu-
lation program. Figures 13 (a), (b), and (c) show 197.parser,
256.bzip2, and Fibonacci benchmarks under single shared-
memory (SSM) and distributed shared-memory (DSM), us-
ing XY-Ordered routing. Increasing the number of cores
improves performance for both benchmarks; it also exposes
the memory bottleneck encountered in the single shared-
memory scheme. Figures 14 (a), (b), and (c) highlight the
impact of the routing algorithm on the overall system per-
formance, by comparing completion cycles of XY-Ordered
routing and BSOR [9]. BSOR, which stands for Bandwidth-
Sensitive Oblivious Routing, is a table-based routing algo-
rithm that minimizes the maximum channel load (MCL)
(or maximum traffic) across all network links in an effort to
maximize application throughput. The routing algorithm
has little or no effect on the performance of 197.parser and
256.bzip2 benchmarks, because of the traffic patterns in
these applications. For the Fibonacci application, Figure
14 (c), BSOR routing does improve performance, particu-
larly with 5 or more cores. To show the multithreading and
scalability properties of the system, Figure 15 presents the

execution times for matrix multiplication given matrices of
different size. The Heracles multicore programming format
is used to automate of the workload distribution onto cores.

7. CONCLUSION
In this work, we present the new Heracles design toolkit

which is comprised of soft hardware (HDL) modules, an
application compiler toolchain, and a graphical user inter-
face. It is a component-based framework that gives re-
searchers the ability to create complete, realistic, synthesiz-
able, multi/many-core architectures for fast, high-accuracy
design space exploration. In this environment, user can ex-
plore design tradeoffs at the processing unit level, the mem-
ory organization and access level, and the network on-chip
level. The Heracles tool is open-source and can be down-
loaded at http://projects.csail.mit.edu/heracles. In the cur-
rent release, RTL hardware modules can be simulated on all
operating systems, the MIPS GCC cross-compiler runs in a
Linux environment, and the graphical user interface has a
Windows installer.

8. ACKNOWLEDGMENTS
We thank the students from the MIT 6.S918 IAP 2012

class who worked with early versions of the tool and made
many excellent suggestions for improvement. We thank Joel
Emer, Li-Shiuan Peh, and Omer Khan for interesting discus-
sions throughout the course of this work.

9. REFERENCES
[1] J. Andersson, J. Gaisler, and R. Weigand. Next

generation multipurpose microprocessor. 2010.

[2] N. Banerjee, P. Vellanki, and K. Chatha. A power and
performance model for network-on-chip architectures.
In Design, Automation and Test in Europe Conference
and Exhibition, 2004. Proceedings, volume 2, pages
1250 – 1255 Vol.2, feb. 2004.

[3] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and
S. Devadas. Deadlock-free fine-grained thread
migration. In Networks on Chip (NoCS), 2011 Fifth
IEEE/ACM International Symposium on, pages 33
–40, may 2011.

[4] C. R. Clack, R. Nathuji, and H.-H. S. Lee. Using an
fpga as a prototyping platform for multi-core
processor applications. In WARFP-2005: Workshop
on Architecture Research using FPGA Platforms,
Cambridge, MA, USA, feb. 2005.

[5] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2003.

[6] P. Del valle, D. Atienza, I. Magan, J. Flores, E. Perez,
J. Mendias, L. Benini, and G. Micheli. A complete
multi-processor system-on-chip fpga-based emulation
framework. In Very Large Scale Integration, 2006 IFIP
International Conference on, pages 140–145, oct. 2006.

[7] K. E. Fleming, M. Adler, M. Pellauer, A. Parashar,
A. Mithal, and J. Emer. Leveraging
latency-insensitivity to ease multiple fpga design. In
Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays,
FPGA ’12, pages 175–184, New York, NY, USA, 2012.

[8] N. Genko, D. Atienza, G. De Micheli, J. Mendias,
R. Hermida, and F. Catthoor. A complete

network-on-chip emulation framework. In Design,
Automation and Test in Europe, 2005. Proceedings,
pages 246–251 Vol. 1, march 2005.

[9] M. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk,
and S. Devadas. Application-Aware Deadlock-Free
Oblivious Routing. In Proceedings of the Int’l
Symposium on Computer Architecture, June 2009.

[10] M. Kinsy, M. Pellauer, and S. Devadas. Heracles:
Fully synthesizable parameterized mips-based
multicore system. In Field Programmable Logic and
Applications (FPL), 2011 International Conference
on, pages 356 –362, sept. 2011.

[11] C. E. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. IEEE Trans.
Comput., 34(10):892–901, 1985.

[12] M. Lis, P. Ren, M. H. Cho, K. S. Shim, C. Fletcher,
O. Khan, and S. Devadas. Scalable, accurate multicore
simulation in the 1000-core era. In Performance
Analysis of Systems and Software (ISPASS), 2011
IEEE International Symposium on, pages 175–185,
april 2011.

[13] A. Lusala, P. Manet, B. Rousseau, and J.-D. Legat.
Noc implementation in fpga using torus topology. In
Field Programmable Logic and Applications, 2007.
FPL 2007. International Conference on, pages
778–781, aug. 2007.

[14] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. H̊allberg, J. Högberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, feb 2002.

[15] J. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on, pages 1–12, jan. 2010.

[16] L. M. Ni and P. K. McKinley. A survey of wormhole
routing techniques in direct networks. Computer,
26(2):62–76, 1993.

[17] D. Patterson and J. Hennessy. Computer Organization
and Design: The Hardware/software Interface.
Morgan Kaufmann, 2005.

[18] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and
J. Emer. Hasim: Fpga-based high-detail multicore
simulation using time-division multiplexing. In High
Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pages
406–417, feb. 2011.

[19] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and
M. Robert. Hs-scale: a hardware-software scalable
mp-soc architecture for embedded systems. In VLSI,
2007. ISVLSI ’07. IEEE Computer Society Annual
Symposium on, pages 21–28, march 2007.

[20] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,
D. Patterson, and K. Asanovict’ and. Ramp gold: An
fpga-based architecture simulator for multiprocessors.
In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 463–468, june 2010.

[21] W. Yu. Gems a high performance em simulation tool.
In Electrical Design of Advanced Packaging Systems
Symposium, 2009. (EDAPS 2009). IEEE, pages 1–4,
dec. 2009.

